City Water, Light & Power Springfield, Illinois

CCR Surface Impoundments and FGDS Unit 2 Landfill

Flow Path Report

September 2025

Prepared for: City Water, Light & Power 3100 Stevenson Drive Springfield, Illinois

3300 Ginger Creek Drive, Springfield, IL 62711 | 217.787.2334

EXECUTIVE SUMMARY

This Flow Path Report is prepared in accordance with paragraphs 263 and 280 of the January 14, 2025 Consent Agreement and Final Order (CAFO). The purpose of this report is to fully characterize groundwater flow paths from the CCR surface impoundments and the FGDS Disposal Facility, evaluate potential preferential pathways including the abandoned creek beneath the Dallman Ash Pond and discontinuous shallow sand, assess the potential for contact between coal combustion residuals (CCR) and groundwater after closure, and demonstrate the absence of hydraulic communication between geologic units that could facilitate contaminant transport. This report integrates site-specific geologic, hydrogeologic, and construction data, including boring logs, well installation records, groundwater monitoring results, transducer data, hydrogeologic cross-sections, static groundwater elevations, pool elevations for Lake Springfield, the clarification pond, and Sugar Creek, and potentiometric surface maps and slug testing results for hydraulic conductivity.

Key findings include:

- The abandoned creek bed beneath the Dallman Ash Pond perimeter berms and the Unit 2 Landfill has been filled and compacted during construction, precluding it from acting as a preferential pathway. Historical aerial photographs and topographic maps (United Stated Geological Survey) do not show Sugar Creek being recently present beneath the Lakeside Ash Pond.
- Current groundwater movement is generally radial from the impoundments toward Sugar Creek, with an eastward component along the eastern portion of the site toward the FGDS Landfill, then northward toward Sugar Creek.
- The shallow sand unit, which is discontinuous, was largely removed during Dallman Ash Pond construction and Sugar Creek relocation and does not serve as a primary contaminant pathway.
- The potentiometric surfaces in the shallow sand piezometers do not reflect direct connection to the impoundments, indicating hydraulic separation, particularly along the northern periphery of the Dallman Ash Pond.
- Post-closure, CCR is not anticipated to be in contact with groundwater due to the confining properties of the lower cohesive unit.
- Construction of the impoundments did not occur below the potentiometric surfaces due to hydrogeologic properties of the sediments and complexities of building structures in wet or saturated conditions.
- Nested well group AP-15S/AP-15D is proposed to be added to the monitor well system; the Groundwater Monitoring Program will be updated accordingly.

TABLE OF CONTENTS

1.	INT	RODUCTION	1
	1.1	Purpose and Scope	1
	1.2	Site Background	
		· ·	
2.	SU	RFACE IMPOUNDMENT/LANDFILL CONSTRUCTION	2
3.	SU	BSURFACE CONDITIONS	4
	3.1	Hydrogeologic Investigations	
	3.2	Uppermost Bedrock	
	3.3	Surficial Deposits	
	3.3	·	
	3.3		
	3.3	•	
	3.3		
	3.3	• •	
	3.4	Hydrogeologic Units	
	3.4		
	3.4		
	3.4	• •	
	3.5	Groundwater Elevations and Pool Levels	
	3.6	Potentiometric Surface Maps	15
4.	ΕV	ALUATION OF PREFERENTIAL PATHWAYS	16
	4.1	Abandoned CreekShallow Sand Unit	
	4.2 4.3	Communication Between Basal Sand and Shallow Sand	
	4.3	Confindincation between basai Sand and Shallow Sand	10
5.	GR	OUNDWATER ELEVATIONS RELATIVE TO CCR BASE	18
6.	RE	CENT ADDITION OF PIEZOMETERS	20
7.	AN	NUAL EVALUATION	20
8.		NCLUSION	
		GINEERING CERTIFICATION	
10		PEFEDENCES	22

FIGURES

Figure 1: Site Location

Figure 2: Site Features

Figure 3: Historic Site Photo - 1936

Figure 4: Historic Site Topographic Map - 1950

Figure 5: Former Sugar Creek Channel

Figure 6: Boring and Monitoring Well/Piezometer Locations

Figure 7: Bedrock Surface

Figure 8: Basal Sand Surface

Figure 9: Basal Sand Isopach

Figure 10: Lower Cohesive Deposit Surface

Figure 11: Lower Cohesive Deposit Isopach

Figure 12: Shallow Sand Surface

Figure 13: Shallow Sand Isopach

Figure 14: Upper Cohesive Deposit Surface

Figure 15: Upper Cohesive Deposit Isopach

TABLES

Table 1: Groundwater Elevations
Table 2: Vertical Hydraulic Gradients

APPENDICES

Appendix A: Boring Logs

Appendix B: Well Construction Reports
Appendix C: Geologic Cross-Sections
Appendix D: Slug Test/Packer Test Data
Appendix E: Laboratory Soils Analyses
Appendix F: Potentiometric Surface Maps

1. INTRODUCTION

1.1 Purpose and Scope

Pursuant to Paragraphs 263 and 280 of the CAFO, City Water, Light and Power (CWLP) agreed to prepare a Flow Path Report that includes all applicable data used to determine the groundwater flow paths for the CCR Surface Impoundments and Flue Gas Desulfurization System (FGDS) Unit 2 Landfill.

This Flow Path Report focuses on groundwater flow dynamics, geologic barriers, and potential pathways to address these items. It integrates data from historical site investigations, construction records, groundwater monitoring and recent assessments. Data collection includes semiannual monitoring and transducer deployments for groundwater level monitoring events.

1.2 Site Background

CWLP owns two existing CCR surface impoundments and a CCR landfill subject to the U.S. EPA Standards for the Disposal of Coal Combustion Residuals (40 CFR 257). The CWLP CCR surface impoundments and FGDS Unit 2 Landfill are located north and east of the former Lakeside Power Generating Station and Dallman Power Generating Station in the Eastern ½ of Section 12, Township 15 North, Range 5 West, in Springfield, Illinois (see Figure 1). The CCR surface impoundments are identified as the Lakeside Ash Pond and the Dallman Ash Pond and the CCR landfill is identified as Unit 2 of the Flue Gas Desulfurization Sludge (FGDS) Landfill (see Figure 2). Depicted in Figure 3 is the 1936 pre-CCR impoundment conditions of the CWLP facility looking to the north-northeast.

The Lakeside Ash Pond was placed into service prior to 1958 and ceased receiving ash in 2009. It has been divided into four separate ponds, three lime sludge ponds (out of service since October 13, 2023) and the settling pond consisting of approximately 35.0 acres. The Lakeside Ash Pond formerly received lime sludge from the CWLP Drinking Water Purification Plant, scrubber wastewater treatment plant clarifier blowdown and water from miscellaneous floor drains. Construction of new concrete-lined lime sludge ponds were completed and began operation simultaneously with the cessation of the use of Lakeside Ash Pond.

The Dallman Ash Pond was placed into service in 1976 and is approximately 34.5 acres. The Dallman Ash Pond formerly received fly ash and bottom ash, which were sluiced with raw lake water, industrial wastewater treatment plant clarifier blowdown and landfill leachate. CWLP ceased operating Dallman Units 31 & 32 and ceased operating Dallman Unit 33 by September 15, 2023 with all CCR/non-CCR waste streams ceased by October 13, 2023.

The FGDS Unit 2 Landfill, is an existing non-hazardous special waste landfill. Located immediately east of the Dallman Ash Pond, this is a permitted non-hazardous special waste landfill (Illinois EPA Permit No. 1995-243-LFM) for flue gas desulfurization sludge, bottom ash, fly ash, and lime sludge. The FGDS Disposal Facility consists of 40 acres with 22.3 acres of disposal area divided into two units. The south unit is identified as Unit 1 and the north unit is identified as Unit 2.

2. SURFACE IMPOUNDMENT/LANDFILL CONSTRUCTION

Prior to the area development the property on which the CCR surface impoundments and CCR landfill have been constructed was originally for agricultural/pasture purposes as well as woodlands where the Dallman Ash Pond is located. Sugar Creek historically meandered across the site, generally from the west to east with an overall flow direction to the north. Prior to the creek relocation, the creek bed was largely restricted to the northern half of the facility where the Dallman Ash Pond and Unit 2 Landfill are located. Figure 4 shows the subject area prior to development of the ponds or landfill. The upper layer of soil at the site consisted of eolian soils (loess) deposited near the surface, isolated pockets and lenses of fine-grained silty to clayey sand at some locations and alluvial silts and silty clays. Much of the shallow soils were displaced during area development.

During the construction of the Dallman Ash Pond, the creek was abandoned and relocated west and north of the site. The Grading Plan drawing by Burns & McDonnell (Drawing No. Y29, Rev. 4, dated August 13, 1976) (Figure 5) depicts the creek realignment. Abandonment of the creek channel included the placement of different soil types, ranging from cohesive soils characterized as silty clays, to granular fill characterized as poorly graded silty to clayey sands. While the vertical hydraulic conductivity of the material that forms the bottom of the surface impoundments is generally low, soils were not compacted beneath the impoundments except for sections where the dikes of the Dallman Ash Pond were built atop the existing creek bed. No composite liner or alternative composite liner as specified in 40 CFR Part 257.70 (b) or 40 CFR Part 257.70 9 (c)(1), was used to line the bottom of either ash pond.

The Lakeside Ash Pond contains approximately 1,565,000 cubic yards (cu. yds.) of CCR including water treatment plant sludge. The Lakeside Ash Pond is primarily a diked embankment with some incising along the east perimeter. The ash pond abuts the Lake Springfield Spaulding Dam to the south and the original portion of the ash pond abuts the Unit 1 landfill and the clarification pond to the north. Open downstream slopes are present along the west dike of the original ash pond, and the vertical expansion berms, which were constructed on the east, west and north boundaries of the ash pond. The original Lakeside Ash Pond has been divided into four separate ponds since it was expanded vertically in 1988; three lime ponds and the settling pond. The vertical expansion consists of berms built on top and inside of the existing embankments. The floor of the Lakeside

Ash Pond is approximately elevation 530 feet and slopes upward in the eastern portion following the natural topography.

The Dallman Ash Pond contains approximately 1,217,000 cu. yds. of CCR. The Dallman Ash Pond is a diked embankment surface impoundment. The entire Dallman Ash Pond is partially incised. The berms for the Dallman Ash Pond were built to a height of approximately 27 feet (554 feet MSL), using slopes of 2.5H:1V for both the inner and outer slopes. The elevation of the base of the surface impoundments is approximately 525 feet MSL based on aforementioned drawing Figure 5 and borings advanced to the floor of Dallman Ash Pond. Material from the center of the ash pond was excavated and utilized in the construction of the dikes. As depicted on the Grading Plan drawing by Burns & McDonnell (Figure 5), the Dallman Ash Pond dikes were constructed on areas of the old creek bed. According to Note 4 on this drawing, the creek bed in these areas was over-excavated by at least 4 feet below the existing channel banks and bottom. These excavations were then filled in with cohesive material and compacted to at least 90 percent of maximum dry density. The Dallman Ash Pond abuts the FGDS landfills to the east and the clarification pond to the south. The only open downstream slopes are on the west and north dikes. The floor of Dallman Ash Pond slopes from approximately 530 feet MSL along the southern perimeter to approximately 525 along the northern edge.

The CWLP FGDS Development Landfill Unit 2 is located directly to the east of the Dallman Ash Pond. CWLP has owned and operated the FGDS Development Landfill since 1988. Prior to 1988, the facility was owned and operated by the private corporation Environmental Site Developers, Inc. The original design for Landfill Unit 2 designated three disposal areas identified as Cells 1, 2, and 3. In September 1993, the Illinois Environmental Protection Agency ("IEPA") approved an application seeking the separation of the active Cell 1 from the then-undeveloped Cells 2 and 3. This created Landfill Unit 1, which consists solely of the now-closed Cell 1, and Landfill Unit 2, which is comprised of Cells 2 and 3.

CWLP initiated development of Landfill Unit 2 in 1993, and IEPA issued a permit to operate Landfill Unit 2 under 35 III. Admin. Code Parts 811–814 on November 9, 1995. Landfill Unit 2 consists of approximately 22.3-acres of permitted disposal area separated into Cells 2 and 3. Cell 2 has not been developed and only 3.0 acres of Cell 3 has been developed. The IEPA operating permit authorizes Landfill Unit 2 to receive flue gas desulfurization ("FGD") sludge (more commonly known as gypsum), bottom ash, fly ash, lime sludge from the Water Purification Plant, FGD wastewater treatment plant sludge, and Generating Facility wastewater treatment plant sludge.

The Landfill Unit 2 was constructed with a 5 foot recompacted clay liner overlain by a leachate collection system. The leachate collection system is composed of a 12-inch sand drainage layer on the floor grades with a geocomposite drain on the western and northern 10-percent sloped floor directly on the 5 foot recompacted clay liner. A geotextile fabric is directly above the 12-inch

sand drainage layer to prevent clogging of the sand. A leachate collection trench was centrally placed within the landfill running west to east over the 5 foot recompacted clay liner. The leachate collection trench is composed of a leachate collection pipe surrounded by gravel and wrapped in a geotextile fabric. The leachate collection pipe terminates into the leachate manhole riser on the east side of the landfill within the termination berm.

The lowest point of the 5 foot recompacted clay liner subgrade is approximately at an elevation of approximately 525 feet MSL and the lowest extent of the waste within the landfill is at an approximate elevation of 531 feet MSL, both near the central eastern point of the landfill near the leachate manhole riser. The remainder of the landfill is above these elevations.

3. SUBSURFACE CONDITIONS

3.1 Hydrogeologic Investigations

The subsurface conditions of the CWLP facility have been characterized through multiple subsurface investigations, including those prior to the CCR impoundment development, along the perimeter of the impoundments and including the hydrogeologic investigation at the CCR landfill located north of the Lakeside Ash Pond and east of the Dallman Ash Pond. These investigations span from June 1989 to present day. In chronological order, the investigations are:

- Professional Service Industries (PSI), June 1989. This investigation consisted of five soil borings within the east section of the south cell (Cell 1).
- Andrews Environmental Engineering, Inc., February 1990. This investigation was performed for Cell 2 and consisted of 13 soil borings. The drilling and testing were completed by PSI.
- Andrews Environmental Engineering, Inc., March 1990. This investigation was performed to install six wells at the Facility. The drilling and testing were completed by PSI.
- Patrick Engineering, Inc. (PEI), July 1992. This investigation was performed to further characterize the hydrogeology of the landfill setting.
- Stabilize, Inc., December 2008. This investigation installed three new monitoring wells as part of an assessment monitoring program for the landfill. The drilling, soil testing, and well construction were performed by Reynolds Well Drilling.
- CWLP, April 2010. This investigation was performed to install four piezometers on the west side of the CCR surface impoundments along Sugar Creek. The drilling and testing were completed by PSI.
- Stabilize, Inc., May 2011. This investigation installed four new monitoring wells to further the characterization of the CCR surface impoundments. The drilling, soil testing, and well construction were performed by PSI.

- Andrews Engineering, January 2012. This investigation was performed to replace CCR surface impoundment wells and install an additional background well. The drilling and well installation were completed by TerraDrill.
- Andrews Engineering, July 2017. This project included drilling peripheral to the Dallman Ash Pond and the installation of basal sand/bedrock interface wells at TW3E, TW3W and TW3N. TW3N is the replacement wells for AW-3 and is identified in the groundwater monitoring program as RW-3.
- Andrews Engineering, June 2019. This investigation advanced 7 direct push borings peripheral to the Dallman Ash Pond, GP-2, GP-3, GP-4, GP-5, GP-6 and GP-7 and included the installation 2 new monitoring wells (AP6 in boring GP6 and AP-7 in boring GP2) as part of an assessment program for the CCR ash impoundments.
- Andrews Engineering, February 2021. This investigation consisted of borings and construction of groundwater monitoring wells at 7 locations along the periphery of Dallman and Lakeside Ash Ponds; adjacent to Sugar Creek. These are identified as AP-8, AP-9, AP-10, AP-11, AP-12, AP-13 and AP-14.
- Andrews Engineering, October 2023. This investigation consisted of 34 borings next to the impoundments and 4 next to landfill Unit 1, to investigate the CCR ash surface impoundment berm construction materials and the installation of 29 vibrating wire piezometers to characterize the stability of the berms. These are identified as B-1, B-1L, B-1L, B-1U, B-1CCR, B-2, B-2L, B-2U, B-2CCR, B-3, B-3U, B-3CCR, B-4, B-4L, B-4U, B-4CCR, B-5, B-5L, B-5CCR, B-6, B-6L, B-6CCR, B-7, B-7L, B-7CCR, B8-L, B8-U, B-9L, B-9U, B-9CCR, B-10CCR, B-11U, B-12L, B-12U, B-13BN, B-13BS, B-13L, B-13LF. With the exception of B-4L, B-4U, B-4CCR, B-8U and B-11U, the borings were completed with vibrating wire sensors.
- Andrews Engineering, February 2024. This investigation consisted of 14 borings using a
 cone penetrometer adjacent to and within the Dallman and Lakeside Ash Ponds. These
 borings are identified as CPT-1CCR, CPT-2CCR, CPT-2L, CPT-3CCR, CPT-4CCR, CPT4L, CPT 5CCR, CPT-6CCR, CPT-6L, CPT-7CCR, CPT-7L, CPT-10CCR, CPT-14CCR
 and CPT-15CCR.
- Andrews Engineering, April/May 2024. This investigation consisted of 4 borings advanced in the Dallman Ash Pond (D-1, D-2, D-3 and D-4) and 4 borings advanced in the Lakeside Ash Pond (L-1, L-3, L-4 and L-5). Wells were constructed to screen the bottom of the CCR in these borings. This investigation also included the advancement of borings T-1, T-2, T-4, T-5 and T-6 on the opposite side of Sugar Creek, west and north of the surface impoundment area and the advancement of a deep boring, B100, which was packer tested to characterize bedrock permeability.
- Hanson Professional Services, Inc. (Hanson), August 2024. This investigation consisted
 of a total of 12 borings, 5 through the Dallman Ash Pond (DB-01, DB-02, DB-03, DB-04
 and DB-05) and 5 through the Lakeside Ash Pond (LB-01, LB-02, LB-03, LB-04 and

LB-05). Two of the Dallman Ash Pond borings were converted to piezometers (DB-04 and DB-05) and one of the borings in the Lakeside Ash Pond (LB02) was converted to a piezometer.

- Hanson, May/June 2025. This investigation consisted of 4 borings (D-06, D-07, D-08 and DW-01) completed as wells within the Dallman Ash Pond, and two of the borings, BH-01 and BH-02, were completed as wells along the berm that separates the Dallman Ash Pond from the clarification pond.
- Andrews Engineering, May 2025. This investigation consisted of the advancement of 21 borings (AP-6S, AP-6SA, AP-8S, AP-8SA, AP-15S, AP-15D, AP-16, AW-2, B2-LE, B-4E, B-6E, B-6LE, B-7E, B-7LE, G-104, G-104S, P-03D, P-03S, R-103, RW3S and T-4S) with the installation of 9 groundwater monitoring wells (AP-6SA, AP-8SA, AP-15S, AP-15D, AP-16, G-104S, P-03S, RW3S and T-4S). Seven of these borings (AW-2, B-2LE, B-4E, B-6E, B-6LE, B-7E and B-7LE) were completed to collect additional samples for characterization of the berm/foundation soils and one to verify previous boring log comments.

The investigations and related work conducted to date have provided sufficient information to characterize the site hydrogeologic conditions, including the uppermost saturated zone (i.e., basal sand) and the uppermost confining unit (i.e., bedrock). Figure 6 depicts all borings, monitoring wells/piezometers and vibrating wire locations. The site-specific geologic conditions have been refined through the advancement of additional borings during 2024 and 2025. Boring logs and well completion reports for these 2024 and 2025 investigations are included as Appendix A and Appendix B, respectively.

Data from these investigations has been used to create and refine the geologic cross-sections, with an emphasis on characterizing the primary hydrostratigraphic units. The geologic cross-sections have been updated to include information from these recent, 2024 and 2025 investigations. The revised geologic cross-sections are provided in Appendix C.

3.2 Uppermost Bedrock

The bedrock at the project site consists of Pennsylvanian aged shale that is gray in color with some coal seams. Erosion of the bedrock surface has occurred along the alluvial valley forming a south to north trough in which Sugar Creek is located. The bedrock increases in elevation to the eastern and western flanks of the bedrock trough. There appears to be a bedrock ridge which runs south southeast to north northwest at the northeast corner of the Dallman Ash Pond. At this location the bedrock elevation increases from approximately 497 feet MSL at RW3 to 527 feet MSL at GP-3, just north of Sugar Creek. Near the center of the landfill, the bedrock surface elevation varies from approximately 492 feet MSL to approximately 554 feet MSL at the southeast corner of Cell 1, boring B-14. Figure 7 depicts the bedrock surface elevations.

Rock Quality Designation (RQD) measurements were performed on core samples taken from the FGDS Landfill area. RQDs measured from core samples collected during this investigation ranges from 80% to 100%. The RQD values indicate that the bedrock exhibits minimal to no fracturing. Two in situ hydraulic conductivity tests were performed to determine the hydraulic conductivity of the upper portions of the bedrock. Test results indicate hydraulic conductivity values of 1.8 x 10⁻⁷ cm/sec and 1.3 x 10⁻⁶ cm/sec (Patrick, 1993). This shows that the bedrock encountered at the project site is a lower confining unit to the uppermost saturated zone. There is good correlation between the lithology of the rocks tested and the hydraulic conductivity values obtained. The upper bedrock beneath the impoundments is expected to exhibit the same characteristics as encountered at the landfill. RQD and slug test data for the Patrick 1989 application are included in Appendix D.

A 2024 investigation included the completion of deep boring B100. Located immediately north of the Dallman Ash Pond on adjacent to Sugar Creek the deep boring was advanced to 103.5 feet below ground surface (BGS). Bedrock at this location was encountered at 32.3 feet BGS (500.7 feet MSL). Packer testing was completed at seven intervals (i.e., 93 to 103.5 feet BGS, 82.5 to 93 feet BGS, 72 to 82.5 feet BGS, 61.5 to 72 feet BGS, and 51 to 61.5 feet BGS with the final two intervals overlapping 40.5 to 51 and 38.5 to 49 feet BGS). Test results indicate hydraulic conductivity below 482 feet MSL is less than 1 x 10⁻⁹ cm/sec. The results for the intervals tested above 482 feet MSL are invalid as a result of hydraulic fracturing of the bedrock and the resultant inability to establish a seal within the shallow bedrock portion of the borehole. The results confirm that bedrock below the weathered zone is relatively impermeable; however, the shallow weathered bedrock may have higher hydraulic conductivities and in direct hydraulic communication with the overlying basal sand such that the interface of the unconsolidated deposits and bedrock comprise the uppermost saturated zone. The packer test data from this investigation is included in Appendix D.

There is good correlation between the lithology of the rocks tested and the hydraulic conductivity values obtained. The upper bedrock beneath the impoundments is expected to exhibit the same characteristics as encountered at the landfill.

3.3 Surficial Deposits

The shallow stratigraphy and lithology at the CCR units include approximately 20 to 50 feet of unconsolidated sediments, dependent upon location. In ascending order (i.e., oldest to youngest) these materials are identified as basal sand, creek fill, lower cohesive deposit, shallow sand, upper cohesive deposit and fill material. For the FGDS Landfill, the hydrogeology is consistent with the adjacent impoundments, with the basal sand as the uppermost saturated zone. As described below, the uppermost unit directly beneath the CCR surface impoundment varies with the Lakeside Ash Pond resting directly on the upper cohesive deposit and the southern third of

the Dallman Ash Pond resting on the upper cohesive deposit and northern two-thirds resting on the lower cohesive deposit.

The overall tendency is for the finer-grained materials (clays, silty clays and silts) to overlie the coarser-grained materials (sands and gravels). This coarsening downward is present throughout much of the site. At the majority of the borehole locations, the coarser materials rest directly on top of the weathered bedrock surface. It is this coarser material, the basal sand, which is characterized as the uppermost saturated zone.

The occurrence of the deposits discussed below are variable due to the meandering nature of Sugar Creek prior to the development of Lake Springfield and Spaulding Dam. The meandering creek has resulted in sequential erosion and deposition (scour and fill) throughout much of the creek drainage system, both laterally and vertically.

3.3.1 Basal Sand

The basal sand generally overlies the bedrock surface and underlies the lower cohesive deposit. There are some pockets of very hard, fine-grained silty clay to clay overlying bedrock in a few areas. The basal sand is present above these pockets of clayey deposits, thought to be weathered bedrock. In most locations, the basal sand is the lower-most surficial deposit. The basal sand is a gray, poorly graded, silty to clayey fine sand to well graded sand with minor amounts of fine gravel. This unit is in a medium dense to dense condition. Across the CWLP facility (includes the Dallman and Lakeside Ash Ponds), the top elevation of the basal sand varies from 486.9 feet MSL (G113) to 535.1 feet MSL (GP-3) and the thickness ranges from absent to 18.6 feet. The unit was not consistently encountered, likely due to excessive erosion of the creek bottom. The surface of the Basal Sand is depicted in Figure 8. The thickness of the Basal Sand is depicted in Figure 9.

The basal sand generally consists of 0% to 34% gravel, 50% to 91% sand, and 6% to 44% silt/clay; and exhibits a horizontal hydraulic conductivity of ranging from 1.15×10^{-3} to 7.64×10^{-2} cm/sec. The geometric mean hydraulic conductivity is 1.25×10^{-2} cm/sec. The basal sand was saturated in all locations where it was encountered (Patrick, 1993). Grain size analyses are provided in Appendix E.

Hanson conducted slug testing on the FGDS Landfill and CCR Surface Impoundment groundwater monitoring wells and the ash impoundment CCR wells during March 2025. The basal sand wells exhibited hydraulic conductivities ranging from a minimum of 4.57×10^{-5} cm/sec to a maximum of 8.84×10^{-2} cm/sec. The geometric mean hydraulic conductivity of the basal sand is 1.86×10^{-3} cm/sec. The slug test data from Hanson is provided in Appendix D.

In August 2025 Andrews Engineering performed slug testing at Basal Sand wells AP-15D, AP-16 and P-03D. The slug testing results ranged from a minimum hydraulic conductivity of 2.62×10^{-5} cm/sec to a maximum of 4.03×10^{-3} cm/sec. The geometric mean hydraulic conductivity is 2.91×10^{-4} cm/sec. This value is in general agreement with that determined from previous investigations.

3.3.2 Lower Cohesive Deposit

The lower cohesive deposit consists of brown, gray, and brownish gray silty clays, clayey silts, and clays, having very soft to stiff consistency. Across the CWLP facility, the lower cohesive deposit is as much as 27 feet thick with an average thickness of about 11 feet. The deposit was not encountered in isolated areas along the abandoned creek, possibly due to excessive erosion of the creek bottom in these areas. The northern two-thirds of the Dallman Ash Pond rests directly on top of the lower cohesive deposit. The top of the lower cohesive deposit is depicted in Figure 10. The thickness of the lower cohesive deposit is depicted in Figure 11

The soils in the lower cohesive deposit can be similar in color and texture to the soils in the upper cohesive deposit. The distinction between the two deposits was based on the presence or changes in soil consistency (as measured with a calibrated hand held penetrometer) and a marked difference in moisture content. The lower cohesive deposit is not exposed at the ground surface in the investigation area.

The lower cohesive deposit consists of 0% gravel, 8% to 48% sand, and 52% to 95% silt/clay; and has a low hydraulic conductivity. The vertical hydraulic conductivity ranges from 1.3 x 10^{-8} to 1.8 x 10^{-6} cm/sec (triaxial permeameter). Based on these values, the average vertical hydraulic conductivity is 9.07×10^{-7} . The horizontal hydraulic conductivity ranges from 4.6×10^{-5} to 7.6×10^{-5} cm/sec (Patrick, 1993). Grain size analyses are provided in Appendix E.

As part of the 2023 geotechnical investigations conducted by Andrews Engineering, four borings were advanced in Lakeside Ash Pond and four borings in Dallman Ash Pond to confirm the bottom elevations of each impoundment. Borings L-1, L-3, L-4 and L-5 were advanced in Lakeside Ash pond where silty/clay materials were encountered at 534.5 feet MSL, 530.5 feet MSL, 553.0 feet MSL and 530.0 feet MSL, respectively. Borings D-1, D-2, D-3 and D-4 were advanced in Dalman Ash Pond where silty/clay materials were encountered at 526.0 feet MSL, 523.0 feet MSL, 526.2 feet MSL and 529.5 feet MSL respectively. The range of hydraulic conductivities for the silty/clay materials beneath Lakeside Ash Pond are from 6.8 x 10-6 cm/sec to 8.5 x 10-8 cm/sec with a geometric mean of 2.58 x 10-7 cm/sec. The range of hydraulic conductivities for the silty/clay materials beneath Dallman Ash Pond are from 2.1 x 10-6 cm/sec to 5.1 x 10-8 cm/sec with a geometric mean of 4.53 x 10-7 cm/sec.

3.3.3 Shallow Sand

The unit identified as the shallow sand is a fluvial deposit. Where it has been encountered, it is located between the top of the lower cohesive deposit and below the upper cohesive deposit. The discontinuous nature of the shallow sand is explained by the historical meandering nature of surface water across the area of investigation. Sediment deposition within a fluvial setting varies from fine-grained silts and clays to coarser sands, with the coarser materials being deposited as the water slows. As the creek flows into the inside of a bend, velocity decreases, causing the heaviest particles, typically sands and silty sands, to settle out first. Finer sediments remain suspended longer and are deposited further along the point bar or during overbank flooding. Because coarse-grained deposition is tied to localized drops in energy, such as those found only at specific points within the meander bends or during certain flood events, these deposits tend to be discontinuous. As a result, sand and silty sand lenses are often isolated within a matrix of finer material, creating a stratigraphic sequence that reflects the variable and shifting energy conditions of the meandering system.

The shallow sand was encountered on portions of the floor of FGDS Unit 2 Landfill and along the north side, and to a limited extent, west side of the Dallman Ash Pond from the middle of the north side to the eastern edge. The shallow sand was generally encountered between 515 feet MSL and 525 feet MSL, with some instance as low as 510 feet MSL and some as high as 530 feet MSL. This wide variation in elevations points to it variable deposition nature. Where encountered it is typically only a few feet in thickness or less. However, a thickness of 6 feet was observed in the undeveloped southern portion of Unit 2 and an approximate thickness of 7 feet was observed in boring AP15 west of the Lakeside Ash Pond. It appears the shallow sand may underlie a small section of the Lakeside Ash Pond where it is separated from the bottom of the Lakeside Ash Pond by approximately 8 feet of low permeability silty clay upper cohesive deposit. The shallow sand was not found to underlie the Dallman Ash Pond or Cell 3 of the Unit 2 Landfill. The extent and surface of the shallow sand is depicted in Figure 12. The thickness of the shallow sand is depicted in Figure 13.

Hydrogeologic cross-sections (e.g., Cross-Section A-A' and B-B') depict the limited extent of the shallow sand along the northern end and west side of the Dallman Ash Pond, respectively. These cross sections depict the shallow sand encountered at and above 525 feet MSL, but not intersecting CCR in saturated zones. Cross-section A-A' depicts the shallow sand present at AP-8, GP-4, TW3W and RW3.

According to the Grading Plan drawing by Burns & McDonnell (see Figure 5), the creek relocation project varied from an elevation of 520 feet MSL at the northwest corner to 516 MSL at the northeast corner. The drawing depicts that soils along the constructed creek channel were excavated along a 4:1 horizontal to vertical slope from the center line of the creek location channel and backfilled with cohesive soils essentially isolating the presence of the sand to a narrow band adjacent to the toe of the slope of the berm. This would result in the removal of the shallow sand

from the along the creek relocation area, essentially eliminating/removing the migration pathway of any fluvial sand deposits adjacent to the Dallman Ash Pond.

Along the west side of the Lakeside Ash Pond, a shallow sand appears in boring AP-15D and the B-2 series of borings used to characterize that portion of the Lakeside Ash Pond dike. A shallow sand was encountered at the location at approximately 525 feet MSL to 510 feet MSL. At this location, the bottom of the Lakeside Ash Pond is at approximately 535 feet MSL. This results in an approximate 10 foot vertical separation between the bottom of the Lakeside Ash Pond and the shallow sand at this location.

Laboratory tests performed on representative samples collected from the shallow sand unit during this and previous investigations indicate the shallow sand contains 0% gravel, 50% to 52% sand, and 48% to 50% silt/clay. Two FGDS Unit 2 Landfill piezometers (P06S and P07S) were screened in the shallow sand unit to obtain potentiometric surface information and conduct field hydraulic conductivity tests. The hydraulic conductivity of this unit based on the slug test results ranges from 3.6×10^{-3} to 2.9×10^{-2} cm/sec (Patrick, 1993). Grain size analyses are provided in Appendix E.

Hanson conducted slug testing on FGDS Unit 2 Landfill wells during March 2025. The Unit 2 shallow sand wells P06S and P07S exhibited hydraulic conductivities ranging from 1.53×10^{-3} cm/sec to a maximum of 3.35×10^{-3} cm/sec. The geometric mean hydraulic conductivity of the shallow sand is 2.29×10^{-3} cm/sec.

In August 2025 Andrews Engineering performed slug testing of the Shallow Sand wells AP6S, AP-15S, G-104S, P-03S, R-103S, and RW3S. The slug testing results ranged from a minimum hydraulic conductivity of 4.30×10^{-4} cm/sec to a maximum of 2.23×10^{-2} cm/sec. The geometric mean hydraulic conductivity is 1.53×10^{-3} cm/sec. This value is in general agreement with that determined from previous investigations.

3.3.4 Upper Cohesive Deposit

The upper cohesive deposit consists of brown, light brown to brownish-gray silty clays to clayey silts having soft to stiff consistency. The unit includes loess deposits and isolated pockets of fine-grained silty to clayey sand and at some location alluvial silts and silty clays. The upper cohesive deposit is laterally adjacent to the sidewall of the CCR surface impoundment. The top of the upper cohesive deposit is depicted in Figure 14. The thickness of the upper cohesive deposit is depicted in Figure 15.

The upper cohesive deposit has a low vertical hydraulic conductivity as determined by laboratory triaxial hydraulic conductivity tests from borings taken from the landfill investigation. The hydraulic conductivity values determined from the laboratory tests ranged from 5.2 x 10⁻⁷ cm/sec to

1.6 x 10 ⁵ cm/sec (Patrick, 1993). It is expected that the horizontal coefficient of hydraulic conductivity is greater than the vertical coefficient. Based on test results for the lower cohesive deposit, it is anticipated that the horizontal hydraulic conductivity for the upper cohesive deposit is in the range of 10⁻⁶ to 10⁻⁵ cm/sec (Patrick, 1993).

In 2024, four borings were conducted through both the Dallman and Lakeside Ash Ponds for the purposes of characterizing the geology immediately below the impoundments. Shelby tube samples were obtained from borings D-1, D-2, D-3 and D-4 (Dallman), and L-1, L-3, L-4 and L-5 (Lakeside). The geometric mean hydraulic conductivities of four samples under Dalman Ash Pond is 4.53 x 10⁻⁷ cm/sec. The geometric mean hydraulic conductivities of four samples under Lakeside Ash Pond is 2.58 x 10⁻⁷ cm/sec. The boring logs are provided in Appendix A and the laboratory hydraulic conductivity results are provided in Appendix E.

3.3.5 Creek Fill

Creek fill is the material used to abandon the former channel of Sugar Creek. Borings conducted along the abandoned creek (i.e., CB-1 through CB-4, CB-7 through CB-9, P-5D and P-8D) indicate that the creek fill is variable, ranging from silty clays to organic clays to silty sands. In some locations the CCR surface impoundment and CCR landfill dikes were constructed over the creek channel. The Grading Plan drawing by Burns & McDonnell (see Note 4 on Figure 5) indicates that where construction of a dike was over the former Sugar Creek channel, the creek fill was over excavated at least 4 feet below the existing channel banks and bottom and then filled with cohesive material and compacted to at 90%.

The cohesive soils are characterized as silty clay to organic silty clay which contain varying quantities of fine- to medium-grained sand. Wood fragments and other organic were typically encountered. In some areas, the cohesive fill materials extended down to the top of bedrock. The granular fill materials are typically poorly graded silty to clayey sands and contain organics or wood fragments. In some areas, the granular fill materials also extended down to the top of bedrock. The location of the creek abandonment is depicted on Figure 5.

The cohesive fill material contains 0% gravel, 2% to 48% sand, and 52% to 98% silt/clay. The vertical hydraulic conductivity ranges from 7.6 x 10⁻⁸ cm/sec to.2.1x10⁻⁵ cm/sec. The granular fill materials contain 0 to 2% gravel, 55% to 65% sand and 33% to 45% silt/clay. Based on one laboratory hydraulic conductivity test performed on a Shelby tube sample obtained from berm fill, the hydraulic conductivity of the granular fill material is 3.3 x 10⁻⁸ cm/sec (Patrick, 1993). Grain size analyses are provided in Appendix E.

Three landfill piezometers (P-3S, P-5S and P-8S) are screened across creek fill materials. Of these, one piezometer (P-5S) was installed across cohesive fill material (i.e., organic silty clay) and the other piezometers were installed across granular fill materials (i.e., clayey sand and silty

sand). Hydraulic conductivity of the granular fill materials ranged from a minimum of 7.1 x 10^{-5} cm/sec to 1.5 x 10^{-2} cm/sec with a geometric mean of 6.02 x 10^{-4} cm/sec. The hydraulic conductivity of the cohesive fill material ranged from 7.1 x 10^{-5} cm/sec to 1.1 x 10^{-4} cm/sec, and an average of 8.6 x 10^{-5} cm/sec (Patrick 1993). These values represent the hydraulic conductivity in the horizontal direction.

The horizontal hydraulic conductivity values are believed to be typical of soils which contain organic matter (e.g. wood fragments). The hydraulic conductivity values based on laboratory tests are generally considered to be representative of the coefficient of hydraulic conductivity in the vertical direction because of the sample configuration during testing. However, because of the randomness of the fill, it is more likely that the hydraulic conductivity is within the range of 10⁻⁵ to 10⁻⁴ cm/sec (Patrick, 1993).

3.4 Hydrogeologic Units

The uppermost saturated zone and underlying confining unit control groundwater movement and the potential for CCR impacted groundwater migration at the site. A description of the uppermost saturated zone and the underlying confining unit follows:

3.4.1 Intermittent Saturated Shallow Sand

The shallow sand is the uppermost saturated interval. As described above, the shallow sand is encountered intermittently between the top of the lower cohesive deposit and below the upper cohesive deposit, primarily on portions of the FGDS Unit 2 Landfill floor and along the north and west sides of the Dallman Ash Pond, from the middle of the north side to the eastern edge. It occurs at elevations generally between 515 and 525 feet MSL, with variations from 510 to 530 feet MSL, and thicknesses typically a few feet or less, though up to 6-7 feet in isolated areas at boring AP-15. The intermittent saturated shallow sand appears to be under confined, semi-confined, or unconfined conditions dependent upon location. The unit may underlie a small portion of the Lakeside Ash Pond, separated by about 8-10 feet of low-permeability silty clay, but it is absent beneath the Dallman Ash Pond or the Unit 2 Landfill. Creek relocation excavations along the Dallman Ash Pond further limited its extent by removing sands adjacent to the berm slopes, as shown in hydrogeologic cross-sections and figures depicting its surface and thickness.

The shallow sand wells include AP-6S, AP-8S, AP-15S, G-113, P-03S, P-06S North, P-07S West, P-09S West, P-103S, P-104S, RW3S and T-4S. There are three complete sets of shallow groundwater elevation data: June, 25, 2025, July 21, 2025 and August 21, 2025. The shallow groundwater elevations range from a minimum of 518.98 to 537.67 feet MSL. The average shallow groundwater elevation is 527.08 feet MSL.

As described above, the creek relocation project resulted in the excavation of soils along the constructed creek channel (i.e., west to east creek bed elevations are 520 to 516 feet MSL) along

a 4:1 horizontal to vertical slope from the center line of the creek location channel. This excavation was then backfilled with cohesive soils essentially isolating the presence of the shallow sand to a narrow band adjacent to the toe of the slope of the northern berm. This would result in the removal of the shallow sand from the along the creek relocation area, essentially eliminating/removing the migration pathway of any fluvial sand deposits adjacent to the Dallman Ash Pond.

3.4.2 Uppermost Saturated Zone

The uppermost saturated zone is characterized as the basal sand overlying the shale bedrock. As indicated above, the hydraulic conductivity of the basal sand ranges from 1.15 x 10⁻³ to 7.64 x 10⁻² cm/sec and exhibits a mean value of 1.25 x 10⁻² cm/sec. The groundwater in the basal sand appears to be under semi- to confined conditions. The upper limit of the uppermost saturated zone is dependent upon the seasonally fluctuating groundwater table. The potentiometric surface of the basal sand varies from 565 feet MSL at upgradient locations (i.e., AP5), south of the Lakeside Ash Pond, to 525 feet MSL at down-gradient locations near Sugar Creek, north of the Dallman Ash Pond. As a result, the potentiometric surface is variably dependent upon the location and the seasonal variation.

Creek fill material was encountered in FGDS Unit 2 Landfill locations CB-1, CB-2, CB-3, CB-4, P-3D, P-5D, B1-89, B6-89, B11-89, B12-89, B17-89 and G-104. The creek fill materials directly overlay the basal sand at P-5D, B1-89, B6-89 and B11-89. At these locations the creek fill is a silty clay, effectively eliminating the creek fill as a flow path. Due to the highly variable hydraulic characteristics and random placement of the creek fill materials, further characterization is difficult. The creek fill material does not present a contaminant flow path from the CCR units to the basal sand. The basal sand appears to be separated from the overlying CCR units by the upper and lower cohesive deposit, and or soils recompacted under the dikes where the dikes intersected the former creek channel and where the creek realignment effectively removed the high permeability soils.

3.4.3 Lower Confining Unit

The uppermost bedrock at the project site is primarily Pennsylvanian age shale with isolated thin coal layers. The Pennsylvanian shale functions as a lower confining unit due to its low hydraulic conductivity and effective porosity. The lower confining unit represents a natural hydrogeologic barrier (i.e., aquitard) to the vertical movement of groundwater.

In situ hydraulic conductivity test (slug tests) indicate that the hydraulic conductivity for the upper portions of the bedrock range from 1.8×10^{-7} cm/sec (0.0568 m/a) to 1.3×10^{-6} cm/sec (0.410 m/a) (Patrick, 1993). There appears to be good correlation between the rock lithology and the measured values of hydraulic conductivity. The bedrock over most of the site will act as an aquiclude and prevent the downward movement of groundwater.

3.5 Groundwater Elevations and Pool Levels

Static groundwater elevations were measured on a monthly schedule during 2025. Intermittent saturated shallow sand wells AP-6S, AP-8S, AP-15S, P-03S, P-103S, P-104S, RW3S and T-4S were installed in June 2025. The collection of groundwater elevations at these wells commenced June 2025. A summary of the groundwater elevations (in feet MSL) is provided in Table 1. This table includes all monitoring points including the adjacent surface water bodies: Lake Springfield, the clarification pond, and Sugar Creek. Also included in this table are pore water elevations for the Dallman Ash Pond and Lakeside Ash Pond wells (i.e., D and L wells, respectively).

There appears to be a slight seasonal variation in groundwater and pore water levels with higher levels generally observed during April and the lowest elevations observed during August 2025. The horizontal hydraulic gradient of the basal sand was calculated based on groundwater flow from well G-110 to well P-106. Using these wells, a horizontal hydraulic gradients was calculated for averages of the 2025 reported groundwater elevations for these wells/piezometers. As presented below, the horizontal hydraulic gradient within the basal sand exhibits an average of 0.00591 ft/ft.

Vertical hydraulic gradient were calculated for the nested groundwater monitoring well/piezometer locations AP-6/AP-6S, AP-8/AP8S, AP-15D/AP-15S, P-03D/P-03S, P-06R/P-06R/P-06S, P-07D/P-07M/P-07S, P-09D/P-09S, P-103/P-103S, P-104/P-104S, and RW3/RW3S. The vertical hydraulic gradients are summarized in Table 2. With the exception of the vertical hydraulic gradients at well pairs AP-15D/AP-15S, P-103/P-103S, P-104/P-104S and RW3/RW3S, the vertical hydraulic gradients are positive (i.e., upward). The overall upward hydraulic gradient is consistent with the characterization of the basal sand being a confined unit.

Well pairs AP-15D/AP-15S and RW3/RW3S are located along the western and northern perimeter of Dallman Ash Pond, respectively. Well pairs P-103/P-103S and P-104/P-104S are located along the northern perimeter of Unit 2. These well pairs are located along the periphery of the Dallman Ash Pond and Unit 2 in the where the shallow sand appears to be the thickest.

3.6 Potentiometric Surface Maps

Groundwater movement is controlled by recharge along topographic highs and discharge along the original stream valley. The pre-surface impoundment flow direction in the uppermost saturated zone was dominantly horizontal from the adjacent banks toward the natural convergence along Sugar Creek, which formerly drained the site. The overall groundwater movement was from south to north with local deviations. This dominant flow pattern persists under present day conditions but with localized variation introduced by the hydrologic discontinuity created upon construction of the FGDS Landfill and CCR surface impoundments.

Existing wells at the site, including wells from the FGDS Landfill, were used to derive potentiometric surface maps. As discussed, overall groundwater flow is from south to north. The east perimeter of the Lakeside Ash Pond is largely up-gradient, and the west side is downgradient to side-gradient. Excavated areas within the landfill boundary act as a groundwater sink along the east side of the Dallman Ash Pond. Groundwater generally moves northward under the Dallman Ash Pond but also moves easterly towards the FGDS Landfill and westerly towards Sugar Creek. Groundwater beneath the Lakeside Ash Pond also moves northward and westerly along Sugar Creek.

The impoundments likely influence local groundwater dynamics by increasing potentiometric pressures beneath and around their footprints. However, there are no piezometers screened in the basal sand beneath the impoundments. The increased pressures occur due to the sustained elevated water levels within the ponds during operation. This elevated head establishes an outward hydraulic gradient, promoting radial flow away from the mound toward lower-potential areas, such as nearby surface water bodies like Sugar Creek. The outward gradient is typically steeper near the impoundment boundaries due to the contrast between the artificially high heads inside the ponds and the ambient groundwater levels outside, often resulting in gradients on the order of 0.01-0.02 ft/ft as observed in site data. At this site, the elevated heads contribute to the observed eastward flow component near the FGDS Landfill and westward toward Sugar Creek, integrating with the broader south-to-north regime.

Potentiometric surface maps (derived from 2025 data, similar to Figure 3 in the 2024 Annual Report for well locations) show groundwater flow radially from the impoundments toward Sugar Creek. Contours indicate a hydraulic gradient of approximately 0.01-0.02 ft/ft, with flow directed west-northwest overall. Along the eastern portion near the FGDS Unit 2 Landfill, there is an eastward flow component toward the FGDS Unit 2 landfill, then northward toward Sugar Creek. Maps for each 2024 event confirm consistent directions, with minor fluctuations due to seasonal recharge. For the FGDS Landfill, flow is integrated into site-wide maps, with no separate potentiometric surfaces identified, but consistent with basal sand flow toward Sugar Creek. Potentiometric surface maps are provided in Appendix F.

4. EVALUATION OF PREFERENTIAL PATHWAYS

4.1 Abandoned Creek

The abandoned creek is not a contaminant migration pathway. The relocation of the creek occurred with the construction of Dallman Ash Pond (1976). Realignment of the creek channel required the over-excavation of the new channel by a minimum of 4 feet and backfilling with cohesive soils compacted to 90% maximum dry density. Construction plans, boring logs, and grain size analyses confirm low permeability of the creek fill. Cross-sections show fill materials mixed with onsite soils, removing the hydraulic connection between the abandoned

creek and the basal sand. The abandoned creek does not extend under the FGDS Unit 2 Landfill, though a portion exists north of FGDS Landfill Unit 2, where the relocated creek bed has an elevation of approximately 520 to 516 feet MSL.

Based on the geologic characterization of the site the abandoned creek bed has been removed or mixed with other on-site materials, which precludes it from being a potential pathway. See Figure 12 and Figure 13 which depict the surface of the Shallow Sand and the thickness relative to the pre-relocated Sugar Creek.

4.2 Shallow Sand Unit

The shallow sand is not hydraulically connected to the CCR units and is not a contaminant migration pathway due to the confined extent along the north. The shallow sand unit (intermittent deposits above 525 feet MSL), if present, was removed within pond footprints during construction. Borings did not encounter shallow sand intersecting CCR, and there is no evidence of communication with the lower cohesive unit or basal sand. New well AP6S, paired with AP6, confirms isolation (screened in shallow sand at 525-530 feet MSL). For the FGDS Landfill, shallow sand is not a significant pathway due to landfill construction. The 2025 elevation data for shallow wells (e.g., P-103S, P-104S) shows consistent levels with no anomalous fluctuations indicating preferential flow. Slug testing in shallow units (e.g., P-06S, P-07S) yields K values around 1-3E-03 cm/s, indicating limited conductivity.

As discussed above, the over-excavation and backfilling of the former creek channel and along the creek realignment further limits the horizontal connectivity of the intermittent saturated shallow sand. The Grading Plan drawing by Burns & McDonnell (Figure 5) depicts the creek abandonment and realignment north of the Dallman Ash Pond and Unit 2. The abandonment of the creek resulted in the over-excavation of at least 4 feet under the dike below the existing channel banks and bottom (see cross-sections), followed by filling with cohesive material and compaction to at least 90%. In addition to the excavation of soils under the dikes, realignment of the creek channel required the over excavation of the new channel by a minimum of 4 feet and backfilling with cohesive soils compacted to 90% maximum dry density. Construction plans, boring logs, and grain size analyses confirm low permeability of the creek fill. Cross-sections show fill materials mixed with onsite soils, removing direct hydraulic connection between the abandoned creek and the basal sand.

Pursuant to recommendations by the EPA, a boring was advanced about midway between AP4 and AP-14 on the west side of the Lakeside Ash Pond. A shallow sand was encountered from approximately 14.5 to 21.5 feet in depth; therefore, a shallow and a deep well were installed at that location (AP-15S and AP-15D, respectively). The shallow sand is illustrated in Cross Section B-B' (Appendix C). Based in the differential in groundwater elevation from AP-15S and the liquid level in the Lakeside Ash Pond, there is no apparent direct hydraulic connection

from the shallow sand to the ash pond. For purposes of monitoring the groundwater between wells AP4 and AP14, wells AP-15S and AP-15D are proposed to be added to the groundwater monitoring system.

4.3 Communication Between Basal Sand and Shallow Sand

The intermittent saturated shallow sand is not hydraulically connected to the basal sand. Boring logs and cross-sections confirm the lower cohesive unit separates the intermittent saturated shallow sand from the basal sand. Cross-sections A-A' and B-B' depict the geology along the north and west side of the Dallman Ash Pond and the west side of the Lakeside Ash Pond. Furthermore, potentiometric data indicate semi-confined conditions in the basal sand, with head differences from water table aquifers. Slug test data from the lower cohesive deposit (e.g., low conductivity approximately 10e-5 cm/s in cohesive units) supports the conclusions that the basal sand is under confined conditions.

5. GROUNDWATER ELEVATIONS RELATIVE TO CCR BASE

Both of the CCR surface impoundments, the Lakeside Ash Pond and the Dallman Ash Pond, were constructed above the static potentiometric surface. The potentiometric surface represents the total pressure within a water-bearing unit to which the water will rise in a well/piezometer that is sealed in and penetrates the water-bearing unit. Given that the basal sand is overlain by the low hydraulic conductivity lower cohesive deposit, the basal sand is semi-confined. The potentiometric surface does not represent a water table setting. The potentiometric surface can be higher than the actual presence of water since its movement is restricted by the overlying clayey deposit. Constructing the ash ponds into or below the static water level would have been impractical and not economically feasible to attempt. As depicted in Figure 3, the historical use of the Lakeside parcel was agricultural/pasture. The parcels containing the Dallman Ash Pond and the Unit 2 Landfill were previously woodlands except on the southeast corner (agricultural/pasture).

A historic topographic map from 1950 for the site is presented as Figure 4. This figure depicts the preconstruction ground surface within the area of the CWLP CCR units. Based upon this figure, the preconstruction ground surface ranged from 540 feet MSL along the southern edge of the Lakeside Ash Pond and the northern edge of the Dallman Ash Pond down to 530 feet MSL adjacent to Sugar Creek. As indicated above, the Lakeside Ash Pond and Dallman Ash Pond were constructed at or just below the pre-existing land surface. Prior to construction, Sugar Creek meandered from the southwest corner of the site, exiting at the northeast corner of the site. There is no as-built construction documentation for the Lakeside Ash Pond or for the Dallman Ash Pond. Figure 5 is the proposed grading plan for the Dallman Ash Pond. According to Figure 5, the typical elevation of the floor of the Dallman Ash Pond is approximately 527 feet MSL.

The typical surface water elevation of Sugar Creek is approximately 520 feet MSL (average for 2025 monthly elevations is 520.56) based on creek elevations obtained at the time of potentiometric surface measurements. These results indicate an approximate separation between the base of the Dallman Ash Pond and the static surface water level.

The D and L series borings/wells are located entirely within the CCR material in the Dallman Ash Pond and Lakeside Ash Pond, respectively, and serve as piezometers to measure liquid levels within the impoundments. Liquid levels in the Dallman Ash Pond (D series wells) range from approximately 546 to 550 feet MSL across 2025 monitoring events, with averages around 548-550 feet MSL (e.g., D-1 at 547.69-550.41 feet MSL, D-2 at 549.44-550.85 feet MSL, D-3 at 546.89-550.04 feet MSL, D-4 at 546.99-549.53 feet MSL). In the Lakeside Ash Pond (L series wells), liquid levels are similarly elevated, ranging from 550 to 559 feet MSL (e.g., L-1 at 550.33-551.37 feet MSL, L-3 at 550.71-551.84 feet MSL, L-4 at 558.45-559.45 feet MSL, L-5 at 549.51-551.05 feet MSL). The liquid levels are precipitation that falls within the impoundment boundaries.

These impoundment liquid levels are consistently higher than the potentiometric surfaces in adjacent monitoring wells screened in the uppermost saturated zone. For example, downgradient wells such as AP-1 (524-527 feet MSL) and AP-2 (528-529 feet MSL) exhibit hydraulic heads 20-30 feet lower than the pond levels, indicating a downward hydraulic gradient from the impoundments to the underlying aquifer. This is further substantiated by the saturated intervals encountered at the borings advanced through the dikes (i.e., B-5, B-6, B-7, B-8 and B-9 series of borings conducted in 2023). The pore water levels within the berms are closer to the potentiometric surface exhibited outside of the impoundments, and very different from the liquid levels exhibited by the piezometers within the CCR surface impoundments.

Pre-closure dewatering will lower impoundment levels within the CCR, eliminating the downward gradient. The confining lower cohesive unit (low K < 10×10^{-5} cm/s) limits vertical migration, confining transport to lateral flow in the basal sand. As stated previously, Sugar Creek is a gaining creek, being fed not only by any lake water from the spillway, but from the basal sand. Once dewatering in the impoundment has been completed as part of closure activities, the potentiometric surface in the basal sand is expected to decrease to levels near that of the creek, below that of bottom of the Dallman Ash Pond. Given the low hydraulic conductivity of the lower cohesive deposit between the basal sand and the bottom of the Dallman Ash Pond, a temporary increase in the potentiometric surface due to an increase in creek level will not result in fluctuation of the potentiometric surface into the ash pond. The low hydraulic conductivity will restrict vertical upward movement of groundwater thereby continuing separation of the potentiometric surface and the ash pond.

The bottom of the five-foot recompacted clay liner for the FGDS Unit 2 Landfill extended to a minimum depth of approximately 525 feet MSL; the surface of the liner is approximately 530 feet MSL. The FGDS Landfill was designed and constructed above the uppermost saturated zone. The landfill contains a leachate collection system designed to maintain the liquid level to less than

one foot of head on the liner. Upon closure, the landfill will install a composite final cover. The leachate collection system will continue to operate for a minimum 30 years after closure pursuant to 35 III. Admin. Code Part 811.

6. RECENT ADDITION OF PIEZOMETERS

Borings were advanced and piezometers installed at these locations to further characterize the hydrogeologic conditions of the CWLP facility and to identify potential migration pathways. Completed in June 2025 the installed piezometers are:

- At the northeast corner of the FGDS Development area, paired with P-103 (designated as P-103S).
- Northeast of the Unit 2 CCR disposal area, paired with G-104 (designated as P-104S).
- At the northeast corner of the Dallman Ash Pond, paired with RW3 (designated as RW3S).
- In the shallow sand unit, paired with well AP-6 (designated as AP-6S).
- In the shallow sand unit paired with AP-8 (designated as AP8-S).
- On the far side of Sugar Creek, paired with T4 (designated T4S)
- North of well T-5 (designated AP-16).
- Between wells AP-14 and AP-4 (designated as AP-15S and AP-15D).

Wells AP-15S and AP-15D will be incorporated into the groundwater monitoring system. The remaining piezometers shall be maintained solely for the continued measurement of groundwater elevations. CWLP does not identify these piezometers as groundwater monitoring wells and does not anticipate the collection of analytical samples from these wells. The piezometer network is sufficient to provide a full characterization of the flow characteristics.

7. ANNUAL EVALUATION

This report will be evaluated annually to determine if groundwater flow paths have changed (e.g., due to climate or site modifications) or if additional wells are necessary for detecting/assessing Appendix III/IV releases. Changes will be reported in annual GWMCA Reports, with the first evaluation in August 2026.

8. CONCLUSION

This Flow Path Report provides a comprehensive characterization of groundwater flow paths at the CWLP Dallman and Lakeside Ash Ponds and FGDS Disposal Facility, in fulfillment of the requirements outlined in Section B, Paragraph 263 and Section B, Paragraph 280 of the CAFO and Attachment 1. Through integration of extensive site-specific data, including boring logs, well construction details, groundwater elevations, potentiometric maps, hydrogeologic cross-sections,

and slug testing results, the analysis demonstrates that groundwater flow is predominantly radial from the impoundments toward Sugar Creek, with an eastward component influencing the FGDS area before converging northward. Hydraulic gradients average 0.01-0.02 ft/ft, with seasonal fluctuations driven by recharge, but no significant deviations or reversals observed.

The report confirms no additional preferential pathways exist: the abandoned creek bed has been over-excavated, filled, and compacted beneath the perimeter berms for the Dallman Ash Pond, exhibiting low permeability (K=10⁻⁵ to 10⁻⁴ cm/s) that precludes enhanced transport; the shallow sand unit is discontinuous, largely removed during construction, and shows no connectivity to the basal sand. The shallow sand is present at AP-15 and along the exterior of the northern berm of the Dallman Ash Pond. However, the shallow sand does not appear to directly intersect with the CCR as the potentiometric surfaces in the shallow wells are indicative of groundwater elevations largely unaffected by the much higher liquid levels within the impoundment. The shallow sand appears isolated north of the pond due to excavation and relocation of Sugar Creek. Therefore, monitoring of the shallow sand along the northern perimeter is not necessary. However, it is proposed to add wells AP15S and AP-15D located west of the Lakeside Ash Pond to the impoundment groundwater monitoring program. A revision to the subject detection monitoring program will be forthcoming with the inclusion of AP-15D and AP-15D.

Vertical communication between units is de minimis, with the lower cohesive deposit acting as an effective confining layer (K ~10⁻⁷ cm/sec) restricting migration to lateral flow within the confined basal sand. Borings were advanced and piezometers installed at these locations to enhance the hydrogeology understanding of the site with an emphasis on further characterization of the migration pathways at the CWLP facility. The installation of additional piezometers/monitoring wells is not necessary at this time.

These findings meet CAFO objectives by delineating flow dynamics, ruling out high-risk pathways, and supporting the Assessment of Corrective Measures through a complete hydrogeologic characterization. Annual evaluations will ensure adaptive management, with the first review scheduled for August 2026.

9. ENGINEERING CERTIFICATION

The owner or operator of a coal combustion residual (CCR) unit must obtain a certification from a qualified professional engineer that the Flow Path Report has been completed pursuant to 40 C.F.R. § 257.91(b)(1).

The engineering certification for the groundwater monitoring system follows.

10. REFERENCES

Stabilize, Inc. 2009. City Water Light and Power – 35 IAC 620 Ash Pond Assessment

Patrick Engineering, 1993. Hydrogeologic Report on Flue Gas Desulfurization Sludge Landfill.

Professional Engineer Certification – Flow Path Report

In General Accordance with 40 CFR § 257.91(b)(1) - Groundwater Flow Path

In accordance with Title 40 of the Code of Federal Regulations (40 CFR), Part 257, Subpart D, Section 257.91(b)(1) the owner or operator of a coal combustion residuals (CCR) unit must obtain certification from a qualified professional engineer verifying the accuracy of the information in the Flow Path Report.

I, Karl W. Finke, a qualified professional engineer in good standing in the State of Illinois, certify that the information provided in the Flow Path Report for the CWLP impoundments and FGDS Unit 2 Landfill is accurate.

Signature: Sal Tulin

Illinois P.E. No: 062.068571

Date: September 22, 2025

Lic. Exp. U/30/25

TABLES

TABLE 1: GROUNDWATER ELEVATIONS

Table 1: Groundwater Elevations CWLP, Springfield, Illinois

	Elev. Of				1/27/2025			2/25/2025			3/28/2025	
Well/Location	Meas.	Grnd.	Stick Up	DTW from		GW	DTW from		GW	DTW from	DTW from	
	Point	Surface		Meas. Pt	Grnd	Elev	Meas. Pt	Grnd	Elev	Meas. Pt	Grnd	Elev
R101	546.8	543.57	3.23	6.49	3.26		6.89		539.91	6.44	3.21	
P103	537.43	534.47	2.96	9.40	6.44	528.03			528.00		6.17	
P103S P104	537.637 531.79	535.852 529.15	1.785 2.64	7.98	NI 5.34	NI 523.81	NI 7.91	NI 5.27	NI 523.88	NI 7.86	NI 5.22	NI 523.93
P104S	532.669	529.15	2.04	7.96	5.34	523.61	7.9	5.27	523.00	7.00	5.22	523.90
P106	524.79	523.24	1.55	1.55	0.00	523.24	1.96	0.41	522.83	1.55	0.00	523.24
G110	555.92	553.79	2.13	23.49	21.36		24.40		531.52	24.37	22.24	
R111	552.4	552.51	-0.11	25.15	25.26	527.25	25.04		527.36	25.06	25.17	
G112	553.3	550.41	2.89	27.58	24.69		28.49		524.81	27.58	24.69	
G113	536.77	533.64	3.13	4.51	1.38				531.76		1.47	
G120 G121	551.74 554.33	551.78 551.81	-0.04 2.52	15.87 28.14	15.91 25.62	535.87 526.19	15.89 28.25		535.85 526.08		15.70 25.41	
G122	553.28	550.97	2.31	26.71	24.40		29.72		523.56		27.35	
G123	553.212	550.523	2.689	20.71	2-110	020.01	20.12	2711	020.00	20.00	21.00	020.02
P03D	533.203	530.018	3.185									
P03S	532.75	529.985	2.765		NI	NI	NI	NI	NI	NI	NI	NI
P04D	539.67	534.64	5.03	7.98	2.95				527.25		7.38	
P05D	536.92	533.64	3.28	6.02	2.74				531.04		2.68	
P06S North	526.83	523.96	2.87	2.87	0.00				523.96		0.04	
P06D Middle P06R South	529.8 531.2	523.96 524.7	5.84 6.5	5.84 6.50	0.00	523.96 524.70	5.84 6.50		523.96 524.70		0.00	
P07S West	527.39	525.08	2.31	5.28	2.97	522.11	3.00		524.70		2.43	
P07D North	528.25	525.25	3	4.44	1.44		4.49		523.76		1.48	
P07M East	527.04	525.02	2.02	4.31	2.29		2.02		525.02	4.51	2.49	522.53
P09S West	554.47	550.78	3.69	29.46	25.77	525.01	29.44	25.75	525.03	29.57	25.88	524.90
P09D East	554.84	551.47	3.37	29.08	25.71	525.76			525.91	29.14	25.77	
AW-1	554.42	551.24	3.18	13.33	10.15				540.97	13.31	10.13	
AW-2	528.25	525.02	3.23	4.56	1.33	523.69			523.72		1.27	
RW3	538.42 538.391	535.65	2.77	9.99 NI	7.22	528.43 NI	9.56		528.86 NI		6.78	528.87 NI
RW3S TW3 West	538.391	535.867 535.833	2.524 2.46	11.37	NI 8.91	526.92	NI 11.21	NI 8.75	527.08	NI 11.08	NI 8.62	
AP-1	535.37	533.1	2.40	10.94	8.67	524.43			524.58		8.13	
AP-2	536.1	533.6	2.5	7.88	5.38	528.22	7.87		528.23	7.47	4.97	
AP-3	535.25	532.7	2.55	9.87	7.32	525.38			525.50		7.01	
AP-4	555.6	552.46	3.14	10.88	7.74	544.72	10.68	7.54	544.92	10.76	7.62	544.84
AP-5	583.9	581.6	2.3	15.38	13.08	568.52	14.98		568.92	14.73	12.43	
AP6	536.796	534.155	2.641	8.57	5.93	528.23			528.24		5.57	
AP6S	536.854	533.959	2.895		NI	NI	NI	NI	NI	NI	NI	NI 500 4
AP7 AP8	537.89	534.99	2.9 3.1	11.86 5.51	8.96 2.41	526.03 534.79			525.97	11.47 5.10	8.57 2.00	
AP8S	540.3 538.585	537.2 535.974	2.611	NI S.ST	NI 2.41	NI	NI S.S	NI Z.41	534.79 NI	NI 3.10	NI	NI
AP9	537.2	534.3	2.9	13.13	10.23	524.07	13.29		523.91	12.62	9.72	
AP10	537.5	534.4	3.1	2.98	-0.12	534.52	4.04		533.46		0.78	
AP11	538.1	535.3	2.8	15.22	12.42	522.88	15.24		522.86		11.77	
AP12	540.7	537.8	2.9	18.06	15.16		18.08		522.62	17.51	14.61	
AP13	542	538.6	3.4	18.46	15.06						13.88	
AP14	539.6	536.8	2.8	2.30	-0.50				537.21	2.34	-0.46	
AP15D AP15S	538.609 538.532	536.295 536.417	2.314 2.115		NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI
AP16	539.275	536.936	2.115		NI	NI	NI	NI	NI	NI	NI	NI
GP1	537.72	535.62	2.333	11.91	9.81	525.81	11.89		525.83		9.51	
GP3	550.41	547.56	2.85	21.57	18.72	528.84	21.08		529.33	20.06	17.21	
GP7	535.74	533.25	2.49	8.15	5.66				527.63		5.40	
T1	535.65	533.65	2	13.93	11.93	521.72	13.84		521.81	12.61	10.61	523.04
T2	549.62	547.22	2.4	25.39	22.99		25.65		523.97	24.71	22.31	
T4	548.94	546.56	2.38	18.66	16.28				530.53		14.56	
T4S	549.044	546.754	2.29		NI E 92	NI E22.22	NI 7.00	NI E 40	NI 522.67	NI 6.42	NI 2.01	NI E24.24
T5 T6	540.66 538.32	538.15 535.96	2.51 2.36	8.33 9.87	5.82 7.51	532.33 528.45			532.67 528.52	6.42 9.4	3.91 7.04	
L1 Deep	572.31	568.96	3.35	21.75					550.35		18.63	
L1 Shallow	571.09	568.861	2.229		NI	NI	NI	NI	NI	20.74	18.51	
LB2 Deep	570.639	568.057	2.582		NI	NI	NI	NI	NI	19.61	17.03	551.03
LB2 Shallow	570.452	568.136	2.316		NI	NI	NI	NI	NI	19.39	17.07	
L3 Deep	565.88	563.02	2.86	15.11	12.25				550.75		12.31	
L3 Shallow	565.762	562.971	2.791		NI 7.42	NI EEO OO	NI 10.13	NI 7 90	NI EEO 1E	14.96	12.17	
L4 L5 Deep	568.58 568.01	566.25 565.19	2.33 2.82	9.76 18.38	7.43 15.56		10.13		558.45 549.51	9.74 18.28	7.41 15.46	
L5 Shallow	567.747	565.25	2.62		NI	049.03 NI	NI	NI 13.06	049.51 NI	16.20	14.47	
D1 Deep	566.2	564.02	2.437	17.44	15.26						15.09	
D1 Shallow	566.333	563.871	2.462		NI	NI	NI	NI	NI	17.21	14.75	
D2 Deep	560.93	558	2.93	11.25	8.32	549.68			550.09	10.88	7.95	550.05
D2 Shallow	560.503	557.849	2.654		NI	NI	NI	NI	NI	10.20	7.55	
D3 Deep	557.9	555.03	2.87	10.21	7.34				548.35		7.62	
D3 Shallow	557.743	554.673	3.07		NI 12.02	NI 547.07	NI 17.66	NI 12.04	NI E47.00	10.71	7.64	
DP04 Doop	565.61	561.8	3.81	17.64					547.96		13.41	
DB04 Deep DB04 Shallow	556.298 556.433	553.706 553.548	2.592 2.885		NI NI	NI NI	NI NI	NI NI	NI NI	8.10 7.93	5.51 5.05	
DB04 Shallow DB05 Deep	555.82	553.548	2.885		NI	NI	NI	NI	NI	7.93	5.05	
DB05 Deep DB05 Shallow	555.912	553.563	2.433		NI	NI	NI	NI	NI	7.78	5.43	
DB06	553.694	552.765	0.929		NI	NI	NI	NI	NI	NI	NI	NI
DB07	555.798	552.754	3.044		NI	NI	NI	NI	NI	NI	NI	NI
DB08	554.332	551.8	2.532		NI	NI	NI	NI	NI	NI	NI	NI
Sugar Creek	510.44	NA	NA	9.77		520.21		NA	519.99		NA	520.24
Lake Springfield	NA FF0.00	NA	NA		NA	559.59		NA	559.58		NA	559.63
Clarification Pond	553.29	NA	NA	6.6	NA	546.69	7.3	NA	545.99	7.3	NA	545.99

Notes: NI - Not Installed NA - Not Applicable

	Elev. Of	-			4/20/2025		ı	5/29/2025		1	6/25/2025	
Well/Location	Meas.	Grnd.	Stick Up	DTW from	4/20/2025 DTW from	GW	DTW from		GW	DTW from	0/25/2025 DTW from	GW
	Point	Surface	2 OP	Meas. Pt	Grnd	Elev	Meas. Pt	Grnd	Elev	Meas. Pt	Grnd	Elev
R101	546.8	543.57	3.23	5.19	1.96	541.61	6.88	3.65	539.92	7.12	3.89	539.68
P103	537.43	534.47	2.96		-2.96	537.43		-2.96	537.43	11.62	8.66	525.81
P103S	537.637	535.852	1.785		NI 4.40	NI 504.75	NI	NI	NI 504.40	11.87	10.09	525.77
P104 P104S	531.79 532.669	529.15 529.742	2.64 2.927	7.04	4.40	524.75	7.61 NI	4.97 NI	524.18 NI	8.57 9.28	5.93 6.35	523.22 523.39
P106	524.79	523.24	1.55	1.55	0.00	523.24	1.67	0.12	523.12	1.55	0.00	523.24
G110	555.92	553.79	2.13	23.97	21.84	531.95	24.85	22.72	531.07	24.96	22.83	530.96
R111	552.4	552.51	-0.11	24.66	24.77	527.74	25.19	25.30	527.21	25.51	25.62	526.89
G112	553.3	550.41	2.89	27.27	24.38	526.03	17.54	14.65	535.76	17.77	14.88	535.53
G113	536.77	533.64	3.13	4.01	0.88	532.76	5.80	2.67	530.97	5.83	2.70	530.94
G120 G121	551.74 554.33	551.78 551.81	-0.04 2.52	15.00 27.27	15.04 24.75	536.74 527.06	16.18 28.13	16.22 25.61	535.56 526.20	16.15 27.93	16.19 25.41	535.59 526.40
G122	553.28	550.97	2.32	28.72	26.41	524.56	29.13		524.15		28.00	522.97
G123	553.212	550.523	2.689	20.72	20.11	021.00	20.10	20.02	02 11 10	30.26	27.57	522.95
P03D	533.203	530.018	3.185							7.82	4.64	525.38
P03S	532.75	529.985	2.765		NI	NI	NI	NI	NI	9.89	7.13	522.86
P04D	539.67	534.64	5.03	12.26	7.23	527.41	13.22	8.19	526.45	13.66	8.63	526.01
P05D P06S North	536.92 526.83	533.64 523.96	3.28 2.87	5.45 2.91	2.17 0.04	531.47 523.92	6.09 2.99	2.81 0.12	530.83 523.84	6.23 2.87	2.95 0.00	530.69 523.96
P06D Middle	529.8	523.96	5.84	5.84	0.04	523.96	6.12	0.12	523.68	5.84	0.00	523.96
P06R South	531.2	524.7	6.5	6.50	0.00	524.70	6.72	0.22	524.48	6.50	0.00	524.70
P07S West	527.39	525.08	2.31	4.14	1.83	523.25	4.89	2.58	522.50	6.71	4.40	520.68
P07D North	528.25	525.25	3	3.88	0.88	524.37	5.31	2.31	522.94	5.43	2.43	522.82
P07M East	527.04	525.02	2.02	3.46	1.44	523.58	4.37	2.35	522.67	5.55	3.53	521.49
P09S West P09D East	554.47 554.84	550.78 551.47	3.69 3.37	29.23 28.80	25.54 25.43	525.24 526.04	30.44 29.65	26.75 26.28	524.03 525.19	29.67 29.73	25.98 26.36	524.80 525.11
AW-1	554.84	551.47	3.37	12.52	9.34	526.04	14.26		540.16	14.76	26.36 11.58	525.1
AW-2	528.25	525.02	3.23	3.72	0.49	524.53	5.35		522.90	5.44	2.21	522.81
RW3	538.42	535.65	2.77	8.94	6.17	529.48	9.27	6.50	529.15	9.85	7.08	528.57
RW3S	538.391	535.867	2.524		NI	NI	NI	NI	NI	9.23	6.71	529.16
TW3 West	538.293	535.833	2.46	8.88	6.42	529.41	9.23	6.77	529.06	11.66	9.20	526.63
AP-1	535.37	533.1	2.27	8.11	5.84	527.26	9.79		525.58	10.50	8.23	524.87
AP-2 AP-3	536.1 535.25	533.6 532.7	2.5 2.55	6.38 8.39	3.88 5.84	529.72 526.86	7.79 7.67	5.29 5.12	528.31 527.58	8.06 9.32	5.56 6.77	528.04 525.93
AP-4	555.6	552.46	3.14	10.08	6.94	545.52	10.38		545.22	10.44	7.30	545.16
AP-5	583.9	581.6	2.3	13.48	11.18	570.42	14.41	12.11	569.49	14.63	12.33	569.27
AP6	536.796	534.155	2.641	7.00	4.36	529.80	7.77	5.13	529.03	8.47	5.83	528.33
AP6S	536.854	533.959	2.895		NI	NI	NI	NI	NI	9.06	6.16	527.79
AP7	537.89	534.99	2.9	7.44	4.54	530.45	10.92	8.02	526.97	11.04	8.14	526.85
AP8 AP8S	540.3 538.585	537.2 535.974	3.1 2.611	8.05	4.95 NI	532.25 NI	4.01 NI	0.91 NI	536.29 NI	5.22 11.45	2.12 8.84	535.08 527.14
AP9	537.2	534.3	2.011	10.18	7.28	527.02	12.86	9.96	524.34	12.80	9.90	524.40
AP10	537.5	534.4	3.1	2.94	-0.16	534.56	3.92	0.82	533.58	3.99	0.89	533.51
AP11	538.1	535.3	2.8	12.04	9.24	526.06	12.03	9.23	526.07	15.03	12.23	523.07
AP12	540.7	537.8	2.9	15.16	12.26	525.54	15.16		525.54	17.01	14.11	523.69
AP13	542	538.6	3.4	13.43	10.03	528.57	14.73	11.33	527.27	16.82	13.42	525.18
AP14 AP15D	539.6 538.609	536.8 536.295	2.8 2.314	1.86	-0.94 NI	537.74 NI	2.72 NI	-0.08 NI	536.88 NI	2.56 1.90	-0.24 -0.41	537.04 536.71
AP15S	538.532	536.417	2.115		NI	NI	NI	NI	NI	0.91	-1.21	537.62
AP16	539.275	536.936	2.339		NI	NI	NI	NI	NI	6.95	4.61	532.33
GP1	537.72	535.62	2.1	10.80	8.70	526.92	12.88	10.78	524.84	12.32	10.22	525.40
GP3	550.41	547.56	2.85	17.91	15.06	532.50	19.64	16.79	530.77	19.54	16.69	530.87
GP7	535.74	533.25	2.49	7.32	4.83	528.42	7.46	4.97	528.28	8.14	5.65	527.60
T1	535.65	533.65	2	10.64	8.64	525.01	10.86	8.86	524.79	13.18	11.18	522.47
T2 T4	549.62 548.94	547.22 546.56	2.4	23.23 14.06	20.83 11.68	526.39 534.88	23.83 17.24	21.43 14.86	525.79 531.70	23.92 16.68	21.52 14.30	525.70 532.26
T4S	549.044	546.754	2.29		NI	NI	NI	NI 14.00	NI	16.44	14.15	
T5	540.66	538.15	2.51	4.28	1.77	536.38	9.14	6.63	531.52	8.49	5.98	532.17
T6	538.32	535.96	2.36	8.92	6.56	529.40	8.86	6.50	529.46	9.07	6.71	529.25
L1 Deep	572.31	568.96	3.35	20.94	17.59	551.37	21.19		551.12	20.98	17.63	551.33
L1 Shallow	571.09 570.639	568.861	2.229	19.75	17.52	551.34	19.91	17.68	551.18		17.49	551.37
LB2 Deep LB2 Shallow	570.639	568.057 568.136	2.582 2.316	18.53 18.33	15.95 16.01	552.11 552.12	18.93 18.68	16.35 16.36	551.71 551.77	18.77 18.49	16.19 16.17	551.87 551.96
L3 Deep	565.88	563.02	2.86	14.04	11.18		14.55		551.77	14.33	11.47	551.55
L3 Shallow	565.762	562.971	2.791	13.84	11.05		14.43		551.33	14.24	11.45	551.52
L4	568.58	566.25	2.33	9.13	6.80	559.45	9.67	7.34	558.91	9.43	7.10	559.15
L5 Deep	568.01	565.19	2.82	16.96	14.14	551.05	17.96		550.05		14.90	550.29
L5 Shallow	567.747	565.25	2.497	15.29	12.79		16.46		551.29	16.36	13.86	551.39
D1 Deep D1 Shallow	566.2 566.333	564.02 563.871	2.18 2.462	15.79 15.87	13.61 13.41	550.41 550.46	18.51 18.78	16.33 16.32	547.69 547.55	17.66 17.69	15.48 15.23	548.54 548.64
D1 Shallow D2 Deep	560.93	553.871	2.462	10.08	7.15	550.46	11.49	8.56	547.55	11.36	8.43	548.64
D2 Shallow	560.503	557.849	2.654	9.74	7.13	550.76	11.43		549.36	10.68	8.03	549.82
D3 Deep	557.9	555.03	2.87	8.09	5.22	549.81	8.62	5.75	549.28	11.01	8.14	546.89
D3 Shallow	557.743	554.673	3.07	7.69	4.62	550.05	8.16	5.09	549.58	10.66	7.59	547.08
D4	565.61	561.8	3.81	16.08	12.27	549.53	18.62	14.81	546.99	17.36	13.55	548.25
DB04 Deep	556.298	553.706	2.592	6.40	3.81	549.90	6.66		549.64	7.55	4.96	548.75
DB04 Shallow DB05 Deep	556.433	553.548 553.385	2.885 2.435	6.89 6.46	4.01 4.02	549.54 549.36	7.49 7.99		548.94 547.83	7.42 7.81	4.54 5.37	549.01 548.01
DB05 Deep DB05 Shallow	555.82 555.912	553.563	2.435	6.42	4.02	549.36	7.99		547.83		5.37	548.01 548.07
DB06 Shallow	553.694	552.765	0.929		4.07 NI	NI	NI	NI 5.50	NI	NI	NI	NI
DB07	555.798	552.754	3.044		NI	NI	NI	NI	NI	NI	NI	NI
DB08	554.332	551.8	2.532		NI	NI	NI	NI	NI	NI	NI	NI
Sugar Creek	510.44	NA	NA	10.31		520.75	11.06		521.50			520.75
Lake Springfield Clarification Pond	NA 553.29	NA NA	NA NA	NA 6	NA	560.02 547.29		NA NA	560.40 546.39		NA NA	560.38 546.89

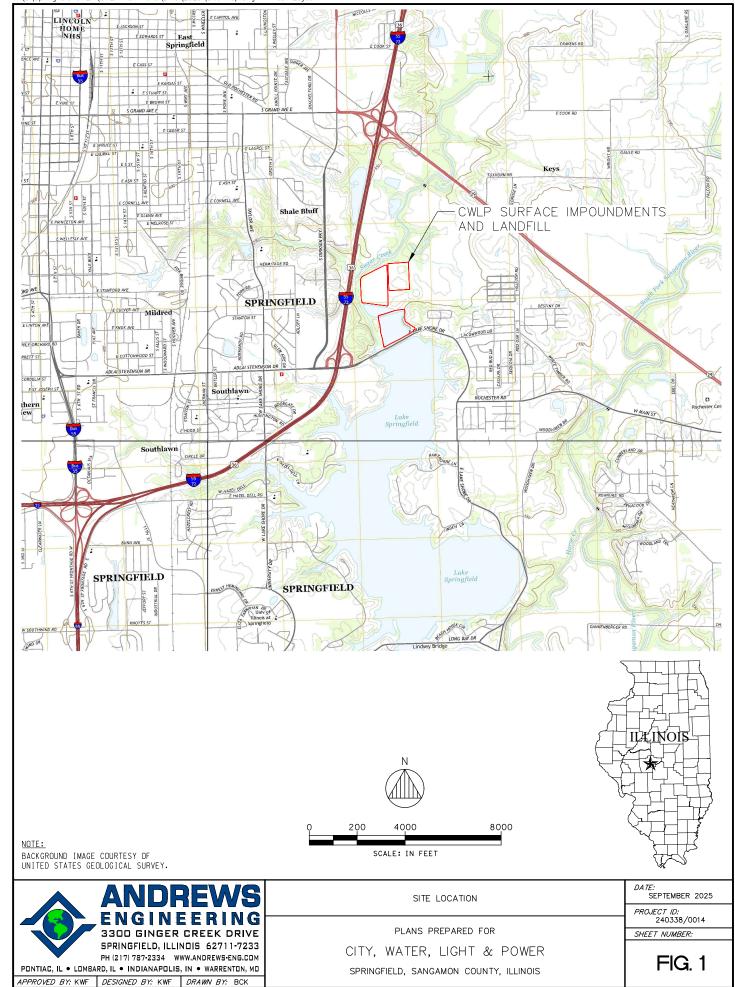
Notes: NI - Not Installed NA - Not Applicable

	Elev. Of	1			7/21/2025			8/21/2025	
Well/Location	Meas.	Grnd.	Stick Up	DTW from	DTW from	GW	DTW from	DTW from	GW
	Point	Surface	·	Meas. Pt	Grnd	Elev	Meas. Pt	Grnd	Elev
R101	546.8	543.57	3.23	6.52	3.29	540.28			538.13
P103	537.43	534.47	2.96	10.67	7.71	526.76			524.89
P103S P104	537.637 531.79	535.852 529.15	1.785 2.64	10.41 8.12	8.63 5.48	527.23 523.67	12.86 9.90		524.78 521.89
P104S	532.669	529.742	2.927	9.16	6.23	523.51	10.26		522.41
P106	524.79	523.24	1.55	1.55	0.00				521.57
G110	555.92	553.79	2.13	24.51	22.38	531.41	25.79	23.66	530.13
R111	552.4	552.51	-0.11	24.96	25.07	527.44		27.02	525.49
G112	553.3	550.41	2.89	27.43		525.87	29.69		523.61
G113 G120	536.77 551.74	533.64 551.78	3.13 -0.04	5.03 16.16	1.90 16.20	531.74 535.58	7.23 18.03		529.54 533.71
G121	554.33	551.76	2.52	28.48	25.96	525.85	29.22	26.70	525.11
G122	553.28	550.97	2.31	29.93	27.62	523.35		29.30	521.67
G123	553.212	550.523	2.689	29.41	26.72	523.80	31.75	29.06	521.46
P03D	533.203	530.018	3.185	7.07	3.89	526.13	9.14		524.06
P03S	532.75	529.985	2.765	9.83	7.07	522.92	10.17	7.41	522.58
P04D P05D	539.67	534.64	5.03	13.11 6.89		526.56			525.19 529.10
P06S North	536.92 526.83	533.64 523.96	3.28 2.87	2.87	3.61 0.00	530.03 523.96		2.56	529.10
P06D Middle	529.8	523.96	5.84	5.84	0.00			-0.93	524.89
P06R South	531.2	524.7	6.5	6.50	0.00	524.70	6.50	0.00	524.70
P07S West	527.39	525.08	2.31	4.80	2.49	522.59	8.41	6.10	518.98
P07D North	528.25	525.25	3	4.34	1.34	523.91	6.92	3.92	521.33
P07M East	527.04	525.02	2.02	4.04	2.02	523.00	7.14		519.90
P09S West P09D East	554.47 554.84	550.78 551.47	3.69 3.37	29.42 29.11	25.73 25.74	525.05 525.73	30.38 31.27		524.09 523.57
AW-1	554.84	551.47	3.37	13.44		540.98			523.57
AW-2	528.25	525.02	3.18	4.41	1.18	523.84	6.87	3.64	521.38
RW3	538.42	535.65	2.77	10.49	7.72	527.93	11.05	8.28	527.37
RW3S	538.391	535.867	2.524	8.20	5.68	530.19	10.95	8.43	527.44
TW3 West	538.293	535.833	2.46	11.01	8.55	527.28			525.07
AP-1	535.37	533.1	2.27	10.13	7.86	525.24	11.53	9.26	523.84
AP-2 AP-3	536.1 535.25	533.6 532.7	2.5 2.55	7.28 9.03		528.82 526.22	8.87 9.74		527.23 525.51
AP-4	555.6	552.46	3.14	10.38		545.22			544.39
AP-5	583.9	581.6	2.3	14.94	12.64	568.96			567.00
AP6	536.796	534.155	2.641	8.93	6.29	527.87	9.58	6.94	527.22
AP6S	536.854	533.959	2.895	8.08	5.18	528.77	10.24	7.34	526.61
AP7	537.89	534.99	2.9	11.38	8.48	526.51	11.83	8.93	526.06
AP8	540.3	537.2	3.1	5.76		534.54			533.57
AP8S AP9	538.585 537.2	535.974 534.3	2.611 2.9	8.13 12.46	5.52 9.56	530.46 524.74	13.59 14.92		525.00 522.28
AP10	537.5	534.4	3.1	4.08	0.98	533.42			531.96
AP11	538.1	535.3	2.8	10.13	7.33	527.97	15.83	13.03	522.27
AP12	540.7	537.8	2.9	17.19	14.29	523.51	18.22	15.32	522.48
AP13	542	538.6	3.4	17.46	14.06	524.54	19.14	15.74	522.86
AP14	539.6	536.8	2.8	2.37	-0.43	537.23	2.39		537.21
AP15D AP15S	538.609 538.532	536.295 536.417	2.314 2.115	1.87 0.86	-0.44 -1.26	536.74 537.67	2.54 1.57	0.23 -0.55	536.07 536.96
AP16	539.275	536.936	2.339	6.61	4.27	532.67	8.82	6.48	530.46
GP1	537.72	535.62	2.1	12.02		525.70			524.71
GP3	550.41	547.56	2.85	19.93	17.08	530.48	20.76	17.91	529.65
GP7	535.74	533.25	2.49	8.74	6.25	527.00	9.38	6.89	526.36
T1	535.65	533.65	2	13.48	11.48	522.17	14.93		520.72
T2 T4	549.62	547.22 546.56	2.4	24.82	22.42	524.80 531.98	26.31	23.91	523.31
T4S	548.94 549.044	546.754	2.38 2.29	16.96 16.91	14.58 14.62				530.40 532.17
T5	540.66	538.15	2.51	7.57					529.50
T6	538.32	535.96	2.36	9.34	6.98	528.98		7.41	528.55
L1 Deep	572.31	568.96	3.35	21.02		551.29			550.18
L1 Shallow	571.09	568.861	2.229	20.61	18.38	550.48			550.24
LB2 Deep LB2 Shallow	570.639	568.057 568.136	2.582	18.63	16.05	552.01	19.95	17.37	550.69 550.74
L3 Deep	570.452 565.88	563.02	2.316 2.86	18.40 14.37	16.08 11.51	552.05 551.51	19.71 15.49		550.74
L3 Shallow	565.762	562.971	2.791	14.37	11.51	551.43			550.38
L4	568.58	566.25	2.33	9.46	7.13	559.12		8.92	557.33
L5 Deep	568.01	565.19	2.82	17.86		550.15			549.17
L5 Shallow	567.747	565.25	2.497	16.61	14.11	551.14			550.34
D1 Deep	566.2	564.02	2.18	18.08	15.90	548.12			546.09
D1 Shallow	566.333	563.871	2.462 2.93	18.34 10.47	15.88	547.99 550.46			546.27 545.23
D2 Deep D2 Shallow	560.93 560.503	558 557.849	2.654	10.47	7.54 7.78	550.46 550.07		12.77 12.37	545.48
D3 Deep	557.9	555.03	2.87	7.86	4.99	550.04		10.80	544.23
D3 Shallow	557.743	554.673	3.07	7.34	4.27	550.40			544.77
D4	565.61	561.8	3.81	17.01	13.20	548.60	19.29	15.48	546.32
DB04 Deep	556.298	553.706	2.592	7.46	4.87	548.84			546.83
DB04 Shallow	556.433	553.548	2.885	7.44		548.99			547.03
DB05 Deep DB05 Shallow	555.82 555.912	553.385 553.563	2.435 2.349	6.31 6.42	3.87 4.07	549.51 549.49		9.60 9.66	543.78 543.90
DB05 Snallow	553.694	553.563	0.929	3.96	3.03	549.49			543.90
DB07	555.798	552.754	3.044	6.39		549.41			545.92
DB08	554.332	551.8	2.532	4.30	1.77	550.03			543.08
Sugar Creek	510.44	NA	NA	10.41		520.85			520.17
Lake Springfield	NA	NA		NA	NA	560.26		NA	559.64
Clarification Pond	553.29	NA	NA	6.9	NA	546.39	7	NA	546.29

Notes: NI - Not Installed NA - Not Applicable

TABLE 2: VERTICAL HYDRAULIC GRADIENTS

Table 2: Vertical Hydraulic Gradients CWLP, Springfield, Illinois


cia, illinois						
		Middle of		Vertical		
Easting	Northing	Screen	GW Elev	Hydraulic		
(Site Coord)	(Site Coord)	(ft amsl)	(ft amsl)	Gradient	Direction	
1702.3	5695.2	522.91	527.73	0.00100	Upward	
1715.8	5766.6	503.755	527.80	0.00100	Upward	
1266.4	5413.4	524.61	527.53	0.204	Upward	
1265.0	5420.9	503.31	534.40	0.304	Upward	
1383.0	2925.3	517.245	537.42	0.0050	Downward	
1383.4	2921.3	507.43	536.51	-0.0859	Downward	
2654.5	5671.3	520.75	522.79	0.109	Lloward	
2658.4	5671.1	498.75	525.19	0.108	Upward	
2191.4	4725.7	516.65	523.62	0.0190	Upward	
2186.8	4717.0	495.05	524.04	0.0160	Opwaru	
2186.8	4717.0	495.05	524.04	0.0402	Upward	
2175.7	4718.1	484.05	524.67	0.0403	Opward	
2420.0	5340.0	514.35	522.14	0.0221	Upward	
2432.8	5337.0	507.85	522.62	0.0321	Upward	
2432.8	5337.0	507.85	522.62	0.0530	Unward	
2430.0	5345.0	497.45	523.34	0.0559	Upward	
2415.6	4447.3	517.85	524.77	0.0276	Unward	
2422.4	4446.3	496.95	525.38	0.0276	Upward	
2654.4	5670.1	512.40	525.92	0.0147	Downward	
2658.6	5670.2	506.78	525.82	-0.0147	Downward	
104S 2309.8		508.07	523.10	0.0120	Downward	
2305.9	5685.0	502.05	522.93	-0.0139	Downward	
1736.5	5614.9	523.59	528.93	0.0427	Downward	
1737.4	5613.3	500.87	527.96	-0.0427		
	Easting (Site Coord) 1702.3 1715.8 1266.4 1265.0 1383.0 1383.4 2654.5 2658.4 2191.4 2186.8 2175.7 2420.0 2432.8 2432.8 2430.0 2415.6 2422.4 2658.6 2309.8 2305.9 1736.5	Easting (Site Coord) 1702.3 5695.2 1715.8 5766.6 1266.4 5413.4 1265.0 5420.9 1383.0 2925.3 1383.4 2921.3 2654.5 5671.3 2658.4 5671.1 2191.4 4725.7 2186.8 4717.0 2186.8 4717.0 2175.7 4718.1 2420.0 5340.0 2432.8 5337.0 2432.8 5337.0 2430.0 5345.0 2415.6 4447.3 2422.4 4446.3 2654.4 5670.1 2658.6 5670.2 2309.8 5674.6 2305.9 5685.0 1736.5 5614.9	Easting (Site Coord) (Site Coord) (ft amsl) 1702.3 5695.2 522.91 1715.8 5766.6 503.755 1266.4 5413.4 524.61 1265.0 5420.9 503.31 1383.0 2925.3 517.245 1383.4 2921.3 507.43 2654.5 5671.3 520.75 2658.4 5671.1 498.75 2191.4 4725.7 516.65 2186.8 4717.0 495.05 2186.8 4717.0 495.05 2175.7 4718.1 484.05 2420.0 5340.0 514.35 2432.8 5337.0 507.85 2432.8 5337.0 507.85 2430.0 5345.0 497.45 2415.6 4447.3 517.85 2422.4 4446.3 496.95 2658.6 5670.2 506.78 2305.9 5685.0 502.05 1736.5 5614.9 523.59	Easting (Site Coord) (Site Coord) (ft amsl) (f	Easting (Site Coord) Middle of (Site Coord) Vertical Hydraulic (Ft amsl) Vertical Hydraulic (Ft amsl) 1702.3 5695.2 522.91 527.73 0.00100 1715.8 5766.6 503.755 527.80 0.304 1266.4 5413.4 524.61 527.53 0.304 1383.0 2925.3 517.245 537.42 -0.0859 1383.4 2921.3 507.43 536.51 -0.0859 2654.5 5671.3 520.75 522.79 0.108 2658.4 5671.1 498.75 525.19 0.108 2191.4 4725.7 516.65 523.62 0.0180 2186.8 4717.0 495.05 524.04 0.0403 2175.7 4718.1 484.05 524.67 0.0403 2432.8 5337.0 507.85 522.62 0.0321 2432.8 5337.0 507.85 522.62 0.0539 2430.0 5345.0 497.45 523.34 0.0539 2415.6 44	

FIGURES

FIGURE 1: SITE LOCATION

FIGURE 2: SITE FEATURES

NOTE

1. AERIAL IMAGE FROM APRIL 7, 2024, FROM GOOGLE EARTH.

SCALE: IN FEET

*DATE:*SEPTEMBER 2025 *PROJECT ID:* 240227/0001

POWER

SHEET NUMBER:

FIG. 2

FIGURE 3: **HISTORIC SITE PHOTO - 1936**

SHEET NUMBER:

FIG. 3

FUTURE LAKESIDE ASH POND -SPAULDING DAM

NOTE

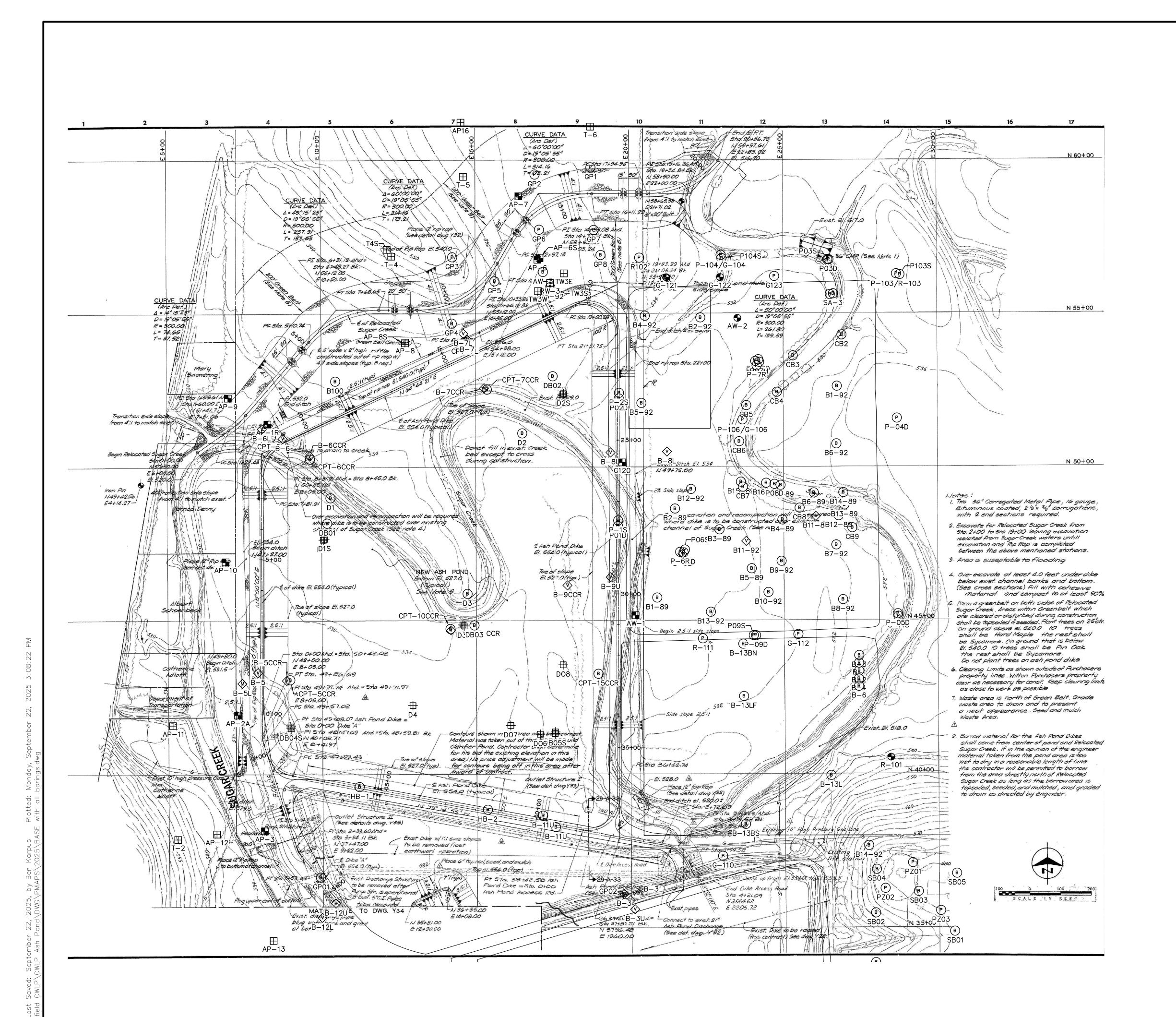

SITE PHOTO DATED JULY 3, 1936

FIGURE 4: HISTORIC SITE TOPOGRAPHIC MAP - 1950

FIGURE 5: FORMER SUGAR CREEK CHANNEL

LEGEND

(B) BORING

PIEZOMETER

PIEZOMETER IN ASH POND

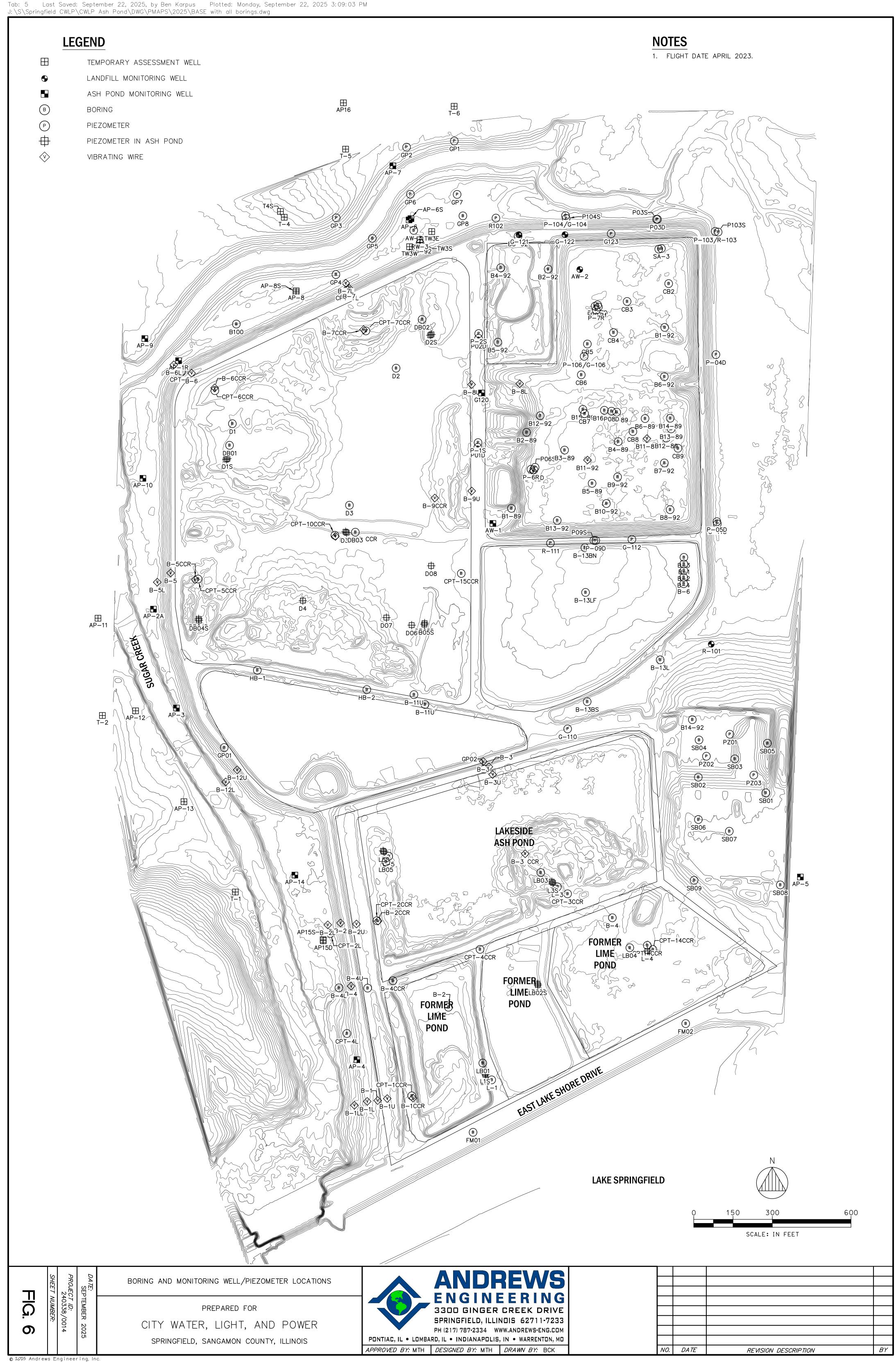
SOURCE: GRADING PLAN — DALLMAN ASH POND, BURNS & MCDONNELL (DRAWING NO. Y29, REV. 4, DATED AUGUST 13, 1976)

NO. DATE REVISION DESCRIPTION

ENGINGER CREEK DRIV SPRINGFIELD, ILLINDIS 62711-723 PH (217) 787-2334 WWW.ANDREWS-ENG.CC

ED FOR HT, AND POWER

PREPARED FOR WATER, LIGHT, AN


DATE: SEPTEMBER 2025

PROJECT ID: 240338/0014 SHEET NUMBER:

FIG. 5

BORING AND	MONITORING	WELL/PIEZO	FIGURE 6: CATIONS

FIGURE 7: **BEDROCK SURFACE**

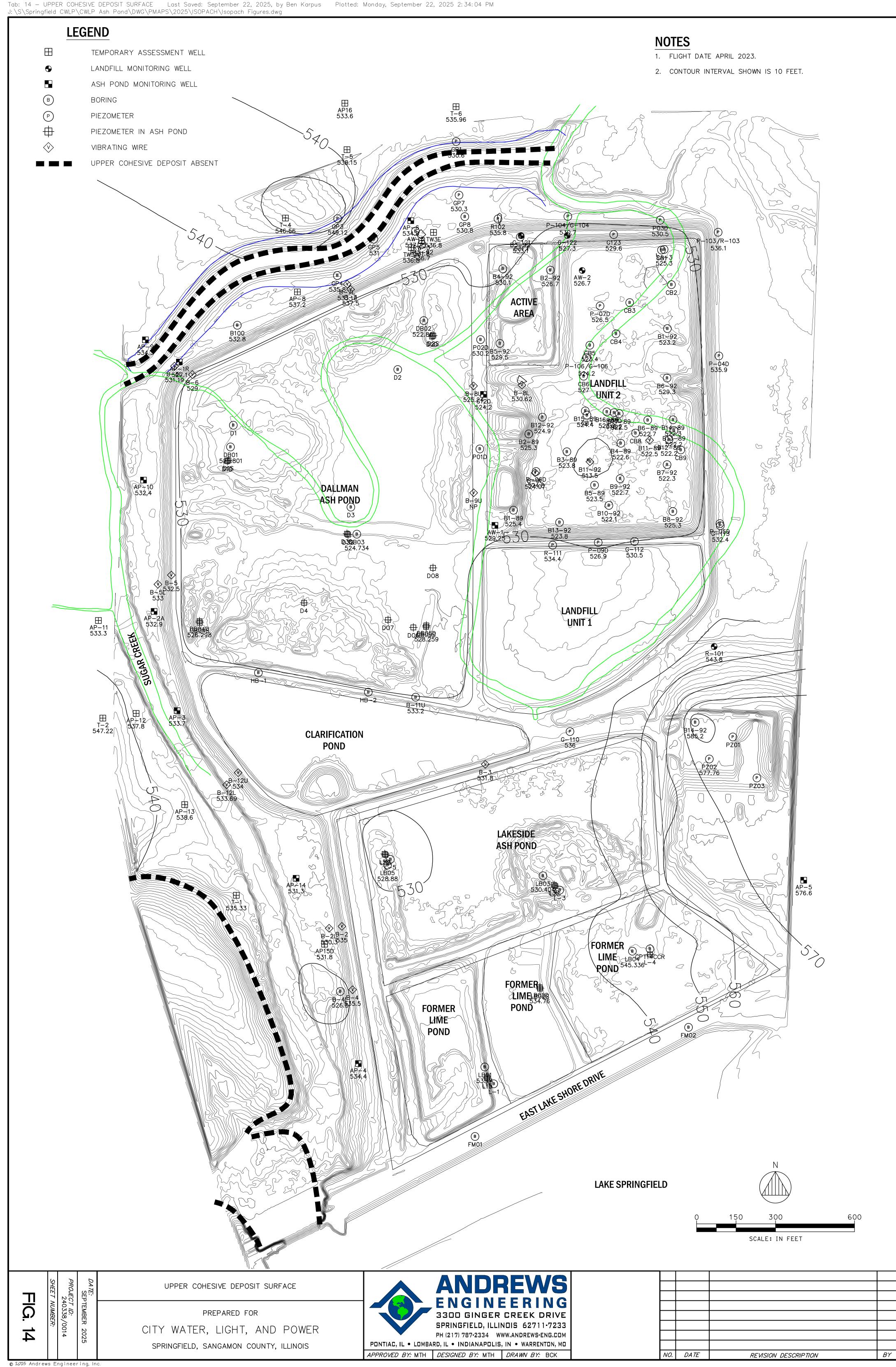

FIGURE 8: **BASAL SAND SURFACE**

FIGURE 9: **BASAL SAND ISOPACH**

FIGURE 10: LOWER COHESIVE DEPOSIT SURFACE

FIGURE 11: LOWER COHESIVE DEPOSIT ISOPACH

FIGURE 12: SHALLOW SAND SURFACE


FIGURE 13: SHALLOW SAND ISOPACH

© 2015 Andrews Engineering, Inc.

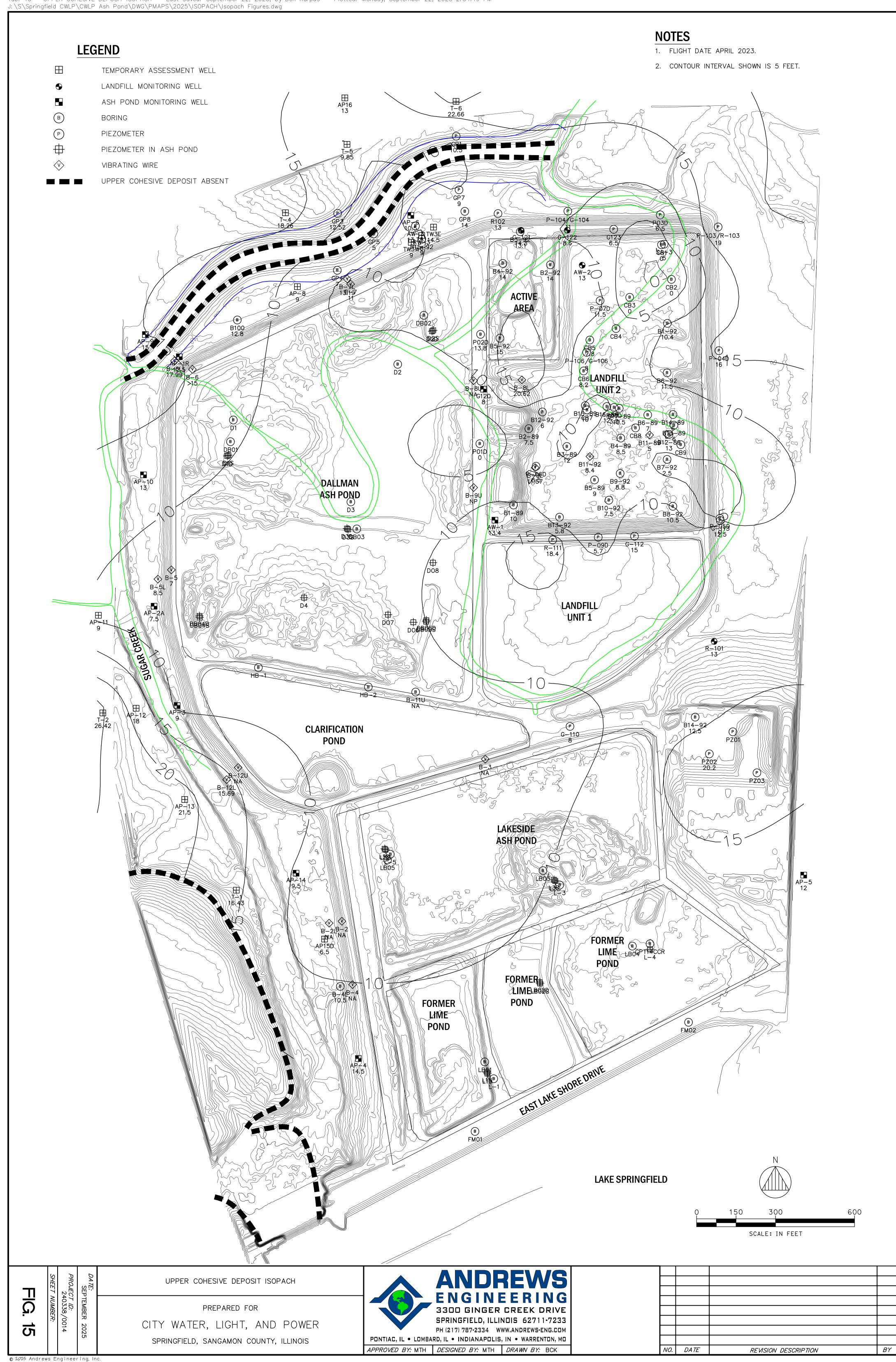

FIGURE 14: UPPER COHESIVE DEPOSIT SURFACE

FIGURE 15: UPPER COHESIVE DEPOSIT ISOPACH

APPENDICES

APPENDIX A: BORING LOGS

APPENDIX A1: FGDS LANDFILL UNIT 2 INVESTIGATION

Ci. stel Light and Power June 12, 1989
Page five of ten

Professional Service Industries, Inc.

RECORD OF SUBSURFACE EXPLORATION .

Boring B-1

e: —	Springfield, Illinois				Project N	lo.:	020-95	020
	DESCRIPTION	DEPTH	SAMPLE	н	Qu	Q _p	Mc	REMARKS
	SURFACE		1-AU					
		-	1 20					
	Silty clay, trace sand,		2-SS	5		1.3		
-	dark grey, stiff	-	2-35	,		1.3		
1		5 =	12.00					
-		-	3-SS	4		1.0		
			4-SS	6		1 5		
-		-	4-33	U		1.5		
		10	5-SS	_				
-		-	12-22	5		0.8		
-	Silty clay, trace sand,		6-SS	4		0.8		
-	light grey, firm to stiff	-	0 00	7		0.0		
11		15 =	17 - SS	4		1.5		
-			/ 33	4		1.5		
-			8-SS	4		1.0		
-		-	- 30			1.0		
		20 "	9-SS	4		1.3		
_	End of boring					1.5		
-	and of bolling	-						Dry upon completion
-		-	-					Completion
	t_A							
-								
-								
-		-	-					
2		?				- 12		
_	e s							
-	- 4·,	-	-					
-		-	-					
1		,	-					
-		-	1					
-]					
		-	-					
í		1	4					
•		-	-					
	*]					
-								
m	¥	,	-					
-		١.			1			

Professional Service Industries, Inc.

RECORD OF SUBSURFACE EXPLORATION .

Boring	B-2
--------	-----

e:	Springfield, Illinois				Project No.: 020-95020					
	DESCRIPTION	DEPTH	SAMPLE	н	au	a _p	Me	REMARKS		
	SURFACE—		I-AU							
	Silty clay, trace sand, grey, mottled brown, firm		2-SS	8		0.8				
	0/1	5	3-SS	9		1.8				
	Silty clay, trace sand, grey, stiff		4-SS	7		1.8				
		10	5-SS	2						
			6-SS	4		1.5				
	Clayey silt, trace sand, grey, stiff	15	7-SS	. 4		1.3				
		20	8-SS	. 6		1.3		While V drill		
		20	9-55	7		1.5				
	End of boring									
	c_i									
	*		-							
	*									
	* .		-							
				e.						
			_							
			=							
	•									

Page seven of Professional Service Industries, Inc.

RECORD OF SUBSURFACE EXPLORATION .

Boring____B-3

Project Name: _	FGD Sludge Facility -	South Cell .	_ Date of Boring	: May 30, 1989
Site:	Springfield, Illinois		Project No :	020-95020

DESCRIPTION	DEPTH	SAMPLE	И	Qu	o _p	Мc	REMARKS
SURFACE-					F		
00/11/102	_	1-AU					
Silty clay, trace sand,	-						1
grey, mottled brown, stiff		2-SS	7		1.3		
	5 ™						91
•		3-SS	4		1.5		
	-		À				
		4-SS	6		1.5		
	10 ₽	-					
	-	5-SS	4		1.3		
	_		_				
	-	6-SS_	5		0.8		
	15 ■	7-SS	4		1.5		
Clayey silt, trace sand,		7-55	4		1.5		
organics, grey, stiff	_	8-SS	5		1.0		
	-						While
	20 □	9-SS	4		1.3		- drilling
·							
	-	10-SS			1.3		
	-						
. 17	25 =	11-SS	9				
Sand, fine, some silt,	-						*Note 1
grey, medium dense	-						
	30 =]					
Shale, grey, very stiff (weathered)	30 -	12-SS	50/6"		3.0		
End of boring	-	1					
		1					
		╡					
*Note 1: Blow-in sand @27.5'	-	-					
	-	-					
	1	1					
	-	1					
1	"	1					
		1					

Professional Service Industries, Inc.

RECORD OF SUBSURFACE EXPLORATION

Boring	B-4	

Project Name: FGD Sludge Facility - South	Cell		D	ate of B	loring: _	May 30), 1989
Site: Springfield, Illinois			Project No.: 020-95020				020
DESCRIPTION	DEPTH	SAMPLE	н	au	و٥	ме	REMARKS
SURFACE—		l 1-AU		***			
Silty clay, trace sand, organics, mottled brown,	-	2-SS	4 ·		1.7		-
stiff	5 ×	13-SS	4		1.0		H -
Silty clay, trace sand, dark grey, stiff	10 *	4-SS	7		2.0		-
Silty clay, trace sand mottled brown, very stiff	-	15-SS	11		2.5		
- Clayey silt, trace sand,	-	6-SS	7		1.0		While
grey, firm to stiff	15*	7-SS	5		0.8		-
	-	8-SS	9		1.5		
*Note l	20 =	19-55	7			<u> </u>	
End of boring *Note 1: Silty sand, some gravel, slightly compact	-						-
	-						
	1						
		1					
		1					
	'						

City Water Light and Power June 12, 1989 Page nine of ten

Professional Service Industries, Inc.

RECORD OF SUBSURFACE EXPLORATION

Boring	B-6	

Project Name: FGD Sludge Facility - Sout	h Celi	1	D	ate of B	oring: _	May :	30, 1989
Site:Springfield, Illinois			P	roject N	o.:02	20-950	20
DESCRIPTION	DEPTH	SAMPLE	N	au	O _p	Мс	REMARKS
SURFACE		1-AU					
Silty clay, trace sand, brown, stiff	-	2-SS	5				*Poor re-
== == ==	5 =	3-SS	7		1.3		covery on 2-SS
-	-	4-SS	8		1.5		-
Silty clay, trace sand, mottled grey, stiff	10 =	5-SS	6		1.5		-
	-	6-SS	6		1.0		
- Clayey silt, trace sand, grey, stiff	15 =	7-SS	7		1.3		
	-	8-SS	7		1.8		While Varilling
2	20 =	9-SS	9		1.8		- V diffing
	- - - - -						
			·				

RECORD OF SUBSURFACE EXPLORATION

Boring B-1	
------------	--

Project Name: Subsurface Exploration Date of Boring: September 28, 1989

Site: CWLP Ash Disposal Facility, Springfield, Illinois Project No.: 020-95039

	DESCRIPTION	DEPTH	SAMPLE	N	Qu	Q _p	Mc	REMARKS
ä	SURFACE						16	▽ 0 HR
Surface Elevation 525.36	Clayey silt, trace sand, grey, mottled brown	-	1 - SS				19	-]
rface E 525.3	-	5 =	(50%)				23	H
Sur		10	2-SS (20%)				16	
	_ Silty clay, trace sand, gravel, _ some organics, dark brown, black	15	3-SS (10%)				19	-
		20 =	4-SS (50%)				16	
	Shale, grey	-	5-SS (40%0)				13	-
	End of Boring	25 =						=
	,	-						
		-		1				
	E	-						_
		-						
		-						
j		-						
								=

RECORD OF SUBSURFACE EXPLORATION

D:	B-2
Boring	

Project Name: Subsurface Exploration Date of Boring: September 28, 1989

Site: CWLP Ash Disposal Facility, Springfield, Illinois Project No.: 020-95039

	DESCRIPTION	DEPTH	SAMPLE	N	au	O _p	Mc	REMARKS
ű	*NotSuRFACE						14	_
vatic	- Silty clay, grey, mottled brown	-					21	-
Surface Elevation 525.28	Silty sand, fine to medium, brown	5	1-SS (100%)				21	∇ 0 HR.
Surf	*Note 2	-						
	Silty sand, grey, brown	10 =	2-SS (50%) 3-ST (30%)				25	-
	Clayey silt, trace sand, grey	15 =	4-SS (90%)					- - -
		-	(100%) 6-ss (90%)				24 21	-
-	Sandy silt, grey	20 =	7-ST (80%)					-
	-	25 =	8-SS (90%)				18	<u></u>
	Shale, grey	30 =	9-SS (80%)					=
	End of Boring	30	(80%)					
	- *Note 1: Silty clay, grey, mottled brown, some organics							-
	- *Note 2: 6.5'-6.8': Silt, grey, mottled brown 6.8'-7.0': Silty sand, brown, grey	-					·	
	7.0'-7.5': Clay, trace sand, brown, grey	-						-
		=						=======================================

RECORD OF SUBSURFACE EXPLORATION

Boring B-3

Project Name:Subsurface Exploration	Date of Boring:	September	28,	1989
-------------------------------------	-----------------	-----------	-----	------

Site: CWLP Ash Disposal Facility, Springfield, Illinois Project No.: 020-95039

DESCRIPTION	DEPTH	SAMPLE	N	a _u	Qp	Mc	REMARKS
SURFACE			-			14	
Silty clay, trace sand, grey, mottled brown	-	1-SS					<u> </u>
	5 m	(95%)	1			23	=
E	-	2 - SS				23	
Silty dand, fine to medium, grey,	10 =	(90%)				20	
Clayey silt, trace sand, gravel						25	-
Sand, trace gravel, fine to coarse, grey	15 =	3-SS (10%)				18	
Sandy silt, grey	-	4-SS				19	-
_	20 =	(90%)				20	į į
	-					20	=
Sand and gravel, fine to coarse,	25	5-SS (95%)				19	
	30	6-SS (10%)					
End of Boring							=
-							
-					٠		
E							-
]						

Surface Elevation 523.83

RECORD OF SUBSURFACE EXPLORATION

Poring	B-4
Boring_	

Projec	t Name: _	Subsurface	Explorat	ion		Date of Boring:	September	29,	1989	
Sito	CWLP Asl	n Disposal	Facility.	Springfield.	Illinois	Drainat No.	020-95039			

_	DESCRIPTION	DEPTH	SAMPLE	N	a _u	o _p	Mc	REMARKS
Surface Elevation 522.61	SURFACE						14	70 HR
vat	Silty clay with organics, black,	-						_
31e	dark brown							
e F	_	_	1-SS			- 1	23	
fac 22	-	5 =	(5%)				23	1
Sur.	_ Silty clay, trace sand, grey,	-						4
0,	_ mottled brown							
	-	_	2-SS (90%)				22]
	6/15	10 =	(30%)					-
	_ Silty clay to clayey silt, trace _ sand, grey	-						
	_ sand, grey	-						-
	_		3-SS				0.1]
	=	15 =	(90%)				21	_
	-	-						-
	_	-						-
			4-55]
		20 =	(1002)				24	_
	_ Sand, fine, some silt, grey	_						4
		-						-
	_	' -	5 - SS				19]
	Silty clay, some sand, grey	25 =	(50%)					_
	-	-	6-SS					4
	*Note 1	-	(30%)				12	
	End of Boring							
	*Note 1: 27'-27.5' - Sand and	-						_
	gravel, grey	-						-
	27.5'-28' - Shale, grey	_						j
]
		-						=
	-	-						-
	-	_						j
	a .	100				1		=
	-	-						-
		-						
	,							7
	a ·							=
	-	-						-

PSI A-100-4

RECORD OF SUBSURFACE EXPLORATION

Boring B-5

Project Name: Subsurface Exploration	_Date of	Boring:	September	30,	1989	
--------------------------------------	----------	---------	-----------	-----	------	--

Site: CWLP Ash Disposal Facility, Springfield, Illinois Project No.: 020-95039

_	DESCRIPTION	DEPTH	SAMPLE	N	au	Q _p	Mc	REMARKS
tion	SURFACE————————————————————————————————————						19	-
Surface Elevation 523.49	- Clayey silt, some organics, sand, - brown, mottled grey	5 =	1-SS (80%) 2-ST (100%)				24	-
	Silty clay, trace sand, grey	10 =	3-SS (95%) 4-ST (0%)					=======================================
	-	15 =	5-SS (100%) 6-ST (0%)				20	-
		20	7-SS (100%) 8-ST (0%)				20	- -
	Silty sand, grey	40	9-SS (80%) 10-SS	28/52			9	
	Sand with gravel, medium to coarse, grey Shale, grey End of Boring	_	11-SS 12-SS				9	-
	End of Boring							-
	-					٠		=======================================
		=======================================						-

RECORD OF SUBSURFACE EXPLORATION

Boring B-6 (4' S. of 500+400)

Projec	t Name	:	Subsuri	face	Explo	ration		Date of Boring:	October	3,	1989	
Citor	CWI.P	Ash	Disposal	Faci	ility.	Springfield	Illinois	Decides No.	020-0503	3.0		

-	Oile.			'	10,00011	0	320 73	
ıtior	DESCRIPTION	DEPTH	SAMPLE	N	o _u	O _p	Mc	REMARKS
6 7 6	SURFACE————						17	_
E16	Silty clay, brown, black	-					17	
Surface Blevation	Silty clay, grey, mottled brown	5 =	1-SS (75%)				31	<u> </u>
	Silty clay, some organics, trace sand, grey	10 =	2-SS (50%)				27	-
		15 =	3-SS (100%) 4-SS				20	-
		20 =	(75%) 5-SS				24	-
	Silty sand, fine to coarse, grey Shale, grey (Hard Drilling)	25 =	(90%)				22	-
	End of Boring	30 =						-
		-					,	-
								-
	-	-						-
	a	-						-

RECORD OF SUBSURFACE EXPLORATION

Boring	B-11

Project Name:	Subsurface	Exploration	Date of Bo	ring:	September	29,	1989

Site: CWLP Ash Disposal Facility, Springfield, Illinois Project No.: 020-95039

DESCRIPTION	DEPTH	SAMPLE	N	Qu	Q _p	Mc	REMARKS
SURFACE———						18	▽ 0 HR.
Clayey silt, some organics, black,	_					10	
dark brown	-	1-55					-
	5 =	(5%)				22	j
-	-			,			-
Silty clay, trace sand, grey	_	2 - SS					
t	-	(90%)					-
<u></u>	10 =					17]
t	-	3-SS					, -
-	-	(100%)				2]
	15	-				19	-
F	_	4 - SS					
		(25%)					
-	20 =					18]
	-						
Silty sand, grey	-	5-SS (15%)				22]
	25 ==]
Sand with gravel, grey	-	6-SS	53/95-	3"		21]
- Shale, grey		7 - SS				12	
End of Boring	-						-
Ē	30 =]
-	-						_
Ę.	_						
-	-						=
	_						
-	-						-
_							_
-	-						-
F	-						
	-						=
	_						

Surface Elevation 522.49

RECORD OF SUBSURFACE EXPLORATION

Boring B-12 (Offset 36' west)

Project Name: Subsurface Exploration	Date of Boring:	October 3, 1989
Site: CWLP Ash Disposal Facility, Springfield	Illinois Desiret No.	020 05020

Silty clay, trace sand, grey 1-SS 24 24 24 25 25 26 25 25 21 25 25 25 21 25 25	[DESCRIPTION	DEPTH	SAMPLE	N	Qu	Q _p	Mc	REMARKS
Silty clay, trace sand, grey Silty clay, trace sand, grey Silty clay, some organics, trace sand, grey Silty clay to clayey silt, trace sand, grey Silty clay, some organics, trace sand, grey 3-SS (100%) 23 4-SS (50%) 22 25 Shale, grey Find of Barrian		SURFACE							
Silty clay, some organics, trace sand, gravel, grey Silty clay to clayey silt, trace sand, grey Silty clay to clayey silt, trace sand, grey 4-SS (50%) 20 22 5-SS (25%) 22 7-Shale, grey Find of Boring	io l	- Silty clay, trace sand, grey, brown	_						
Silty clay, some organics, trace sand, gravel, grey Silty clay to clayey silt, trace sand, grey Silty clay to clayey silt, trace sand, grey 4-SS (50%) 20 22 25 5-SS (25%) 22 25 Shale, grey Find of Boring	vat		_						<u> </u>
Silty clay, some organics, trace sand, gravel, grey Silty clay to clayey silt, trace sand, grey Silty clay to clayey silt, trace sand, grey 4-SS (50%) 20 22 5-SS (25%) 22 7-Shale, grey Find of Boring	3le 22	Silty clay trace cond and	_	1-55				24	
Silty clay, some organics, trace sand, gravel, grey Silty clay to clayey silt, trace sand, grey Silty clay to clayey silt, trace sand, grey 4-SS (50%) 20 22 5-SS (25%) 22 7-Shale, grey Find of Boring	e E	sifty clay, trace sand, grey	5 ==						
Silty clay, some organics, trace sand, gravel, grey Silty clay to clayey silt, trace sand, grey Silty clay to clayey silt, trace sand, grey 4-SS (50%) 20 22 25 Shale, grey Find of Boring	fac 5	• *	_					26	
Silty clay, some organics, trace sand, gravel, grey Silty clay to clayey silt, trace sand, grey Silty clay to clayey silt, trace sand, grey 4-SS (50%) 20 22 25 Shale, grey Find of Boring	in .		-						
Silty clay, some organics, trace sand, gravel, grey Silty clay to clayey silt, trace sand, grey 15	"	_	_	(100%)					
Silty clay to clayey silt, trace sand, grey	ļ		10						
Silty clay to clayey silt, trace sand, grey 4-SS (100%) 23 24-SS (50%) 20 22 25 Shale, grey Find of Foring	H	Silty clay, some organics, trace	_					25	
Silty clay to clayey silt, trace sand, grey 15 23 4-SS (50%) 20 20 20 21 20 21 20 Shale, grey Find of Foring	ŀ	sand, gravel, grey	-	3-55				21	
23 21 22 22 25 Shale, grey Frd of Boring (50%) 9		-							-
23 21 22 22 25 Shale, grey Frd of Boring (50%) 9	}.		10 1						
4-SS (50%) 20 = 4-SS (50%) 21	-	Silty clay to clayey silt, trace	15 -					23	
21 22 22 22 25 Shale, grey 6-SS (50%) 9		sand, grey	-	4-88					-
5-SS (25%) 22 21 25 Shale, grey (50%) 9								21	
5-SS (25%) 22 21 25 Shale, grey (50%) 9	-	1	20 =						
22 21 25	-		_					22	
22 21 25 Shale, grey (50%) 9		-	-	5-SS					-
25				(25%)				22	
	-		25						
Shale, grey (50%) 9	-		_					21	
Shale, grey (50%) 9	Ė		-	6-88					-
End of Boring 30		Shale, grey						9	
	}	End of Boring	30 =						
	}	•	-						-
	t		-					,	-
	}-	ı							
	-		\dashv						-
	t		H						-
	F]	,.					
	-		100				٠.		
	H		4						-
	t		-						-
	F	,]	1]
	-								=
	-		4	.					-

RECORD OF SUBSURFACE EXPLORATION

Boring B-13

Site: CWLP Ash Disposal Facility, Sprin	gfield	, Illi	nois F	Project N	lo.:	020-95	039
DESCRIPTION	DEPTH	SAMPLE	N				
	DEFIN	SAMPLE	N	Qu	o _p	Mc	REMARKS
SURFACE————							
Silty clay with organics, dark grey							
_	-	1-SS					√ 0 HR
-		(50%)				27	-
•	5 ≥	Z-ST				37	
	-	(50%)				3,	
						38	
Silty clay, trace sand, grey	_	3-SS				36	
	10 ***	(25%)				00	
-	-	4-ST				23	
Clayey silt with sand, fine, grey	_	(50%)		:		20	
-		5-SS					
	15 =	(100%)					
-	_	6-ST				27	
-	-	(60%) 7-SS				2.7	
	_	(100%)				21	
• /	20 =	(100%)					
-	20 -					18	
-	_	8 - SS					
-	-	(40%)					
						21	
	25 =						
	_					17	
Shale, grey? (Hard Drilling)							
End of Boring	-						
	300						
_							
-							
-	_					-	
	100						
-	-						

RECORD OF SUBSURFACE EXPLORATION

Boring	B-14
-	

Project Name:	Subsurface	Exploration	Date of Bo	oring:	October	2,	1989	
---------------	------------	-------------	------------	--------	---------	----	------	--

Site: CWLP Ash Disposal Facility, Springfield, Illinois Project No.: 020-95039

	DESCRIPTION	DEPTH	SAMPLE	N	Qu	O _p	Mc	REMARKS
-	SURFACE————							-
1111111	Silty clay, grey, mottled brown	5 =	1-SS (50%)		,		23	▽ 0 HR.
	Silty clay to clayey silt, some sand, fine, grey	10 =	2-SS (15%) 3-SS (75%)				18	While
		15	4-SS (75%)				21	-
		20 =	5 - SS				19	=
	Sand with gravel, fine to coarse, grey *Hard Drilling @28.5' (Shale?)	25 =	(75%) 6-SS (80%)				15	-
	End of Boring	30 =						
		30 =			-		7	=

Surface Elevation 522.25

RECORD OF SUBSURFACE EXPLORATION

Boring_____B-15

Project	Name:	Subsurface	Explorat	ion	Date of Boring:	October 2,	1989
Sito	CWLP Ash	Disposal	Facility.	Springfield.	Illinoi sproject No :	020-95039	

	DESCRIPTION	DEPTH	SAMPLE	N	au	a _p	Мc	REMARKS
2	Silty clay, trace sand, grey, mottled brown	-					18	√o hr.
524.35		5 11	2-ST					
		-	(100%) 3-SS (90%)				20	=
		10 -					36]
-	Silty clay to clayey silt, some	-	4-SS (100%)			ā	25	=
	sand, fine, grey	15 -	5-SS (100%)				22	
		20 =					21	
	•	-	6-SS (95%)				20 20	
-		25 =				,	26	=
E	Sand with gravel, medium to coarse	30	7–SS (50%)				15	
F	End of Boring	-						=
		-						- - - -
		-				,		
								-
	• •	-						- -

Surface Elevation

RECORD OF SUBSURFACE EXPLORATION

Boring B-16

Project Name:	Subsurface	Exploration	Date of Boring:	October	2	1989
			Date of Dorling.	OCCOBCI	2,	1707

Site: CWLP Ash Disposal Facility. Springfield. Illinois Project No.: 020-95039

Surface Elevation 523.15	DESCRIPTION	DEPTH	SAMPLE	N	Qu	ap	Mc	REMARKS
/at	SURFACE———							
5	- Silty clay, mottled brown	-						∇o HR.
9.E		-					16	
ac 52			1-88					-
Jin	Silty clay, trace sand, dark grey,	5	(75%)					-
S	black		2=ST					-
	C414m -1	-	(3ō%Ŧ					
t	Silty clay to clayey silt, some sand, fine, grey	-	3-SS					_
	sand, line, grey		(100%)					-
		10 =	4-ST					
			(100%)					-
}	•	_	5 - SS					
ŀ	- Sand, fine to coarse, grey	-	(50%)					_
ì		15 =	6-ST				24	=
	- Silty clay, trace sand, grey	-	(10%)					-
	-							-
		_	7-SS				21	
- }	ı.	20 =	(75%)					
	-						17	
ŀ	-	-	8-SS					-
			(50%)					-
L		25						7
þ								7
E	Sand with gravel, fine to coarse,	_						
F	,	-	1					-
Ī	Shale, grey (Hard Drilling @27.5')	20					16	-
	T-1 -C P	30 =						
	End of Boring							-
-								
H	•	-						_
-	ı							=
F	•							4
		4	1					-
-]]
-	ı İ							
-								
H	•	4						4
		\dashv						4
				1				
L								

RECORD OF SUBSURFACE EXPLORATION

Boring B-17 (Offset 12' south of stake)

Project Name: _____Subsurface Exploration _____ Date of Boring: October 2, 1989

Site: CWLP Ash Disposal Facility, Springfield, Illinois Project No.: 020-95039

	one.			1		···		
Surface Elevation 522.50	DESCRIPTION	DEPTH	SAMPLE	N	o _u	a _p	Mc	REMARKS
e e	SURFACE————						17	-
E 35	•	-					17	∇0 HR
ce 222	- Silty clay, brown, mottled black	_						
rfa 5	-	_	1-SS]
Sui		5 =	(25%)					
-	•	_						
-	-	_	2-SS					-
ŀ	-	-	(5%)					-
		10 =					19	
E		10 =						7
	Silty clay with organics, trace	_	3-SS				30]
-	sand, grey	-	(95%)					4
-	-	-					21	
-	•	15 =						=
	•	-	4-SS				20	-
			(90%)]
		_						
}	Silty clay to clayey silt, sand,	20 =						=
-	grey	-	5-SS					4
	-	-	(80%)				21	-
		_						
		25 =]
[- Sand with gravel, fine to coarse,	25 -]
	grey	_					14	_
-	Shale, grey						14	
ŀ	End of Boring	-	1					
Ì		20						=
Ì								
[-	_						_
-	-	-						-
}								=
}	-	-						-
ł	-	-						
İ]					
[_				4		
[-	-	-					
	- ,	-	-					
<i>;</i>	-	-	1					
	·	-						

PROJECT CWLP Flue Gas Desulfurization Sludge Landfill Andrews Environmental Engineers, Inc. CLIENT BORING SA-3 DATE STARTED 11-16-93 DATE COMPLETED 11-16-93 L - 30,161 **ELEVATIONS** WATER TABLE **GROUND SURFACE** 529.3 WHILE DAILLING Drilling Fluid END OF BORING 498.6 AT END OF BORING **Drilling Fluid** RECOVERY N 5560 E 2673 24 HOURS Grouted SAMPLE WC N & DRY DEPTH ELEV. C_{u} SOIL DESCRIPTIONS TYPE SS 1 10 22.1 3.0* Very stiff dark gray and dark brown silty CLAY, little 2.15 sand (CL) 2 SS 9 2.0* 23.5 4.0 525.3 3 SS 3 30.1 92.8 Soft to medium stiff gray silty CLAY, little sand, occasional wood fragments (CL) SS 3 30.5 0.50 LL = 28P1 = 1327.9 0.55 95.0 5 PS Push 9.0 520.3 Loose gray silty SAND (SM) 24.7 В 10 10.0 519.3 SS 2 28.0 0.21 Soft gray silty CLAY, little sand (CL) SS 2 25.2 SURFACE IN FEET 14.0 515.3 Soft gray ORGANIC CLAY, some sand, organic 8 SS 2 52.7 67.5 0.40 matter, wood fragments (OL) 54.8 71.4 LL = 30P1 = 13PS Push 16.0 513.3 84.9 49.0 Loose gray fine SAND, peat lens at 16.5' (SP) 17.5 511.8 108 SS 2 46.6 0.75* Medium stiff ORGANIC CLAY, wood fragments (OL) 31.6 19.0 510.3 39.6 0.37 Soft gray silty CLAY, little sand (CL) SS 2 22.8 20.5 508.8 B 12 SS 3 Loose gray silty SAND, (clayey at top) (SM) 13 SS 22.8 3 25 14 SS 2 27.0 502.3 15 SS 17 Medium dense gray fine SAND (SP) SS 16 30/0.2 30 30.5 498.8 SHALE End of Boring at 30.7'. Sampler refusal Cu Indicates Undrained Shear Strength - ksf x.xx = 1/2 Unconfined compressive strength; 35 x.xx = Torvane Value. x.x* = 1/2 Calibrated Penetrometer Value 40 DRILL RIG NO. AEX

BELOW

DISTANCE

BORING NUMBER

B-1

SHEET 1 OF 2

CLIENT

PROJECT & NO. LOCATION

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B N 5,260.5 E 2,685.6

LOGGED BY KRR

GROU	ND E	LEVA	ATION 523.2						
ELEVATION 23.2	о DEРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	PL [- ∆ LL 40 50 essive	NOTES & TEST RESULTS
523.2			Brown silty clay, trace coarse to fine sand, stiff to very stiff, medium plasticity, wet CL	SS-2 2.0-4.0 24"R SS-3 4.0-6.0 24"R	2 3 3 3 4		27.3 25.6 * 28.8 23.0 23.0		Low recovery.
515.2	8.0		Gray silty clay, trace to little fine sand, soft, medium plasticity, wet CL 1" fine sand lense at 9.5'	SS-5 8.0-10.0 24"R	1 1 1 1	*	26.7		
512.8	10.4		Gray clayey sand and silt, very loose, poorly graded, saturated	SS-6 10.0-12.0 24"R	WOH 1 1 1		19/5		Water level at 10.0' during drilling.
509.2	14.0			24"R	WOH WOH WOH		20.0		SS-7: Gravel = 0% Sand = 50% Silt or Clay = 50%
			Gray silty clay to clayey silt, trace fine sand, very soft to soft, low to medium plasticity, moist to wet CL/CL-ML Lense of fine sand at 15.0'	SS-8 14.0-16.0 24"R SS-9 16.0-18.0	1 1 1 1 WOH		24.8 Q		SS-9: LL = 25
503.7	19.5			24"R SS-10A B 18.0-20.0 24"R	1 WOH WOH 2		23.4 Q		PL = 25 Pl = 22 Pl = 3
503.2		1111	Gray clayey fine sand, little silt, loose,	1	2		22.8		
DRILL	INIC C	ONT	RACTOR Patrick Drilling REA	ANRKS			WATERIE	\/EI /&^ \	

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 6-1/4" I.D. HSA. DRILLING EQUIPMENT CME-55/ATV DRILLING STARTED 8/1/92 ENDED 8/1/92 REMARKS WOH = Weight of Hammer

WATER LEVEL (ft.) 10.0' during drilling $\underline{\underline{\Psi}}$

BORING NUMBER

B-1

SHEET 2 OF 2

CLIENT

PROJECT & NO.
LOCATION

City of Springfield CWLP

FGDS Landfill-Hydrogeo. Invest. - 496B N 5,260.5 E 2,685.6

LOGGED BY KRR

GROU			ATION 523.2							
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	m C	Ur	0 2 confine	er Conte 0 30 ed Comp ngth (TS 22.8 3	- ∆ LI	NOTES & TEST RESULTS
503.2			poorly graded, saturated SC Gray fine sand, little silt, very loose, poorly graded, saturated SP-SM/SM	SS-11AB 20.0-22.0 14"R	WOH WOH WOH	*		24.9		
499.2	24.0		Gray silty clay, trace to little fine sand, soft, medium plasticity, moist CL Gray coarse to fine sand, trace to little	SS-12 22.0-24.0 2"R	WOH WOH WOH		,	,		Blow-in at 26.0'.
			fine gravel, little silt, dense, well graded, saturated SW-SM/SM	SS-13 24.0-26.0 24"R	3 8 11 13		15.5			
			Gray fine sand, trace silt from	26.0-28.0 0"R			1 1 1			SS-14 could not be obtained due to blow-in.
494.2	29.0		28.0'-29.0' Gray silty clay to clay, hard, medium to high plasticity, moist to dry	SS-15AB 28.0-30.0 20"R	7 24 76 00+/	3"	14.4 0 14.0		*	
			CL/CH							
490.2	33.0		Gray shale, massive, excellent	PQ-16 33.0-38.0						Hard clay; drilled to 33.0'.
				60"R						Auger refusal at 33.0'; switched to coring. RQD = 100%
485.2	38.0		End of Boring at 38.0'.							Borehole was tremie grouted immediately after completion of
							\Box			drilling.

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 6-1/4" I.D. HSA.
DRILLING EQUIPMENT CME-55/ATV
DRILLING STARTED 8/1/92 ENDED 8/1/92

REMARKS
WOH = Weight of Hammer

WATER LEVEL (ft.)

▼ 10.0' during drilling

▼

BORING NUMBER

B-2

SHEET 1 OF 2

CLIENT

PROJECT & NO.

LOCATION

City of Springfield CWLP

FGDS Landfill-Hydrogeo. Invest. - 496B N 5,482.9 E 2,241.0

LOGGED BY KRR

GROU	IND E	LEVA	ATION 526.7					
ELEVATION 526.7	O DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	1	Water Content O 20 30 40 50 Confined Compressive Strength (TSF) ** 2 3 4	TEST RESULTS
520.7	0.0		Brown mottled silty clay, trace fine sand, soft to medium stiff, medium plasticity, wet CL	SS-2 2.0-4.0 20"R	3 2 2 3	*	23.8 Q 1 1 24.6 Q	
				SS-3 4.0-6.0 24"R	2 2 3 3 3	*	28.4 C	
517.7	9.0			6.0-8.0 24"R 3T-5 8.0-10.0	3 3	*	23.7 O I I	
			Gray silty clay, trace fine sand, medium stiff, medium plasticity, wet	24"R SS-6 10.0-12.0 24"R	1 1 2 3	*	25.7 Q	,
512.7	14.0		Little fine sand and trace shells in SS-7A 6" long wood in SS-7B Gray fine sand, little to some silt, loose,	SS-7AB 12.0-14.0 24"R	2 2 3	*	27.3	
510.7	16.0		poorly graded, saturated SM Dark gray silty clay, trace fine sand,	SS-8 14.0-16.0 24"R	1 1 2 4		21.77	Water level at 14.0' during drilling.
508.7	18.0		trace organics, medium stiff, medium plasticity, wet CL/OL Gray silty clay, trace fine sand, stiff,	16.0-18.0 24"R	2 2 4 3	*	36.9	
506.7	20.0		medium plasticity, wet CL	18.0-20.0 24"R	3 5 5	*	€ 21,1 T	

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 6 1/4" I.D. HSA. DRILLING EQUIPMENT CME-55/ATV DRILLING STARTED 7/29/92 ENDED 7/29/92

REMARKS WATER LEVEL (ft.)

▼ 14.2' within augers prior to coring

BORING NUMBER

B-2

SHEET 2 OF 2

CLIENT

PROJECT & NO.

LOCATION

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B

N 5,482.9 E 2,241.0

LOGGED BY KRR

GROUND ELEVATION 526.7

SOIL/ROCK SAMPLE TYPE & No. DESCRIPTION DESCRIPT
stiff, low to medium plasticity, moist to wet CL SS:12 22.0-24.0 24*R 2 SS:13 24.0-26.0 24*R 2 SS:16 dry CL-ML/ML SS:16 28.0-30.0 24*R 237 21 31.0-35.0 Gray shale, soft SS:16 30.0-31.0 31.0-35.0 End of Boring at 35.0'.
Gray clayey silt to silt, extremely dense, dry CL-ML/ML SS-15 28.0-30.0 24 "R 23 72 Gray shale, soft SS-16 30.0-31.0 PG-17 31.0-35.0 48 "R Water level within augers at 14.2' prior to coring. Auger refusal at 31.0'. Switched to PQ rock coring. End of Boring at 35.0'. End of Boring at 35.0'. Borehole was tremie grouted using Volclay grout immediately after completion of
496.7 30.0 Gray shale, soft SS-16 30.0-31.0 PG-17 31.0-35.0 48*R Water level within augers at 14.2' prior to coring. Auger refusal at 31.0'. Switched to PQ rock coring. End of Boring at 35.0'. End of Boring at 35.0'.

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 6 1/4" I.D. HSA.
DRILLING EQUIPMENT CME-55/ATV
DRILLING STARTED 7/29/92 ENDED 7/29/92

REMARKS

WATER LEVEL (ft.)

□ 14.0′ during drilling

▼ 14.2' within augers prior to coring

Ā

BORING NUMBER

B-3

SHEET 1 OF 3

CLIENT

City of Springfield CWLP

LOCATION

PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B

LOGGED BY	SAS
-----------	-----

GROUND ELEVATION 553.0

GROU	NDE	LEV	ATION 553.0									
z				SAMPLE		DI -	_ Wat	er Con		1.1		
ELEVATION	DEPTH (FT)	4	SOIL/ROCK	1000.00 1000.000000 00000000	10	1] : 0 2	() o 3		∆ LL 40 50	N	OTES
A	Į	STRATA		TYPE & NO.	BLOW	1 1	confine					&
E	Ч	R	DESCRIPTION	DEPTH (FT)	85	Un	Stre	ngth (1	npress	¥∠	TEST	RESULTS
	E	ST		RECOVERY(IN)	E C E	1	2		3	4 5	1	HEOGETO
553.0	0.0	/////	Brown silty clay, trace fine sand, very	AU-1						1		
			stiff to hard, low plasticity, dry to moist,	0.0-2.0								
			fill									
			CL									
				SS-2	3							
				2.0-4.0	4	1	1.8					
			Dark gray streaks at 3.0'	6"R	5	'	Ö.			*		
			bark gray ceroano at oro		8		1					
			Decree and deals are form 4.01				1					
			Brown and dark gray from 4.0'	SS-3	5		i					
				4.0-6.0	8		2.7					
				12"R	5			*				
					8		1					
				SS-4			ì					
				6.0-8.0	-		١.					
				18"R	5		18.	3		N		
				10 h	8		Y			*		
					0		1					
			Dark gray at 8.0', trace fine gravel	SS-5	3		١					
				8.0-10.0	5			_				
				16"R	6		18	8		*		
				10 11	8		Y					
							i					
				SS-6	3		1					
				10.0-12.0	7		19	5				
			Dark gray, trace organic	14"R	8		Ğ					
					8		1					
				SS-7	3		i					
				12.0-14.0	5		17.	3				
				12"R	6		(Q)	€				
539.0	140				7		1					
539.0	14.0		Gray silty clay, trace fine sand, very stiff,	3T-8	-		i					
			medium plasticity, moist to wet, fill	14.0-16.0			!					
			modian placticity, molec to wor, m	20"R			ì		*			
				2011			1					
				SS-9	-		i			1 1		
				16.0-18.0	13		18	Ω				
				18"R	13		'å	, ,	K			
					15		i					
			D 1				,					
			Dark gray, trace organics at 18.0'	SS-10	3		1					
				18.0-20.0	5		20	.3	100			
				18"R	7		9) }	K			
F00 -	00.0				12							
533.0	20.0	V////										
(

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD

4-1/4" I.D. HSA

DRILLING EQUIPMENT

CME-75/ATV

DRILLING STARTED 7/24/92 ENDED 7/24/92

REMARKS

WOH = Weight of Hammer.

WATER LEVEL (ft.)

⊈ 48′ during drilling

▼ 33.1' end of drilling

 $\bar{\mathbb{Z}}$

BORING NUMBER

B-3

SHEET 2 OF 3

CLIENT

City of Springfield CWLP

PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B

LOCATION

LOGGED BY SAS

GROU	IND E	LEVA	ATION 553.0					
ELEVATION	O DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	m _O	1	0 20 30 40 50 confined Compressive Strength (TSF) **	NOTES & TEST RESULTS
531.0			Light gray, mottled silty clay, trace fine sand, very stiff, medium plasticity, wet CL Brown mottled silty clay, trace fine sand,	SS-11 20.0-22.0 24"R	3 6 7		20.3	
			stiff, medium plasticity, wet CL	22.0-24.0 24"R	3 5 7		23.3 *Q	
528.3			Light brown silty clay, trace fine sand, soft, medium plasticity, wet	24.0-26.0 24"R	2 3 5	*	2 y . 8 O	
526.5	26.5		Gray silty clay, trace fine sand, stiff to hard, medium plasticity, wet CL	26.0-28.0 24"R	3 5 9		27.8	
	-		Sand Lenses	28.0-30.0 24"R 3T-16	4 5 5		24.0	
				30.0-32.0 24"R	1		* !	
519.9 519.0			Gray sandy clay, soft, medium plasticity, moist	32.0-34.0 24"R	1 2 2	*	24.7	
			Dark gray to brown silty clay, trace fine sand, very soft to soft, medium plasticity, wet	34.0-36.0 24"R	2 2 3	*	34.0	
				SS-19 36.0-38.0 24"R	1 1 2	*	27/3	
513.0	40.0			3T-20 38.0-40.0 24"R		*	24.6	3T-20: Dry Dens. = 104.2pcf k = 8.2E-08 cm/s
		XIIII						

DRILLING CONTRACTOR Patrick Drilling

DRILLING METHOD DRILLING EQUIPMENT

4-1/4" I.D. HSA CME-75/ATV

DRILLING STARTED 7/24/92 ENDED 7/24/92

REMARKS

WOH = Weight of

Hammer.

WATER LEVEL (ft.)

▼ 33.1' end of drilling

Ā.

BORING NUMBER

B-3

SHEET 3 OF 3

CLIENT

City of Springfield CWLP

PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B

LOCATION

LOGGED BY SAS

GROUND FLEVATION 553.0

GROU	ND E	LEVA	ATION 553.0							
Z	Ţ			SAMPLE		PI -	Water	Content	∧ LL	
ELEVATION	БЕРТН (FT)	A	SOIL/ROCK	TYPE & NO.	S	10	20	30	40 50	
\ \ \ \	Ē	IAI	DESCRIPTION	DEPTH (FT)	≥Z	Un	confined	Compress	sive	<u> </u>
l H	E E	STRATA		RECOVERY(IN)	BLOW	١.	Streng	th (TSF)		TEST RESULTS
513.0			Dark gray to brown silty clay, trace fine	SS-21	WOH			-	4 5	
	,		sand, very soft to soft, medium		WOH					
			plasticity, wet	16"R	WOH		20.8	,		
			CL		WOH	1				
510.7	42.3		Sand Lense at 40.8', very soft	SS-22	1		1			
			Gray silty clay to clayey silt, little to	42.0-44.0	1		10/0			
			some sand, soft to stiff, medium	24"R	2	*	18'.2			
			plasticity, moist to wet CL		2		!	İ		
			Sand Lense at 43.3' and 43.6'	SS-23	2	1 1	i			
				44.0-46.0	4		1 0			
				24"R	4		1∉.9 ₩Q			
					3		1			
				3T-24	1		1			
				46.0-48.0			1			
				24"R		*	< '			
505.0	48.0						1			
000.0	40.0		Gray clayey fine sand, some silt, very	SS-25	woн	1	,			Rod weight pushed
			loose, saturated	48.0-50.0	WOH		2	5.7		sample.
			SC	12"R	WOH WOH			9		
					WOH	1		<i>i</i>		
				SS-26	WOH		/			
				50.0-52.0	WOH		20.4			
				24"R	WOH		P			
501.0	52.0				VVOI	1	1			
			Gray fine sand, trace coarse to medium	SS-27	WOH		/			
			sand, trace silt, very loose, poorly	52.0-54.0	WOH	1 1	/			
			graded, saturated SP/SP-SM	3"R	WOH		,			
499.0	5000 10 00000						/			
498.5			Gray coarse to fine sand, little silt, trace	SS-26AB	2		,			Borehole was
498.2	54.8		fine gravel, loose, poorly graded,	54.0-56.0 9"R	80 + , 5"	1 9	5			tremie grouted using Volclay grout
			SM//	"	"	1	´			immediately after
			Gray shale							drilling.
			End of Boring at 54.8'							
1.1			1 (1			``

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD

DRILLING EQUIPMENT

4-1/4" I.D. HSA CME-75/ATV

DRILLING STARTED 7/24/92 ENDED 7/24/92

REMARKS

WOH = Weight of Hammer.

WATER LEVEL (ft.)

▼ 33.1' end of drilling

 $\bar{\mathbb{Z}}$

BORING NUMBER

B-4

SHEET 1 OF 2

CLIENT

LOCATION

City of Springfield CWLP

PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B

N 5,488.2 E 2,060.4

LOGGED BY KRR

GROU	ND E	LEVA	ATION 530.1					
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	PL 10 20 Unconfined	0 4	NOTES & TEST RESULTS
530.1	0.0		Brown mottled silty clay, trace fine sand, very stiff, medium plasticity, wet CL Brown at 8.0'	SS-2 2.0-4.0 24"R SS-3 4.0-6.0 24"R	5554 3457		3 ** 28.0	3T-4: Dry Dens. = 99pcf K = 4.7 E8cm/s
520.6	9.5		Gray silty clay, trace fine sand, medium stiff to stiff, medium to high plasticity, wet	SS-5AB 8.0-10.0 24"R SS-6 10.0-12.0 24"R	2 4 5 6 1 2 1 1	*	* 33.5	5.4 Soft clay from 10.5' to 11.0'.
516.1			Dark gray silty clay, trace fine sand, soft to medium stiff, medium plasticity, wet CL	SS-8 14.0-16.0 24"R SS-9 16.0-18.0 24"R 3T-10 18.0-20.0 24"R	1 1 1 1 1 WOH 1 1 2	1 1	29:1 OA	SS-8: LL = 32 PL = 20 PI = 12 Gravel = 0% Sand = 8% Silt or Clay = 92%
510.1	20.0	VIIIA			<u></u>			

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD

DRILLING EQUIPMENT

4-1/4" I.D. HSA CME-55/ATV

DRILLING STARTED 7/23/92 ENDED 7/23/92

REMARKS

WOH = Weight of Hammer.

WATER LEVEL (ft.)

∑ 31.0' during drilling.

 ∇

 ∇

BORING NUMBER

B-4

SHEET 2 OF 2

CLIENT

LOCATION

City of Springfield CWLP PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B

N 5,488.2 E 2,060.4

LOGGED BY KRR

GROUND ELEVATION 530.1

GROL	IND E	LEV	ATION 530.1				
Z	_			SAMPLE		Water Content	
ELEVATION	БЕРТН (FT)	4	SOIL/ROCK	TYPE & NO.	100	PL LL LL	NOTES
\ \{\{\}\}	王	STRATA		DEPTH (FT)	BLOW	Unconfined Compressive	- &
) À	<u> </u>	5	DESCRIPTION	RECOVERY(IN)	165	Strength (TSF) *	TEST RESULTS
				NECOVERT (IIV)	필있	1 2 3 4 5	
510.1	20.0		Dark gray silty clay, trace fine sand, stiff,	SS-11	1		
			medium plasticity, wet	20.0-22.0	2	* 21.1	
	1		CL	24"R	1	* P	
					1		
				SS-12	2		
				22.0-24.0	2		
				24"R	3	18/9	
					4		
505.6	24.5			SS-13	1		
			Gray clayey fine sand, some silt, very	24.0-26.0	2	19.7	
		1//	loose to loose, poorly graded, moist to	24"R	1	1 1 9 1 1	
		1//	saturated		'		
		1//	sc	SS-14	1		SS-14:
		1//		26.0-28.0	3	1 17 1	Gravel = 0%
				24"R	2	157	Sand = 56%
		1//			2		Silt or Clay = 44%
				66.45	١.		
		1//		SS-15 28.0-30.0	1 1		
		1//		24"R	2	19.6	
					2	1 1	
		1//					
				SS-16	1		
		1//		30.0-32.0	1	20.4	
		1//		24"R	1	1 9 1 1	Water level at
498.1	32.0				'		31.0' during
100.1	02.0	7.7	Gray coarse to fine sand, trace silt, trace	SS-17AB	8		drilling.
			fine gravel, medium dense, poorly	32.0-34.0	10	14/5	Water level was
4066	22 5		graded, saturated	24"R	13	1 1 7 1 1 1	observed to rise rapidly after
450.0	33.5	<u>'</u>	SP	-	126	6	retrieving SS-17.
			Gray siltstone/shale	SS-18	82		Blow-in at 34.0'
495.6	34.5		Follow Review on OA 57	34.0-34.5	100+	1 1 1 1 1	
			End or Boring at 34.5'.	0"R	1"	1 1 1 1 1	Water level within
					1		augers at 6.0' one hour after
							completion of
							drilling.
		1					
							Borehole was
					1		termie grouted
					1		using Volclay
							grout.

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4-1/4" I.D. HSA DRILLING EQUIPMENT CME-55/ATV DRILLING STARTED 7/23/92 ENDED 7/23/92

REMARKS WOH = Weight of Hammer

WATER LEVEL (ft.) □ 31.0′ during drilling $\underline{\underline{\mathbf{v}}}$

BORING NUMBER B-5 SHEET 1 OF 2 CLIENT City of Springfield CWLP PATRICK ENGINEERING INC. PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B N 5,204.3 E 2,049.3 LOCATION LOGGED BY KRR GROUND ELEVATION 529.5 Water Content PL []-----LL ELEVATION FT SAMPLE **NOTES** SOIL/ROCK STRATA 20 30 TYPE & NO. DEPTH & Unconfined Compressive DEPTH (FT) DESCRIPTION **TEST RESULTS** Strength (TSF) 米 RECOVERY(IN) 529.5 0.0 AU-1 Brown silty clay, trace coarse to fine sand, soft to very stiff, low to medium 0.0-2.0 3.4 Q plasticity, moist to wet CL SS-2 2.0-4.0 3 13.5 Q 12"R 4 4 Mottled brown from 4.0' SS-3 3 4.0-6.0 2 25.3 18"R 4 3 SS-4 3 6.0-8.0 4 2′.9 O 20"R 4 * 4 SS-5 2 8.0-10.0 1 24.9 24"R 2 2 Little fine sand at 9.5' SS-6 2 10.0-12.0 2 20"R 2 * 2 517.2 12.3 SS-7 2 Gray silty clay, trace fine sand, medium 12.0-14.0 1 28,3 stiff, medium plasticity, wet 22"R 1 * CL 3T-8 14.0-16.0 514.5 15.0 24"R Gray fine sand, trace coarse to medium Water level at sand, trace silt, very loose, poorly 14.0' during graded, saturated drilling. SS-9AB 16.0-18.0 2 30.3 512.5 17.0 24"R 1 * Gray silty clay, trace fine sand, soft, medium plasticity, wet CL SS-10 18.0-20.0 1 25′.8 O 24"R 1 Ж 509.5 20.0 REMARKS DRILLING CONTRACTOR Patrick Drilling WATER LEVEL (ft.) **DRILLING METHOD** 6-1/4" I.D. HSA 14.0′ during drilling CME-55/ATV ▼ 6.8′ after drilling DRILLING EQUIPMENT DRILLING STARTED 7/24/92 ENDED 7/24/92

BORING NUMBER

B-5

SHEET 2 OF 2

CLIENT

LOCATION

City of Springfield CWLP PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B N 5,204.3 E 2,049.3

LOGGED BY KRR

GROU			TION 529.5				
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	Water Content PL	TEST RESULTS
509.5 507.5			Gray silty clay, trace fine sand, stiff, medium plasticity, wet CL	SS-11 20.0-22.0 24"R	3 2 2 2	* 26.4 O	
			Gray clayey silt to silty clay, little fine sand, stiff, low plasticity, moist to wet CL-ML/CL	SS-12 22.0-24.0 24"R	1 2 3 2	* O	
504.3	25.2		Gray clayey sand, some silt, loose, poorly graded, saturated	SS-13AB 24.0-26.0 24"R	2 2 3 2	*20.6	
			SC Trace coarse to medium sand at 27.0'	SS-14 26.0-28.0 24"R	2 2 3 4		
501.0	28.5		Gray coarse to fine sand, little to some silt, trace fine gravel, loose to medium dense, poorly graded, saturated	SS-15 28.0-30.0 24"R	3 4 4 6		
497.5	32.0		SP	SS-16 30.0-32.0 24"R	3 3 4 4		
496.0			Gray fine sand, trace silt, loose to dense, poorly graded, saturated SP Gray shale, massive, good	SS-17 32.0-34.0 24"R	4 14 45 20/4	10'.2	Water level at 6.8' immediately after drilling prior to coring.
							Auger refusal at 34.0'. Changed to rock coring. Could not core from 34.0' to 37.0' due to problems with core barrel. RQD = 80%
490.5	39.0		End of Boring at 39.0'.	PQ-18 37.0-39.0 24"R			Borehole was tremie grouted using Volclay immediately after drilling.
			and of boiling at color.				

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 6-1/4" I.D. HSA DRILLING EQUIPMENT CME-55/ATV DRILLING STARTED 7/24/92 ENDED 7/24/92 REMARKS

WATER LEVEL (ft.)

□ 14.0′ during drilling

▼ 6.8′ after drilling

BORING NUMBER

B-6

SHEET 1 OF 2

CLIENT

PROJECT & NO.

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B N 5,072.9 E 2,588.6

LOGGED BY KRR

GROU	IND ELE	V.A	ATION 530.8								
ELEVATION		SIRAIA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	1 1	onfine	d Com			TES & ESULTS
530.8	0.0		Brown silty clay, trace coarse to fine sand, stiff, low plasticity, moist CL	SS-2 2.0-4.0 10"R	3 4 4 4		18.1				
020.0			Dark gray silty clay, trace coarse to fine sand, stiff, medium plasticity, wet CL	SS-3 4.0-6.0 10"R SS-4 6.0-8.0 24"R	1 3 4 5 2 2 2 2 3		*	8 8 8 			
521.8	9.0		Brown silty clay, trace to little fine sand, soft to medium stiff, medium plasticity, wet CL Lenses of fine sand in SS-6	3T-5 8.0-10.0 20"R SS-6 10.0-12.0 24"R		*	20	.88			
514.8	16.0		Lenses of fine sand in SS-7	SS-7 12.0-14.0 24"R SS-8 14.0-16.0 24"R	1 2 1 1 WOH 1 1 2	*		26.4 25.0 25.0			
510.8			Gray silty clay, trace coarse to fine sand, soft, low to medium plasticity, wet CL	SS-9 16.0-18.0 24"R SS-10 18.0-20.0 24"R	WOH 1 1 1 WOH 1 1 2	*	2	29.	3	SS-10: LL = 25 PL = 20 PI = 5	
DBILL		NITI	DACTOR Potrick Drilling	IADKC			T				

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D. HSA.
DRILLING EQUIPMENT CME-55/ATV
DRILLING STARTED 8/3/92 ENDED 8/3/92

REMARKS
WOH = Weight of Hammer

BORING NUMBER

B-6

SHEET 2 OF 2

CLIENT

PROJECT & NO. LOCATION

City of Springfield CWLP

FGDS Landfill - Hydrogeo Invest. - 496B N 5,072.9 E 2,588.6

LOGGED BY KRR

GROU	ND E	LEVA	ATION 530.8								-
Z	F			SAMPLE		PI (Wate ∃	er Cont	ent	LL	
Ĕ	(FT)	<	SOIL/ROCK	TYPE & NO.	S	1	0 20	30	<u>∕</u> ∆	50	
×	Ė	\\[\]	DESCRIPTION	DEPTH (FT)	3×	Un	confine	d Com	pressive		&
ELEVATION	DEPTH	STRATA		RECOVERY(IN)	BLOW		Strer	ngth (T	SF) *	5	TEST RESULTS
510.8			Gray silty clay, trace coarse to fine sand,	SS-11	WOH		i i	- $$	- i -		PI = 5
			soft, low to medium plasticity, wet, fill	20.0-22.0	1			24.4			
			CL	24"R	1	*		24.4			
					1			1			
508.3	22.5			SS-12	wон			!			Water level at
000.0	22.0		Gray clayey silt to clayey sand, very	1 2 2 2 2	wон		20	.3			22.0' during
			loose, poorly graded, saturated	24"R	1 2		1	>			drilling.
			CL-ML/SC		2			'			
				SS-13	1			',			
				24.0-26.0	1			27.			
				24"R	1			Ŷ			
				SS-14	1			í			SS-14
				26.0-28.0 24"R	1 1			24'.6			Gravel = 0%
				2111	1			7			Sand = 44%
								1			Silt or clay = 56%
				SS-15 28.0-30.0	WOH 1			i			one or only
				24"R	1		2	1.2			
					1			1			
500.8	30.0		Gray fine sand, trace coarse to medium	66.16	1			1			
			sand, trace fine gravel, very loose, poorly	SS-16 30.0-32.0	1			0+0			
			graded, saturated	24"R	1			25.6			
498.8	22.0		SP		1			/			
498.8	32.0		Gray coarse to fine sand, trace to little	SS-17	10		/				Blow-in at 32.0'.
			coarse to fine gravel, trace silt, medium	32.0-34.0	16	8.4	1				Biow in de oz.o.
			dense to dense, well graded, saturated	24"R	15	Ö	1				
			SW/SW-SM		15		,				
496.3	34.5			SS-18	6		\ \			*	
			Gray silty clay to clay, hard, medium to	34.0-36.0	8		15.9		1		
			high plasticity, moist to dry	24"R	20		9				
			CL/CH		71		i				
				SS-19	40		/				Hard drilling.
				36.0-38.0	62	8.					Water level at 9.0'
493.3	37.5			14"R	100+		1				after drilling.
492.8	38.0		Gray shale] _						Borehole was
			End of Boring at 38.0'.								tremie grouted using Volclay grout
											immediately after
											drilling.

DRILLING CONTRACTOR Patrick Drilling

CME-55/ATV

DRILLING METHOD DRILLING EQUIPMENT 4-1/4" I.D. HSA.

DRILLING STARTED 8/3/92

ENDED 8/3/92

REMARKS

WOH = Weight of Hammer.

WATER LEVEL (ft.)

22.0' during drilling.

▼ 9.0' after drilling.

<u>V</u>

BORING NUMBER

B-7

SHEET

CLIENT

LOCATION

City of Springfield CWLP

PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B N 4,743.9 E 2,684.2

LOGGED BY KRR

DRILLING STARTED 8/5/92

ENDED 8/5/92

GROU	ND E	LEV	ATION 523.3						
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	10	Water Conf 20 30 confined Com Strength (T		NOTES & TEST RESULTS
523.3 522.1	0.0		Brownish-gray to brown silty clay, trace coarse to fine sand, trace roots, very soft, medium plasticity, wet, fill	AU-1 0.0-2.0	OB		25.9	4 5	
			Gray silty clay, trace to little fine sand, very soft, medium plasticity, wet, fill	SS-2AB 2.0-4.0 24"R	мон	*	27.3		
519.8 518.3	3.5 5.0		Gray clayey fine sand, little silt, very loose, poorly graded, saturated, fill SC	4.0-6.0	мон		22/8	36.7 D	
			Gray silty clay, trace to little fine sand, very soft, mucky, medium plasticity, wet, fill.	SS-4 6.0-8.0 24"R	мон		24.4 Q	, ,	SS-4
					WОН		28.	1	Gravel = 0% Sand = 33% Silt or clay = 67%
			Lenses of fine sand and wood fragments in SS-6.	10.0-12.0	WOH WOH WOH 6		29	.9	
510.8	12.5		Gray silty clay, trace to little fine sand, stiff, medium plasticity, wet		WOH WOH 2 2	1 1	24.1		Water level at 12.0' during drilling.
508.3	15.0		Gray clayey silt and fine sand, loose,		WOH WOH 2 3	1	21:0		
			nonplastic, saturated CL-ML	SS-9 16.0-18.0 24"R	2 2 2 2		18 ¹ .2	**	SS-9 Gravel = 0% Sand = 38% Silt or clay = 62%
503.3	20.0			SS-10 18.0-20.0 24"R	1 2 1 2		20.2		
DRILL	ING I	METH	HOD 6-1/4" I.D. HSA. WO	MARKS H = Weight nmer.	of			LEVEL (ft.	

BORING NUMBER

B-7

SHEET 2 OF 2

CLIENT PROJECT & NO.

LOCATION

City of Springfield CWLP

FGDS Landfill-Hydrogeo. Invest. - 496B N 4,743.9 E 2,684.2

LOGGED BY **KRR**

GROU	ND E	LEV	ATION 523.3				
ELEVATION	БЕРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	ထပ	PL	NOTES & TEST RESULTS
503.3 499.8			Gray clayey silt and fine sand, loose, nonplastic, saturated CL-ML/SC Gray fine sand, trace silt, medium dense to dense, poorly graded, saturated SP	SS-11 20.0-22.0 24"R 3T-12 22.0-24.0 20"R SS-13 24.0-26.0 24"R	10 14 14 22	21.7	Gray fine sand at bottom of Shelby tube. Artesian conditions.
496.8	26.5		Gray coarse to fine sand, trace coarse to fine gravel, trace silt, loose, well graded, saturated	SS-14 26.0-28.0 24"R	wон		
494.8	28.5		Gray shale, massive, good	SS-15AB 28.0-30.0 16"R PQ-16 30.0-35.0	10 52 100+ /*4	2.3	Drilled to 30.0' then, switched to PQ coring.
488.3	35.0		End of Boring at 35.0'.	60*R			RQD = 80%
			End of boring at 35.0 .				Borehole was grouted using Volclay grout after completion of drilling.
						1	

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 6-1/4" I.D. HSA. DRILLING EQUIPMENT CME-55/ATV DRILLING STARTED 8/5/92 ENDED 8/5/92

REMARKS WOH = Weight of Hammer

WATER LEVEL (ft.) □ 12.0′ during drilling. $\underline{\underline{\mathbf{v}}}$

 $\overline{\mathbb{A}}$

BORING NUMBER

B-8

SHEET 1 OF 2

CLIENT

PROJECT & NO.

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B N 4,565.9 E 2,706.2

LOGGED BY KRR

GROUND ELEVATION 523.8

GROU	JND E	ELEV	ATION 523.8							
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	PL [Water Cor 3	0 40	e 50	& TEST RESULTS
	20.0		Brown silty clay, trace fine sand, soft, medium plasticity, wet CL Fine sand lenses in SS-4 Trace coarse to fine sand and trace coal in SS-5 Gray and clive silty clay to clay, trace fine sand very soft to medium stiff, medium to high plasticity, wet CL/CH Mucky at 16.0'	SS-2 2.0-4.0 24"R 3T-3 4.0-6.0 24"R SS-4 6.0-8.0 24"R SS-5 8.0-10.0 24"R SS-6 10.0-12.0 24"R SS-8 14.0-16.0 24"R SS-9 16.0-18.0 24"R SS-9 16.0-18.0 24"R	1 1 1 2 2 3 1 2 2 3 3 3 4 1 1 1 1 3 2 1 1 1 1 WOHWOHWOHWOH	*	21.0	34.2	5 40 40	2.2
555.6	20.0	XIIII								

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D. HSA
DRILLING EQUIPMENT CME 55/ATV
DRILLING STARTED 8/15/92 ENDED 8/15/92

REMARKS
WOH = Weight of Hammer

BORING NUMBER

SHEET 2 OF 2

CLIENT

LOCATION

City of Springfield CWLP PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B N 4,565.9 E 2,706.2

LOGGED BY KRR

GROUND	ELEVA	ATION 523.8								
ELEVATION DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	PL10	onfine	ed Con		0 50 Ve	NOTES & TEST RESULTS
503.8 20.0		Gray clay, trace silt, very soft, medium to high plasticity, wet	SS-11 20.0-22.0 24"R	WOH WOH WOH		2		3	58	.4
501.8 22.6 501.2 22.6 500.6 23.2	6	Gray silty clay, trace fine sand, soft, medium plasticity, wet CL Gray fine sand, little silt, medium to dense, poorly graded, saturated SM Gray coarse to fine sand, trace coarse to fine gravel, trace to little silt, medium	SS-12ABC 22.0-24.0 24"R SS-13 24.0-26.0 24"R	WOH 5 6 15 3 11 18 22	*	2.6 ~ Q,		34.5	′	
494.8 29.C	0	dense to dense, well graded, saturated SW-SM/SM	SS-14 26.0-28.0 24"R SS-15AB 28.0-30.0 24"R	6 9 19 17 5 12 23 100+	11	2.2				Artesian conditions.
493.8 30.0	0	End of Boring at 30.0'								Borehole was tremie grouted using Volclay grout immediately after completion of drilling.

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4-1/4" I.D. HSA DRILLING EQUIPMENT CME 55/ATV DRILLING STARTED 8/15/92 ENDED 8/15/92

REMARKS WOH = Weight of Hammer

WATER LEVEL (ft.) $\underline{\underline{\mathbf{v}}}$

BORING NUMBER

B-9

1 OF 2 SHEET

CLIENT

PROJECT & NO. LOCATION

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B

N 4,690.7 E 2,506.0

LOGGED BY KRR

GROU	ND E	LEVA	ATION 522.7						
ELEVATION	ОЕРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	10	Water Conter	- ∆ LL 40 50 ressive	NOTES & TEST RESULTS
522.7	0.0		Brown silty clay, trace fine sand, soft, medium plasticity, wet CL	SS-2 2.0-4.0 24"R	1 1 1 2 WOH	*	19.8 25.6		
517.7 516.7	5.0 6.0		Brown silty clay to clayey fine sand, soft, low plasticity, wet	24"R	1 2		24.6 Q 1 26.1		
515.7	7.0		Brown and tan silty clay trace coarse to fine sand, soft, medium plasticity, wet CL Gray silty clay to clayey silt, trace fine sand, medium soft, medium plasticity,	6.0-8.0 - 24*R	3 2 4	* *	27.7 Q		
513.9			CL Gray fine sand, some silt, wood	SS-5 8.0-10.0 24"R	WOH 1 1 2			45.9	
512.7	10.0		fragments present, very loose, poorly graded, saturated SM Gray clayey sand, little silt, very loose, poorly graded, saturated	SS-6 10.0-12.0 24"R	WOH 1 1 2		22.4		
510.3	12.4		Trace shells and fine gravel at 12.0' Gray silty clay, trace to little fine sand, soft, medium plasticity, wet CL	SS-7 12.0-14.0 24"R	WOH 1 1 1	*	26.2 Q		
				14.0-16.0 24"R	WOH WOH WOH	*	24 ¹ .6 Q		SS-8: CEC = 10.7 meq/100gm
				3T-9 16.0-18.0 24"R			1 1 1		
			Fine sand lenses	18.0-20.0 24"R	WOH WOH WOH	*	22.9		
DRILL	ING C	CONT	RACTOR Patrick Drilling REN	/ARKS			WATERIE	-\/FI (f+	

DRILLING CONTRACTOR Patrick Drilling

DRILLING METHOD

4-1/4" I.D. HSA

DRILLING EQUIPMENT

CME 55/ATV

DRILLING STARTED 8/14/92 ENDED 8/14/92

REMARKS

WOH = Weight of

Hammer

WATER LEVEL (ft.)

∑ 9.0′ after drilling

 ∇

 $\bar{\underline{\mathbb{A}}}$

BORING NUMBER

B-9

SHEET 2 OF 2

CLIENT

PROJECT & NO.

City of Springfield CWLP

FGDS Landfill-Hydrogeo. Invest. - 496B N 4,690.7 E 2,506.0

LOGGED BY KRR

GROUND ELEVATION 522.7 Water Content ELEVATION F SAMPLE LL **NOTES** SOIL/ROCK BLOW TYPE & NO. DEPTH Unconfined Compressive DESCRIPTION DEPTH (FT) **TEST RESULTS** Strength (TSF) * RECOVERY(IN) 582:3 38:8 Gray silty clay, some fine sand, soft, SS-11 WOH medium plasticity, wet 20.0-22.0 19.8 CL 24"R 1 2 Gray clayey fine sand and silt, very loose, poorly graded, saturated SS-12 WOH SC 22.0-24.0 WOH 24"R Wood fragments and trace organics 2 present in SS-12 SS-13 WOH 498.2 24.5 24.0-26.0 WOH Gray coarse to fine sand, trace coarse to 24"R 13 fine gravel, trace silt, medium dense, well 5 graded, saturated SW-SM SS-14 3 26.0-28.0 495.7 27.0 11.8 24"R 40 Gray shale 73 494.7 28.0 End of Boring at 28.0' Water level at 9.0' immediately after drilling. Borehole was tremie grouted immediately after completion of drilling.

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D. HSA
DRILLING EQUIPMENT CME 55/ATV
DRILLING STARTED 8/14/92 ENDED 8/14/92

REMARKS
WOH = Weight of
Hammer

WATER LEVEL (ft.)

▼ 9.0' after drilling

▼

BORING NUMBER

LOCATION

B-10

SHEET 1 OF 2

CLIENT

City of Springfield CWLP PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B N 4,589.2 E 2,463.3

LOGGED BY KRR

GROUND ELEVATION 523.6									
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	10	Water Content 3	e	NOTES & TEST RESULTS
523.6 516.1	7.5		Gray silty clay, trace fine sand, soft, medium plasticity, wet CL Gray silty clay, trace fine sand, soft, medium plasticity, wet CL 1" lense of fine sand at 9.0' Mucky at 14.0'	SS-2 2.0-4.0 24"R SS-3 4.0-6.0 24"R SS-5 8.0-10.0 24"R SS-6 10.0-12.0 24"R SS-7 12.0-14.0 24"R SS-8 14.0-16.0 24"R SS-9 16.0-18.0 24"R	2 2 2 2 1 2 3 3 WOH 1 2 2 1 1 1 1 1 1 WOH WOH 1 WOH 1 1 2 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1	* * *	24.3 24.7 25.7 25.1 27.2 24.1 28.5 28.8		Water level at 12.0' during drilling.

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4-1/4" I.D. HSA DRILLING EQUIPMENT CME 55/ATV DRILLING STARTED 8/15/92 ENDED 8/15/92 REMARKS WATER LEVEL (ft.) WOH = Weight of Hammer Ā Y

BORING NUMBER

B-10

SHEET 2 OF 2

CLIENT

PROJECT & NO. LOCATION

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B

N 4,589.2 E 2,463.3

LOGGED BY KRR

GROUND ELEVATION 523.6									
ELEVATION	ET			SAMPLE		PL	Water Co □		NOTEC
AT	I	TA	SOIL/ROCK	TYPE & NO.	TS	1	10 20	30 40 50	NOTES &
EV.	БЕРТН (FT)	STRATA	DESCRIPTION	DEPTH (FT) RECOVERY(IN)	BLOW	Ur	Strength	mpressive (TSF) *	TEST RESULTS
							1 2	3 4 5	
503.6	20.0		Gray silty clay, trace to little fine sand, soft, medium plasticity, wet	SS-11 20.0-22.0	WOH 1				
			CL	24"R	1	*	23.4		
			•		2		1		
				SS-12	WOH		;		
				22.0-24.0	1		20.8		
				24"R	1 3	*	þ		
400.4	24.0				3				
499.4	24.2		Gray coarse to fine sand, trace coarse to	SS-13AB	6				
			fine gravel, trace silt, loose to medium	24.0-26.0 24"R	7 4		20.0		
498.1	25.5		dense, well graded, saturated SW-SM/SM /]	4		1 /		Artesian conditions
			Gray shale, soft	SS-14	١.,		/		immediately after drilling.
4000	07.0		Hard at 26.5'	26.0-27.0	11 43		4		
496.6	27.0		End of Boring 27.0'	13"R	100+	· '	0,5		Borehole was
			2 5. 55		/1"				tremie grouted
									using Volclay grout
									immediately after completion of
									drilling.
		1							
							250		
1									

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4-1/4" I.D. HSA DRILLING EQUIPMENT CME 55/ATV DRILLING STARTED 8/15/92 ENDED 8/15/92 **REMARKS** WOH = Weight of Hammer

WATER LEVEL (ft.) $\overline{\mathbf{v}}$

BORING NUMBER
CLIENT

B-11 S
City of Springfield CWLP

SHEET 1 OF 2

PROJECT & NO. LOCATION

FGDS Landfill-Hydrogeo. Invest. - 496B N 4,775.2 E 2,391.2

LOGGED BY KRR

GROUND ELEVATION 523.6

GROL	IND E	LEV	ATION 523.6					
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	1	Water Content □ LL 0 20 30 40 50 10 Confined Compressive Strength (TSF) #	NOTES & TEST RESULTS
523.6			Brown silty clay, trace fine sand, soft to stiff, medium plasticity, wet CL	AU-1 0.0-2.0	80		21.4	5
			Mottled at 2.0'	SS-2 2.0-4.0 24"R	2 1 2 3	*	21'.9	
			Tan at 4,0'	SS-3 4.0-6.0 24"R	2 2 2 3	*	24.0	
				3T-4 6.0-8.0 22"R			* '	
515.2	8.4		Gray silty clay, trace fine sand, soft, medium plasticity, moist CL	SS-5 8.0-10.0 24*R	1 1 1 2	*	29.3	
	÷			SS-6 10.0-12.0 24*R	1 2 2 2	*	26.8 Q	
				3T-7 12.0-14.0 22"R		*		
				SS-8 14.0-16.0 24"R	WOH 1 1 1	*	24.7 Q	
				SS-9 16.0-18.0 24"R	WOH 1 2 2	*	23.7	Water level at 16.0' during drilling.
			Fine sand pockets in SS-10	SS-10 18.0-20.0 24*R	WOH 1 1 2	*	21.7	

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D. HSA
DRILLING EQUIPMENT CME 55/ATV
DRILLING STARTED 8/14/92 ENDED 8/14/92

REMARKS WOH = Weight of Hammer

WATER LEVEL (ft.)

▼ 16.0' during drilling.
▼

BORING NUMBER

B-11

SHEET 2 OF 2

CLIENT

LOCATION

City of Springfield CWLP

PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B N 4,775.2 E 2,391.2

LOGGED BY KRR

GROUN	ID ELEV	ATION 523.6			
	DEPTH (FT) STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	Water Content PL
	20.0	Gray silty clay, trace to little fine sand, soft, medium plasticity, wet CL	SS-11 20.0-22.0 24"R	1 2 2 3	* 18.7 * O
500.4 2	23.2	Gray fine sand and silty, loose to medium dense, poorly graded, saturated SM Gray coarse to fine sand, little coarse to fine gravel, trace silt, medium dense, well graded, saturated SW-SM/SM Clayey at 26.0'	SS-12AB 22.0-24.0 24"R SS-13 24.0-26.0 24"R SS-14 26.0-28.0 24"R	1 3 8 11 14 13 15 15 6 16 12 8	20.1 11.2 12.7 0
494.4 2	29.2	Gray shale, soft End of Boring at 29.2'	28.0-29.2 14"R	8 18 100+ /2"	ground surface

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4-1/4" I.D. HSA DRILLING EQUIPMENT CME 55/ATV DRILLING STARTED 8/14/92 ENDED 8/14/92

REMARKS WOH = Weight of Hammer

WATER LEVEL (ft.) □ 16.0′ during drilling. $\underline{\Psi}$

BORING NUMBER CLIENT

LOCATION

B-12

SHEET 1 OF 2

City of Springfield CWLP

PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B N 4,924.2 E 2,210.8

LOGGED BY **KRR**

GROU	IND E	LEV	ATION 524.9					
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	PL [1 Un	nconfined Compressive Strength (TSF) **	NOTES & TEST RESULTS
524.9			Brown silty clay, trace fine sand, soft, medium plasticity, wet CL	AU-1 0.0-2.0			20.7 28.1	
522.6 521.9			Brown clayey silt to silty sand, loose, poorly graded, saturated CL-ML/SM	SS-2AB 2.0-4.0 24"R	1 2 1 2	*	26.3	Water level at 3.0'
518.9			Brown and tan silty clay, trace to little fine sand, soft, medium plasticity, wet CL	SS-3 4.0-6.0 22"R	1 2 2 2	*	27.6	during drilling.
517.4			Brown and tan clayey fine sand, little silt, very loose, poorly graded, saturated	SS-4 6.0-8.0 12"R	1 1 2 3		23'.3	
			Gray silty clay, trace fine sand, soft to medium stiff, medium plasticity, wet CL Lenses of fine sand in SS-5	SS-5 8.0-10.0 22"R	1 1 1 2	*	28.5	
			Trace wood fragments in SS-6	SS-6 10.0-12.0 24*R	1 2 2 2	*	30.1	
			e e	3T-7 12.0-14.0 24"R		*		
				SS-8 14.0-16.0 24"R	1 1 1 1	*	24.7	
				SS-9 16.0-18.0 24"R	1 2 3	*	26.4 1	
				SS-10 18.0-20.0 24"R	WOH 1 1 1	*	25.4	

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4-1/4" I.D. DRILLING EQUIPMENT CME 55/ATV DRILLING STARTED 8/14/92 ENDED 8/14/92 REMARKS WOH = Weight of Hammer

WATER LEVEL (ft.)

∑ 3.0′ during drilling

▼ 4.3′ immediately after drilling

BORING NUMBER

B-12

SHEET 2 OF 2

CLIENT

PROJECT & NO. LOCATION

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B

N 4,924.2 E 2,210.8

LOGGED BY KRR

GROUND ELEVATION 524.9

GROUND B	ELEV	ATION 524.9						
ELEVATION DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	PL 🖂 🗕	ater Content	∆ LL 40 50 sive	NOTES & TEST RESULTS
504.9 20.0		Gray, silty clay, trace fine sand, soft, medium plasticity, wet CL Little to some fine sand from 23.0'	SS-11 20.0-22.0 24"R SS-12 22.0-24.0 24"R	WOH 1 1 2 WOH 1	*	23.1 Q 1 1 22.0	4 5	
500.4 24.5		Gray fine sand, some silt, very loose, poorly graded, saturated	SS-13 24.0-26.0 24"R	WOH WOH 1 2		23.7		
		Gray coarse to fine sand, trace to little coarse to fine gravel, trace silt, loose to medium dense, well graded, saturated SW-SM	SS-14 26.0-28.0 24"R SS-15 28.0-30.0	2 3 3 2 2 3		8.7		
494.9 30.0		Gray shale, soft	24"R SS-16	11 11 22	15 C			Water level at 4.3'
493.9 31.0		End of Boring at 31.0'	30.0-31.0 12"R	100+	16	1 1		immediately after drilling.
								Borehole was tremie grouted using Volclay grout immediately after completion of drilling.

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D.
DRILLING EQUIPMENT CME 55/ATV
DRILLING STARTED 8/14/92 ENDED 8/14/92

REMARKS
WOH = Weight of Hammer

WATER LEVEL (ft.)

▼ 4.3' immediately after drilling ▼

BORING NUMBER

B-13

SHEET 1 OF 2

CLIENT

LOCATION

PROJECT & NO.

City of Springfield CWLP

FGDS Landfill-Hydrogeo. Invest. - 496B N 4,524.7 E 2,275.9

LOGGED BY KRR

TON FOO

GROUND ELEVATION 523.8 Water Content F ELEVATION SAMPLE LL -----**NOTES** STRATA SOIL/ROCK 20 TYPE & NO. 30 50 DEPTH Unconfined Compressive & **DESCRIPTION** DEPTH (FT) **TEST RESULTS** Strength (TSF) 米 RECOVERY(IN) 523.8 Brown silty clay, trace coarse to fine AU-1 sand, soft to medium stiff, medium 0.0-2.0 22.0 plasticity, wet CL Brown and tan from 2.0' * SS-2 1 2.0-4.0 2 26.0 24"R 2 3 * SS-3 2 4.0-6.0 1 24.9 24'R 2 Little fine sand in SS-3 2 * 3T-4 Water level at 7.0' 6.0-8.0 516.8 during drilling. 24"R Gray silty clay, trace coarse to fine sand, medium stiff, medium plasticity, wet * SS-5 8.0-10.0 2 24.9 24"R 2 2 SS-6 WOH 10.0-12.0 30.5 24"R 2 3 * 3T-7 12.0-14.0 24"R 509.8 14.0 * Gray silty clay, trace to little fine sand, SS-8 WOH very soft to soft, medium plasticity, wet 14.0-16.0 2,5 Q 24"R 1 1 SS-9 WOH 16.0-18.0 WOH 24"R WOH WOH SS-10 WOH 18.0-20.0 WOH 24.6 24"R 1

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 6-1/4" I.D. HSA.
DRILLING EQUIPMENT CME-55/ATV
DRILLING STARTED 8/4/92 ENDED 8/4/92

503.8 20.0

REMARKS
WOH = Weight of Hammer

WATER LEVEL (ft.)

▼ 7.0' during drilling.

Ā Ā

BORING NUMBER CLIENT

B-13

SHEET 2 OF 2

PROJECT & NO. LOCATION

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B N 4,524.7 E 2,275.9

LOGGED BY KRR

GROL	IND E	LEV	ATION 523.8							
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	00		0 2	er Content	40 50 ssive	& TEST RESULTS
503.8	20.0		Gray silty clay, trace little fine sand, very soft to soft, medium plasticity, wet CL	SS-11 20.0-22.0 24"R SS-12 22.0-24.0 24"R	WOH WOH WOH 1 1	*		1.9		
499.3			Gray clayey fine sand, some silt, very loose, poorly graded, saturated	SS-13 24.0-26.0 24"R	WOH WOH 1 2		19 C	3		
494.5			Gray coarse to fine sand, little coarse to fine gravel, little silt, medium dense to dense, well graded, saturated SM Gray shale, massive, excellent	SS-14 26.0-28.0 24"R SS-15AB 28.0-30.0 24"R PQ-16 30.0-35.0 60"R	4 4 12 19 15 22 42 58		14 ¹ 3 0 1, 7 1.5			SS-14: Gravel = 16% Sand = 65% Silt or clay = 19% Artesian conditions. Water found to overflow. Auger refusal at 30.0'. Switched to PQ coring. RQD = 100%
488.8	35.0		End of Boring at 35.0'							Borehole was tremie grouted using Volclay grout immediately after completion of drilling.
						-				

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 6-1/4" I.D. HSA. DRILLING EQUIPMENT CME-55/ATV DRILLING STARTED 8/4/92 ENDED 8/4/92

REMARKS WOH = Weight of Hammer

WATER LEVEL (ft.) ▼ 7.0′ during drilling. <u>V</u>

Ā

BORING NUMBER B-14 SHEET OF 2 1 CLIENT City of Springfield CWLP PATRICK ENGINEERING INC. PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B LOCATION N 3,763.9 E 2,791.1 LOGGED BY KRR **GROUND ELEVATION** 572.7 Water Content EVATION PL 🖪 LL SAMPLE ----STRATA NOTES SOIL/ROCK BLOW TYPE & NO. 30 DEPTH Unconfined Compressive DEPTH (FT) DESCRIPTION Strength (TSF) 米 TEST RESULTS RECOVERY(IN) 딥 572.7 Brown silty clay, trace fine sand, very AU-1 stiff, low to medium plasticity, moist to 0.0-2.0 CL SS-2 3 2.0-4.0 4 14¹.2 22"R 4 6 Trace coarse to medium sand, trace fine SS-3 gravel from 4.0' 4.0-6.0 6 20 24"R 9 11 SS-4 5 6.0-8.0 6 20.3 24"R 7 3T-5 8.0-10.0 24"R Silty sand at 10.0' **SS-6** 10.0-12.0 6 2.4 24"R 6 * Little to some sand in SS-6 SS-7 560.2 12.5 12.0-14.0 7 Dark gray to black organic silty clay, 24"R 9 trace fine sand, very stiff, medium 15 plasticity, wet OL SS-8 7 558.2 14.5 14.0-16.0 18 Coal 24"R 32 34 SS-9 22 16.0-18.0 39 18"R 50+ SS-9 driven 18" only. SS-10AB 12 18.0-20.0 10 553.7 19.0 24"R 16 Gray shale 552.7 20.0 DRILLING CONTRACTOR Patrick Drilling **REMARKS** WATER LEVEL (ft.) DRILLING METHOD 4-1/4" I.D. HSA ∇ DRILLING EQUIPMENT CME 55/ATV Ā DRILLING STARTED 8/17/92 ENDED 8/17/92

BORING NUMBER

B-14

SHEET 2 OF 2

CLIENT

LOCATION

City of Springfield CWLP

PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B N 3,763.9 E 2,791.1

LOGGED BY KRR

GROU	ND E	LEV/	ATION 572.7			
z				CAMPLE		Water Content
ELEVATION	БЕРТН (FT)	⋖	SOIL/ROCK	SAMPLE TYPE & NO.	S	PL
K	Ξ	T		DEPTH (FT)	>Z	Unconfined Compressive &
H H	EP	STRATA	DESCRIPTION	RECOVERY(IN)	BLOW	Strength (TSF) * TEST RESULTS
						1 2 3 4 5
552.7	20.0		Gray shale.	SS-11	10	
				20.0-22.0 2"R	11 15	
				2 1	24	Auger refusal of
550.7	22.0				-	22.1'. Water was
			End of Boring at 22.1'.	SS-12	100	
				22.0-22.1	+/2"	during or immediately after
				2"R		drilling.
						Borehole was
						grouted using
						Volclay grout
						immediately after completion of
						drilling.
					-	

DRILLING CONTRACTOR	Patrick Drilling
DRILLING METHOD	4-1/4" I.D. HSA
DRILLING EQUIPMENT	CME 55/ATV
DRILLING STARTED 8/17	92 FNDED 8/17/9

REMARKS	WATER LEVEL (ft.)	
	立	
	<u>v</u>	
	▼	ļ

BORING NUMBER

B-15

SHEET

CLIENT

LOCATION

PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B

City of Springfield CWLP

N 5,579.6 E 1,752.7

LOGGED BY KRR

GROUND FLEVATION 536 7

GROU	ND E	LEVA	ATION 536.7				
z	Ē			CANADIE		Water Content	
ELEVATION	БЕРТН (FT)	<	SOIL/ROCK	SAMPLE TYPE & NO.	S	PL LL LL	NOTES
×	E	STRATA	DESCRIPTION	DEPTH (FT)	BLOW	Unconfined Compressive	&
<u>—</u>	EP	TR	DESCRIPTION	RECOVERY(IN)	00	Strength (TSF) *	TEST RESULTS
100000000000000000000000000000000000000		1 1			<u></u> <u></u> <u> </u> <u> </u>	1 2 3 4 5	
536.7	0.0		Brown silty clay, trace coarse to fine	AU-1			
			sand, stiff, medium plasticity, wet CL	0.0-2.0		12.1 Q	
			CL				
				SS-2	7		
				2.0-4.0	6	26.8	
				14"R	8	* 0	
					9		
				SS-3	4		
				4.0-6.0	6	25.5	
				24"R	6	* ² 0°	
					9		
				3T-4	-		
				6.0-8.0			
				14"R			
			Brown and olive at 8.0'.	SS-5AB	2		
				8.0-10.0	2		
527.7	9.0	////	Brown fine sand, trace silt, loose, poorly	24"R	4	27.0 	Water level at 9.0'
			graded, saturated		5		during drilling.
			SP-SM/SM	66.6			caring arming.
				SS-6 10.0-12.0	WOH 2	1 !	
				18"R	2		
					2		
				SS-7A/B 12.0-14.0	WOH 2	1	
523.7	13.0			24"R	2		
			Dark gray and gray silty clay, trace organics, trace coarse to fine sand, soft,		2		
			medium plasticity, wet				
			CL/OL	SS-8AB	WOH	1 28.1	
521.7	15.0		Organics present in SS-8A.	14.0-16.0 24"R	1 2		
			Brown and olive silty clay, trace coarse	2711	5	* 25/2 * O	
			to fine sand, very stiff, low plasticity,			1 1 1 1	
520.2	16.5		moist	SS-9	5]]/]	
			Brown and olive silty clay to clayey silt,	16.0-18.0 24"R	6	17/2 \	
			trace to fine sand, hard, low plasticity,	24 N	4	*	
			moist				
			CL	SS-10AB	2	15.3	
				18.0-20.0	7		
			Changed to brown from 19.0'.	24"R	32	1 010 1 1 1	
516.7	20.0				52	Ψ	

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD

4-1/4" I.D. HSA

DRILLING EQUIPMENT CME 55/ATV

DRILLING STARTED 8/21/92 ENDED 8/21/92

REMARKS WOH = Weight of Hammer

WATER LEVEL (ft.)

V

BORING NUMBER

B-15

SHEET

CLIENT

LOCATION

City of Springfield CWLP

PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B

N 5,579.6 E 1,752.7

LOGGED BY KRR

GROUND FLEVATION 536 7

GRO	UND E	LEV	ATION 536.7							
ELEVATION	ОЕРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	m C	10	Water (20 20 confined (Strengt	30 7	40 50	TEST RESULTS
512.			End of Boring at 24.5'.	SS-11 20.0-22.0 8"R SS-12 22.0-24.0 7"R	80 100 +/2" 31 100 +/1"	7 9				Auger refusal at 24.5'. Borehole was tremie grouted using Volclay grout immediately after completion of drilling.

DRILLING CONTRACTOR Patrick Drilling

DRILLING METHOD

4-1/4" I.D. HSA CME 55/ATV

DRILLING EQUIPMENT DRILLING STARTED 8/21/92 ENDED 8/21/92 REMARKS WOH = Weight of Hammer

WATER LEVEL (ft.)

abla 9.0' during drilling.

 $\underline{\underline{\mathbf{v}}}$

 $\overline{\mathbb{A}}$

BORING NUMBER CB-1 SHEET 1 OF CLIENT City of Springfield CWLP PATRICK ENGINEERING INC. PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B LOCATION N 5,559.1 E 2,663.1 LOGGED BY KRR **GROUND ELEVATION** 527.3 Water Content ELEVATION PL G SAMPLE LL - -0- -STRATA SOIL/ROCK NOTES TYPE & NO. 20 DEPTH & DESCRIPTION DEPTH (FT) Unconfined Compressive **TEST RESULTS** Strength (TSF) * RECOVERY(IN) 527.3 AU-1 Grass and weeds Dark gray silty clay, trace coarse to fine 0.0-2.0 sand, very stiff, medium plasticity, wet, at the surface. 20.1 CL SS-2 6 2.0-4.0 4 16"R 4 5 Mottled at 4.0' SS-3 3 4.0-6.0 4 522.3 30.3 20"R 8 Dark gray organic silty clay, trace fine 15 sand, trace roots and wood fragments, soft to stiff, medium plasticity, wet, fill SS-4 6.0-8.0 1 30.2 24"R 2 * 2 3T-5 3T-5: 8.0-10.0 Dry Den. = 94pcf 29.4 24"R * qu = 0.6tsfLL = 41PL = 23SS-6 k = 1.5 E-07 cm/s10.0-12.0 2 18"R 2 * 2 SS-7ABC 1 514.5 12.8 12.0-14.0 * 1 Gray clayey fine sand, trace coarse to 24"R 2 513.8 13.5 medium sand, trace fine gravel, loose, 2 * 35.4 O poorly graded, saturated, fill 513.1 14.2 SC **SS-8** 14.0-16.0 Dark gray to black organic silty clay, 2 24"R trace coarse to fine sand, wood 1 fragments present, soft, medium 1 plasticity, wet, fill SS-9 OL 16.0-18.0 1 Dark gray clayey fine sand, trace coarse 36. 24"R 1 to medium sand, trace organics, wood fragments present, very loose, poorly 1 509.3 18.0 graded, saturated, fill SS-10AB 1 SC 18.0-20.0 1 508.3 19.0 Gray coarse to fine sand, trace silt, trace 56.2 24"R 2 organics, very loose, poorly graded, saturated, fill SP-SM 507.3 20.0 DRILLING CONTRACTOR Patrick Drilling REMARKS WATER LEVEL (ft.) **DRILLING METHOD** 4-1/4" I.D. HSA WOH = Weight of □ 17.0′ during drilling Hammer DRILLING EQUIPMENT CME-55/ATV ▼ 15.5' after drilling DRILLING STARTED 7/23/92 ENDED 7/23/92 V

BORING NUMBER

CB-1

SHEET 2 OF 2

CLIENT

PROJECT & NO. LOCATION

City of Springfield CWLP

FGDS Landfill-Hydrogeo. Invest. - 496B N 5,559.1 E 2,663.1

LOGGED BY KRR

GROUND ELEVATION 527.3

GROU	IND E	LEV	ATION 527.3					
ELEVATION	DEPTH (FT)	٩TA	SOIL/ROCK	SAMPLE TYPE & NO.	V VTS	Water Content PL ☐	50	NOTES &
507.3	100	STRATA	DESCRIPTION Dark to black organic silty clay, wood	DEPTH (FT) RECOVERY(IN) SS-11	m O	Strength (TSF) *	5	TEST RESULTS
			fragments present, soft, medium dense, wet, fill OL	20.0-22.0 24"R	1 1 2 1			
505.3	22.0		Gray fine sand, trace coarse to medium sand, little to some silt, very loose, poorly graded, saturated SP-SM/SM Gray silty sand, little clay, very loose, poorly graded, saturated	SS-12 22.0-24.0 24"R	1 2 1 2			
			SM	SS-13 24.0-26.0 24"R	1 1 2 WOH			SS-13: Gravel = 0% Sand = 69% Silt or clay = 31%
499.3	28.0			26.0-28.0 24"R	1 1 2			
			Gray fine sand, trace coarse to medium sand, trace silt, trace coarse to fine gravel, loose, poorly graded, saturated SP/SP-SM	SS-15 28.0-30.0 24"R	WOH 1 3 5			
495.3	32.0		Little to some silt, little coarse to medium sand in SS-16	SS-16 30.0-32.0 24"R	3 4 6			
495.0 494.8	32.3	••••	Gray coarse to fine sand, trace coarse to fine gravel, dense, well graded, saturated SW	SS-17 32.0-34.0	28 100/ 1"	12.9		Auger refusal at 32.5'.
			End of Boring at 32.5'.					Borehole was tremie grouted immediately after completion of drilling.

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD

DRILLING EQUIPMENT CME-55/ATV

4-1/4" I.D. HSA

DRILLING STARTED 7/23/92 ENDED 7/23/92

REMARKS

WOH = Weight of Hammer

WATER LEVEL (ft.)

 □ 17.0′ during drilling ¥ 15.5' after drilling

 ∇

BORING NUMBER

CB-2

SHEET 1 OF 2

CLIENT

PROJECT & NO.

LOCATION

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B

N 5,427.5 E 2,700.9

LOGGED BY KRR

SOIL/ROCK DESCRIPTION DE	GROU	GROUND ELEVATION 526.2									
fine sand, medium stiff, medium plasticity, wet, fill CL SS-2 2 2.0-4,0 2 2 24"R 3 3				DESCRIPTION	TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	10	3 O △ LL 20 30 40 50 confined Compressive Strength (TSF) ★	& TEST RESULTS		
sand and very soft to soft, medium plasticity, wet to saturated, fill CL 31-4 6.0-8.0 18 'R WOH 10.0-12.0 24 'R 1 2 SS-7 12.0-14.0 124 'R 2 SS-8 WOH 10.0-12.0 1 24 'R 2 SS-7 12.0-14.0 1 24 'R 2 SS-8 WOH 10.0-12.0 1 24 'R 2 SS-7 12.0-14.0 1 24 'R 2 SS-8 WOH 10.0-12.0 1 24 'R 2 SS-7 12.0-14.0 1 24 'R 2 SS-8 WOH 10.0-12.0 1 24 'R 2 SS-7 12.0-14.0 1 24 'R 2 SS-8 WOH 10.0-12.0 1 24 'R 2 ** SS-8 WOH 10.0-12.				fine sand, medium stiff, medium plasticity, wet, fill	SS-2 2.0-4.0	2	*				
SS-6 WOH 10.0-12.0 1 24 "R 1 ** SS-7 WOH 12.0-14.0 1 24 "R 2 SS-8 WOH 14.0-16.0 1 24 "R 2 ** Water level at 10.0' during drilling.				sand and very soft to soft, medium plasticity, wet to saturated, fill	4.0-6.0 24"R 3T-4 6.0-8.0 18"R	1 2 2	*	9			
SS-8 WOH 14.0-16.0 1 24"R 2 **				Trace organics at 13.0′.	24"R SS-6 10.0-12.0 24"R SS-7 12.0-14.0	1 2 WOH 1 1 2 WOH 1	*	28.2	10.0' during		
3T-9 15.018.0		8			14.0-16.0 24"R 3T-9	WOH 1 2		□- -△ ,			
16.0-18.0 20"R	506.7	19.5			20"R SS-10AB 18.0-20.0	wон	*	38.3	PL = 25 Pl = 9 Dry dens. = 80pcf		
Gray and olive silty clay to clay, trace 29.3	_	<u> </u>		Gray and olive silty clay to clay, trace				29.3			

DRILLING CONTRACTOR Patrick Drilling

DRILLING METHOD

4-1/4" I.D. HSA.

DRILLING EQUIPMENT CME-55/ATV DRILLING STARTED 8/2/92

ENDED 8/2/92

REMARKS

WOH = Weight of Hammer

WATER LEVEL (ft.)

□ 10.0′ during drilling.

V

BORING NUMBER

CB-2

SHEET 2 OF 2

CLIENT

PROJECT & NO. LOCATION

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B N 5,427.5 E 2,700.9

LOGGED BY KRR GROUND ELEVATION 526.2

GNOC	JIND E	LLV	ATION 526.2								
Z	F			CANADIE		DI		er Con	tent		·
ELEVATION	DEPTH (FT)	A	SOIL/ROCK	SAMPLE			0	-0-		7 LL	NOTES
4	Ξ	1		TYPE & NO.	LSE	1	1	0 3	1	0 50	&
<u> </u>	اج	1 2	DESCRIPTION	DEPTH (FT)	55	Ur	confin	ea Con ngth (1	npressi	ve k	TEST RESULTS
ᆸ	1 2	STRATA		RECOVERY(IN)	BLOW			2 29		r. 4 5	
506.2	20.0		fine sand, soft, medium to high plasticity,	SS-11	WOH		<u> </u>			<u> </u>	
			moist moist	20.0-22.0	1				1		
			CL/CH	24"R	1	*		□	34.9 - Đ-	_	
			62/611	27 11	2			G	_ 5-	- 4	SS-11:
					4				,		LL = 47
500 7				SS-12	2			/			PL = 22
503.7	22.5	44		22.0-24.0	1			/			PI = 25
		1//	Gray clayey fine sand, little silt, very	24"R	1		2	1,4			
		1//	loose, poorly graded, saturated	24 11	WOH.			9			
		1//	sc		WOH			í			
F04 7	04.5	1//		SS-13	1			ĺ			DI
501.7	24.5	1.4.4		24.0-26.0	2						Blow-in at 24.0'
			Gray coarse to fine sand, trace fine	24.0-26.0 24"R	7						water level rose to
			gravel, trace to little silt, medium dense,	24 11	15						approximately 3'
			poorly graded, saturated		13		J				below ground
			SP-SM/SM		-		(surface.
				26.0-27.5			1				
499.2	27.0			20.0-27.5			J				
		<i>\\\\\\</i>	Gray silty clay to clay, trace fine sand,				1				
		<i>\\\\\\</i>	hard, medium to high plasticity, dry to	SS-14	3		186				
		<i>\\\\\\</i>	moist	27.5-29.5	8		16.6				
			CL	24"R	22						
	l			10000 50 500000	32						
496.7	29.5										
			End of Boring at 29.5'								
											D
											Boring was tremie
											grouted using
											Volclay grout
											immediately after
											drilling completed.
			3								
										- 1	
										1	
									- 1		
1											

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4-1/4" I.D. HSA. DRILLING EQUIPMENT CME-55/ATV DRILLING STARTED 8/2/92 ENDED 8/2/92

REMARKS WOH = Weight of Hammer

WATER LEVEL (ft.) □ 10.0′ during drilling. V

BORING NUMBER

CB-3

SHEET 1 OF 2

CLIENT

LOCATION

City of Springfield CWLP PROJECT & NO.

FGDS Landfill-Hydrogeo. Invest. - 496B N 5,359.4 E 2,542.3

LOGGED BY KRR

GROU	ND E	LEVA	ATION 525.8			
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	Water Content PL
525.8	0.0		Brown silty clay, trace coarse to fine sand, stiff, medium plasticity, wet, fill CL CL Dark gray at 4.0'	SS-2 2.0-4.0 20"R SS-3 4.0-6.0 14"R	2 2 3 4 2 2 3 5	* 1 26.3
519.8	6.0		Brown and tan clayey silt and fine sand, very loose, poorly graded, wet to saturated, fill CL-ML	SS-4 6.0-8.0 24"R SS-5 8.0-10.0 14"R	2 2 1 1 WOH 1 2 2	20.5 Compared to the state of
515.5			Olive at 10.0' Dark gray to black organic silty clay, trace coarse to fine sand, wood fragments present, soft, medium	SS-6AB 10.0-12.0 18"R	2 2 2 3	24.9
513.8	12.0		plasticity, wet OL Gray clayey silt and fine sand, very loose, poorly graded, saturated CL-ML	SS-7 12.0-14.0 24"R	WOH WOH WOH	H 23.3'
			Gray silty sand from 15.0' to 15.5'	SS-8AB 14.0-16.0 24"R	WOH 1 2 3	21'.9 14.0' during drilling.
				SS-9 16.0-18.0 24"R	WOH 1 1 1	Gravel = 0% Sand = 33% Silt or Clay = 67%
505.8	20.0			SS-10 18.0-20.0 24"R	WOH WOH WOH	H 23'5

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4-1/4" I.D. HSA. DRILLING EQUIPMENT CME-55/ATV DRILLING STARTED 8/2/92 ENDED 8/2/92

REMARKS WATER LEVEL (ft.) WOH = Weight of 14.0′ during drilling. Hammer $\bar{\mathbf{L}}$

BORING NUMBER CB-3 SHEET 2 OF CLIENT City of Springfield CWLP PATRICK ENGINEERING INC. PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B LOCATION N 5,359.4 E 2,542.3 LOGGED BY KRR **GROUND ELEVATION** 525.8 Water Content EVATION E SAMPLE **NOTES** STRATA SOIL/ROCK TYPE & NO. DEPTH Unconfined Compressive DESCRIPTION DEPTH (FT) TEST RESULTS Strength (TSF) * RECOVERY(IN) 505.8 20.0 Gray clayey silt and fine sand, very WOH SS-11 loose, poorly graded, saturated 20.0-22.0 24.6 Q CL-ML/SC 24"R 1 2 SS-12 WOH WOH 22.0-24.0 24"R WOH WOH SS-13 WOH 24.0-26.0 1 24"R 2 2 SS-14 WOH 26.0-28.0 wон 498.8 27.0 24"R 12 Gray coarse to fine sand, trace coarse to 21 fine gravel, trace to little silt, medium dense to dense, well graded, saturated * SS-15 Water level in 28.0-30.0 4 augers at 4.7' 496.8 29.0 1g.8 24"R 14 immediately after Gray silty clay to clay, trace fine sand, 29 completion of hard, medium to high plasticity, dry to 495.8 30.0 drilling. Boring was grouted CL/CH using Volclay grout End of Boring at 30.0'. after drilling completed. DRILLING CONTRACTOR Patrick Drilling **REMARKS** WATER LEVEL (ft.)

WOH = Weight of

Hammer

□ 14.0′ during drilling.

Ā

DRILLING METHOD

DRILLING EQUIPMENT

DRILLING STARTED 8/2/92

4-1/4" I.D. HSA.

ENDED 8/2/92

CME-55/ATV

BORING NUMBER CLIENT

CB-4

SHEET 1 OF 2

PROJECT & NO. LOCATION

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B N 5,240.9 E 2,490.4

LOGGED BY **KRR** GROUND FLEVATION 525.1

GROU	ND E	ELEVA	ATION 525.1							
NO	Æ			SAMPLE		PL r	Water Co.	ntent ∧	LL	
ELEVATION	ОЕРТН (FT)	STRATA	SOIL/ROCK	TYPE & NO.	BLOW	1 10	20	30 4	50	
	PT	RA	DESCRIPTION	DEPTH (FT)	<u>≥S</u>	Und	confined Co Strength	mpressi	ve	& TEST RESULTS
日日	DE	ST		RECOVERY(IN)	30	1	2	3 4	5	
525.1	0.0		Dark gray silty clay, trace coarse to fine	AU-1						
			sand, roots present, trace organics, stiff,	0.0-2.0			26.	3		
			medium plasticity, wet, fill					1 1		
			CL				1			
				SS-2 2.0-4.0	3		i			
				12"R	4		¥ 27	, B		
					4					
521.1	4.0		Dark gray to black organic silty clay,	SS-3				1		
		==	trace fine sand, soft, medium to high	4.0-6.0	1 2			1 24 4		
			plasticity, wet to saturated, fill	"R	3	*		34.4 Q		
		==	OL/OH		4			1		
				SS-4	1			\		
		==		6.0-8.0	2			4	0.9	
			Wood fragments in SS-4	10"R	2 2	*		}	\supset	
			W-1/		_			[.		
		1	Wood fragments in SS-5	SS-5	WOH			/		SS-5 driven on
		==		8.0-10.0 4"R	WOH WOH			35.0 Q		wood.
					2			~ \		
			Wood fragments in SS-6A	SS-6AB					`\	
				10.0-12.0	1				,	
		三		10"R		*			9	3.4
513.3	11.8				1	*		1.3 -		
			Gray silty clay to clayey silt, trace fine sand, soft to medium stiff, low to	SS-7	1			p'		
			medium plasticity, wet	12.0-14.0	1		25.1 Q			
			CL/CL-ML	24"R	1 1	*	9			Sample slipped
							1 !			from tube. Obtained a jar
				3T-8 14.0-16.0						sample.
				10"R		*	22.8			
				3T-9			1			3T-9:
				16.0-18.0			23.8			LL = 25
				24"R		*	3			PL = 22
							23.6			PI = 3 Dry dens, = 103pcf
				SS-10	wон	1 1	Q			k=4.3 E-07 cm/s
				18.0-20.0	WOH		24.0			
			1" fine sand lense at 19.5'	24"R	WOH 2	*				
505.1	20.0		I THE SENSI DIES SENSION DIES SENSION		<u> </u>					

DRILLING CONTRACTOR Patrick Drilling **DRILLING METHOD** 4-1/4" I.D. HSA. DRILLING EQUIPMENT CME-55/ATV DRILLING STARTED 8/3/92 ENDED 8/3/92

REMARKS WOH = Weight of Hammer

WATER LEVEL (ft.) Ā V <u>_</u>

BORING NUMBER

CB-4

SHEET 2 OF 2

CLIENT LOCATION

City of Springfield CWLP PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B N 5,240.9 E 2,490.4

LOGGED BY KRR GROUND ELEVATION 525.1

GNOC	ם טווי	LLV	ATION 525.1		_						
Z	F			CANADIE		DI	Wat	er Cor			
ELEVATION	DEPTH (FT)	4	SOIL/ROCK	SAMPLE		PL	Ö	-0-		∆ LL	NOTES
4	王	STRATA		TYPE & NO.	BLOW		0 2			40 50	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	PT	B 2	DESCRIPTION	DEPTH (FT)	35	Ur	confin	ed Cor	mpres	sive	
	1 2	ST		RECOVERY(IN)	150			ngth (151		TEST RESULTS
505.1			Gray silty clay to clayey silt, trace fine	66.44				2 	3	4 5	1
000.,	20.0		sand, soft, low to medium plasticity,	SS-11	WOH						Water was not
			wet.	20.0-22.0	WOH			23.9 O		1	encountered during
				24"R	MOH	*		0			drilling.
503.1	22.0		CL/CL-ML		2						
303.1	22.0	11111	End of Boring at 22.0'.	-							
			End of borning at 22.0.								Borehole was
											tremie grouted
											using Volclay grout
											immediately after
											completion of
			*								drilling.
				1							
										ĺ	
									İ		
				1							
							1				

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4-1/4" I.D. HSA. DRILLING EQUIPMENT CME-55/ATV DRILLING STARTED 8/3/92 ENDED 8/3/92

REMARKS WOH = Weight of Hammer

WATER LEVEL (ft.) $\bar{\Delta}$ Ţ $\bar{\mathbb{Z}}$

BORING NUMBER CB-5 SHEET OF CLIENT City of Springfield CWLP PATRICK ENGINEERING INC. PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B LOCATION N 5,197.4 E 2,390.9 LOGGED BY KRR **GROUND ELEVATION** 523.4 Water Content **EVATION** (FT) SAMPLE LL STRATA SOIL/ROCK **NOTES** TYPE & NO. DEPTH BLOW Unconfined Compressive DEPTH (FT) DESCRIPTION **TEST RESULTS** Strength (TSF) * RECOVERY(IN) 旦 523.4 0.0 Brown and dark gray silty clay, trace AU-1 coarse to fine sand, medium stiff, low 0.0-2.0 18 7 plasticity, moist CL * SS-2 3 2.0-4.0 3 520.4 3.0 20.8 10"R 3 Brown silty clay, trace fine sand, medium 4 stiff, medium plasticity, wet CL SS-3 2 4.0-6.0 2 20"R 2 3 * 2 SS-4 6.0-8.0 2 24"R 2 3 515.6 515.2 8.2 Brown silty sand, loose, poorly graded, * SS-5AB 2 Water level at 8.0' 8.0-10.0 2 during drilling. SM 24"R 2 Brown, gray and olive silty clay, trace 2 fine sand, stiff, medium plasticity, wet SS-6AB 2 10.0-12.0 3 512.4 11.0 24"R 2 Gray and olive silty clay, trace fine sand, stiff, medium to high plasticity, wet 511.4 12.0 CL/CH Ж 3T-7 Gray silty clay, trace fine sand, soft, 12.0-14.0 medium plasticity, wet 24"R CL * SS-8 1 14.0-16.0 2 25.0 24"R 2 507.4 16.0 End of Boring at 16.0'. Borehole was tremie grouted using Volclay grout immediately after drilling completed. DRILLING CONTRACTOR Patrick Drilling REMARKS WATER LEVEL (ft.) **DRILLING METHOD** 4-1/4" I.D. HSA. ∑ 8.0′ during drilling. DRILLING EQUIPMENT CME-55/ATV Ţ No water level after drilling. **DRILLING STARTED 8/3/92 ENDED 8/3/92**

BORING NUMBER

CB-6

SHEET 1 OF 2

CLIENT

LOCATION

City of Springfield CWLP PROJECT & NO.

FGDS Landfill-Hydrogeo. Invest. - 496B N 5,079.8 E 2,367.5

LOGGED BY **KRR**

GROUND FLEVATION 527.0

GROU	IND EL	EVA	TION 527.0							
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	1	confine	er Content	40 50 sive	NOTES & TEST RESULTS
527.0 526.0 518.8 518.0	0.0		Dark gray silty clay, trace coarse to fine sand, roots present, low plasticity, moist CL Brown and dark gray silty clay, trace coarse to fine sand, very stiff, medium plasticity, wet to saturated CL Dark gray and trace organics from 4.0' Gray coarse to fine sand, trace fine gravel, little silt, trace coal, very loose, well graded, saturated SM Gray to light gray silty clay, trace fine sand, soft to medium stiff, medium plasticity, wet CL Trace organics and little fine sand in SS-5B	SS-2 2.0-4.0 18"R SS-3 4.0-6.0 20"R SS-4 6.0-8.0 8"R SS-5AB 8.0-10.0 18"R SS-6 10.0-12.0 24"R SS-8 14.0-16.0 24"R	4 5 6 5 6 4 5 7 3 2 4 4 2 1 1 1 1 1 1 1 2 WOH	*	16.7	3		Water level at 8.0' during drilling 3T-7: dry dens. = 99pcf qu = 1.4 tsf k = 5.3 E-7 cm/s
507.0	20.0			16.0-18.0 24*R SS-10 18.0-20.0 24*R	1 1 1 1 1 1	*		25.1 O 1 1 27.0		
I f			\ (

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4-1/4" I.D. HSA

DRILLING EQUIPMENT

CME-55/ATV

DRILLING STARTED 7/25/92 ENDED 7/25/92

REMARKS

WOH = Weight of Hammer

WATER LEVEL (ft.)

∑ 8.0′ during drilling

 $\underline{\underline{\mathbf{v}}}$

 $\bar{\underline{\mathbb{A}}}$

BORING NUMBER

CB-6

SHEET

CLIENT

LOCATION

City of Springfield CWLP

PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B N 5,079.8 E 2,367.5

LOGGED BY KRR

GROUND FLEVATION 527.0

GROL	IND E	LEV	ATION 527.0						
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	1	Water Content 0 30 confined Compres Strength (TSF)	40 50 sive	& TEST RESULTS
507.0 505.5 501.0 499.0 497.8 497.0 496.3	20.0 21.5 26.0 28.0 29.2 30.0 30.7		Gray silty clay, trace coarse to fine sand, soft, medium plasticity, wet CL Gray silty clay to clayey silt, trace to little fine sand, soft, low plasticity, wet CL/CL-ML Gray clayey sand, some silt, very loose, poorly graded, saturated SC Gray fine sand, some silt, loose, poorly graded, saturated SM Gray coarse to fine sand, little fine gravel, little sand, loose, poorly graded, saturated SM Gray fine sand, trace coarse to medium sand, trace silt, medium dense, poorly graded, saturated SP Gray coarse to fine sand, little fine gravel, trace silt, medium dense, well graded, saturated SW-SM Gray shale End of Boring at 34.0'.	the second contract to the second	MO18 1 1 1 1 1 2 3 4 4 6 6 8 8 8 13 100 + /2"	* *	confined Compres Strength (TSF) 2 3 23.6 21.9 26.1 14.6 1.3 1.3	*	TEST RESULTS

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD

4-1/4" I.D. HSA

DRILLING EQUIPMENT

CME-55/ATV

DRILLING STARTED 7/25/92 ENDED 7/25/92

REMARKS

WOH = Weight of Hammer.

WATER LEVEL (ft.)

∑ 8.0′ during drilling

V

BORING NUMBER

CB-7

SHEET 1 OF 1

CLIENT

City of Springfield CWLP

PROJECT & NO. FGDS

FGDS Landfill-Hydrogeo. Invest. - 496B

LOCATION

N 4,938.0 E 2,377.9

LOGGED	BY	KRR	
GROUND	ELEV	ATION	523.8

ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT)	BLOW		o 2 confin	ed Compress	LL to 50	&
				RECOVERY(IN)	8 000			ength (TSF)	¥ 4 5	TEST RESULTS
523.8	0.0		Brown silty clay, trace fine sand, soft, medium plasticity, wet CL	AU-1 0.0-2.0				22.2 Q		
				SS-2 2.0-4.0 10"R	2 3 3 2	*		28.8		
			Mottled and tan from 4.0'	SS-3 4.0-6.0 12"R	1 2 3 4	*		25'.6 O		
				SS-4 6.0-8.0 20"R	2 2 3 3	*		25.1 0		
515.0	8.8		Gray silty clay, trace coarse to fine sand, stiff, medium plasticity, wet	SS-5 8.0-10.0 24"R	WOH 2 3 2	*	*	23.6 O		
			Trace fine sand only from 10.0'	3T-6 10.0-12.0 20"R			*	1		
				SS-7 12.0-14.0 24"R	WOH 1 2 2		*	25.9		
507.8	16.0			SS-8 14.0-16.0 24"R	1 1 2 2	;	K	26.4		Water was not encountered during
507.8	16.0		End of Boring at 16.0'							or immediately after drilling. Borehole was tremie grouted using Volcaly grout immediately after drilling.

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D. HSA
DRILLING EQUIPMENT CME 55/ATV
DRILLING STARTED 8/13/92 ENDED 8/13/92

(
REMARKS	WATER LEVEL (ft.)
WOH = Weight of	호
Hammer	Ā
	▼

BORING NUMBER

CB-8

SHEET

CLIENT

LOCATION

City of Springfield CWLP

PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B N 4,862.3 E 2,564.6

LOGGED BY KRR

GROUND ELEVATION 522.7

GROU	ND ELEV	ATION 522.7					
ELEVATION	DEPTH (FT)	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	1	Water Content	TEST RESULTS
522.7	0.0	Dark gray to black silty organic clay to clay, trace fine sand, soft, medium to high plasticity, wet to saturated, fill OL/OH	SS-2 2.0-4.0 4"R SS-3 4.0-6.0 10"R	2 2 3 3 1 2 2 1	*	26.7 30.3 0 1 31.4	SS-3: LL = 35 PL = 21 PI = 14
512.9	9.8	Trace wood fragments in SS-4. Trace wood fragements in SS-5B. Gray clayey fine sand, trace coarse to	SS-4 6.0-8.0 4"R SS-5AB 8.0-10.0 20"R	1 1 1 2 1 1 1 2 WOH	*	29.0 29.0 29.7 0 28.1	
	12.0	medium sand, little silt, very loose, poorly graded, moist SC Gray silty fine sand, very loose, poorly graded, moist SM	10.0-12.0 8"R SS-7 12.0-14.0 20"R	1 1 1 1 1 2		23.0	
		Gray silty clay to clayey silt, trace coarse to fine sand, soft, medium plasticity, wet CL/CL-ML	SS-8 14.0-16.0 20"R SS-9 16.0-18.0 22"R SS-10 18.0-20.0 20"R	1 1 1 2 1 1 2 2	*	22.0 24.1 24.1 22.3	Tube pushed at 18.0' but no recovery. Then pushed split spoon. No water during drilling. W.L immediately after completion of drilling. Borehole was grouted using volclay grout immediately
502.7	20.0	End of Boring at 20.0'					after drilling.

DRILLING CONTRACTOR Patrick Drilling 4-1/4" I.D. HSA DRILLING METHOD CME 55/ATV DRILLING EQUIPMENT DRILLING STARTED 8/12/92 ENDED 8/12/92 REMARKS WATER LEVEL (ft.) WOH = Weight of 立 Hammer. $\underline{\underline{\mathbf{V}}}$ $\underline{\underline{\mathbb{Z}}}$

BORING NUMBER

CB-9

SHEET 1 OF 2

CLIENT

PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B LOCATION

City of Springfield CWLP

N 4,799.8 E 2,736.2

LOGGED BY KRR

GROU	ND E	LEVA	ATION 525.5					
ELEVATION	O DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	PL 10 Unco	Water Content	NOTES & TEST RESULTS
520.7	4.8		Brown and dark gray silty clay, trace coarse to fine sand, roots and wood fragments present, very stiff, medium plasticity, wet, fill CL	SS-2 2.0-4.0 14"R	7 8 11 12 4 3		23.6 0 1 22.1 0 X 29.9	
			Dark gray to black organic silty clay, trace fine sand, wood fragments present, soft to medium stiff, medium plasticity, wet, fill. OL	SS-4 6.0-8.0 6"R SS-5 8.0-10.0 10"R	2 3 3 4 1 2 2 2	* *	3d.7	SS-3: CEC = 18.1 meq/100g
513.9 513.5			Gray fine sand, trace coarse to medium sand, little silt, trace shells, very loose, poorly graded, fill	SS-6AB 10.0-12.0 20"R SS-7 12.0-14.0 24"R	1 1 1 1 1 WOH	*	20.2	
511.3			Dark gray organic silty clay, trace fine sand, wood fragments present, soft, medium plasticity, wet, saturated, fill SC Gray clayey fine sand, little silt, very loose, poorly graded, saturated, fill	SS-8 14.0-16.0 18"R	WOH		30.3	Water level at 14.0' during
509.3	16.2		Gray silty clay, trace to little fine sand, soft, medium plasticity, wet CL	SS-9 16.0-18.0	WOH WOH 1 1 WOH	*	26!0 Q	drilling,
				22"R	2 2		26.2	

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4-1/4" I.D. HSA

DRILLING EQUIPMENT

CME 55-ATV

DRILLING STARTED 8/13/92 ENDED 8/13/92

REMARKS

WOH = Weight of Hammer.

WATER LEVEL (ft.)

▼ 5.0′ after drilling.

BORING NUMBER

CB-9

SHEET

2 OF 2

CLIENT PATRICK ENGINEERING INC.

PROJECT & NO. LOCATION

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B N 4,799.8 E 2,736.2

LOGGED BY KRR

GROUND ELEVATION 525.5

GROU	ND E	LEV	ATION 525.5			
Z	(<u>T</u>			SAMPLE		PL D O A LL NOTES
ELEVATION	DEPTH (FT)	⋖	SOIL/ROCK	TYPE & NO.	S	PL
\ \ \ \	Ŧ	STRATA	DESCRIPTION	DEPTH (FT)	BLOW	Unconfined Compressive &
Ë	E	TR	DESCRIPTION	RECOVERY(IN)	55	Strength (TSF) * TEST RESULTS
505.5					m O	1 2 3 4 5
505.5	20.0		Gray silty clay, trace to little fine sand, medium stiff, medium plasticity, wet	3T-11 20.0-22.0		
			CL	24"R		
				2		
503.5	22.0					
			Gray silty fine sand, loose, poorly graded,	SS-12	3	
			saturated SM	22.0-24.0	2	
			SM	24"R	2	
					~	
501.0	24.5			SS-13	1	
			Gray coarse to fine sand, trace fine	24.0-26.0	1	21.8
			gravel, trace to little silt, loose, poorly	24"R	3	Blow-in at 26.0'
499.5	26.0		graded, saturated		4	
		-11.	SP-SM/SM			Water level at 5.0'
			End of Boring at 26.0'			immediately after
						drilling.
						Borehole was tremie grouted
						using Volclay grout
						immediately after
						completion of
						drilling.
					L	

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4-1/4" I.D. HSA DRILLING EQUIPMENT **CME 55-ATV** DRILLING STARTED 8/13/92 ENDED 8/13/92

REMARKS WOH = Weight of Hammer

WATER LEVEL (ft.) □ 14.0′ during drilling ▼ 5.0' after drilling $\bar{\mathbb{Z}}$

BORING NUMBER

P-1D

SHEET OF

CLIENT

PROJECT & NO.

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B

LOCATION N 4,806.1 E 1,973.1 LOGGED BY KRR **GROUND ELEVATION** 553.4 Water Content ELEVATION (FT) SAMPLE LL **NOTES** SOIL/ROCK STRATA 20 TYPE & NO. 30 50 DEPTH & Unconfined Compressive DESCRIPTION DEPTH (FT) **TEST RESULTS** Strength (TSF) * RECOVERY(IN) 553.4 Brown and dark gray silty clay, some AU-1 coarse to fine sand, trace fine gravel, 0.0-2.0 14.7 Q very stiff, medium plasticity, moist to wet, fill CL Trace coarse to fine sand from 2.0' SS-2 Trace roots in SS-2 2.0-4.0 2 14"R 3 5 Light olive at 4.0' SS-3 2 4.0-6.0 4 16"R 6 10 21.6 SS-4ABC 4 546.9 6.5 6.0-8.0 4 Dark gray to black organic silty clay, 18"R 9 trace coarse to fine sand, very stiff, 10 medium plasticity, moist to wet, fill OL 1 * SS-5 3 8.0-10.0 6 20.4 20"R 4 SS-5: 6 LL = 46PL = 20SS-6 3 PI = 2610.0-12.0 3 25.3 5 20"R Mottled at 11.0' 6 541.4 12.0 SS-7 Dark gray to black organic clay to silty 2 clay, trace wood fragments and coal, 12.0-14.0 3 28. * Q trace fine sand, very stiff, medium 24"R 5 plasticity, wet, fill 6 OL SS-8 3 14.0-16.0 3 2!.3 Q₩ 24"R 5 6 SS-9 16.0-18.0 5 19"R 8 535.2 18.2 SS-10ABC Brown silty clay, trace coarse to fine 18.0-20.0 2 534.4 19.0 sand, trace fine gravel, stiff, medium 24"R 4 plasticity, wet, fill CL 533.4 20.0 DRILLING CONTRACTOR Patrick Drilling **REMARKS** WATER LEVEL (ft.) **DRILLING METHOD** 4-1/4" I.D. HSA WOH = Weight of ∑ 39.0′ during driling Hammer DRILLING EQUIPMENT CME-55/ATV ▼ 38.0′ after drilling DRILLING STARTED 7/20/92 ENDED 7/20/92 <u>V</u>

BORING NUMBER P-1D SHEET 2 OF CLIENT City of Springfield CWLP PATRICK ENGINEERING INC. PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B LOCATION N 4,806.1 E 1,973.1 LOGGED BY KRR **GROUND ELEVATION** 553.4 Water Content ELEVATION F SAMPLE LL STRATA SOIL/ROCK NOTES TYPE & NO. DEPTH Unconfined Compressive DEPTH (FT) DESCRIPTION TEST RESULTS Strength (TSF) * RECOVERY(IN) 223.7 3 533.4 20.0 SS-11 Dark gray organic silty clay, trace wood and coal fragments, stiff, medium 20.0-22.0 7 plasticity, wet 24"R 7 OL 9 Dark gray to black organic silty clay, SS-12 2 trace fine sand, trace wood fragments 22.0-24.0 6 and coal, stiff, medium plasticity, wet, fill 24"R 7 * 9 Brownish-gray, olive and black from 23.0'-23.5' and 24.0'-25.0' SS-13AB 3 24.0-26.0 3 24"R 6 Changed to dark gray and black from 7 25.0 SS-14AB 26.0-28.0 5 526.4 27.0 Trace wood fragments in SS-14A 24"R 8 Black to dark gray organic silty clay to 8 525.4 28.0 clayey silt, trace to little fine sand, medium dense, moist, fill SS-15 1 Disturbed sample. OL/CL-ML 28.0-30.0 2 Black to dark gray organic clay to silty 2"R 3 clay, roots present, trace fine sand, 3 medium stiff, medium to high plasticity, SS-16 wet, fill 2 30.0-32.0 OL/OH 2 30 24"R 2 2 3T-17 32.0-34.0 24"R * Wood fragments in SS-18 SS-18 34.0-36.0 3 24"R 3 3 Wood fragments in SS-19 SS-19 36.0-38.0 2 24"R 3 3 SS-20 2 514.9 38.5 Water level at 38.0-40.0 2 Brownish-gray and olive clayey sand, 39.0' during 2 24"R trace fine gravel, loose, well graded, drilling. 513.9 39.5 3 saturated 513.4 DRILLING CONTRACTOR Patrick Drilling REMARKS WATER LEVEL (ft.) WOH = Weight of **DRILLING METHOD** 4-1/4" I.D. HSA ∑ 39.0′ during driling Hammer DRILLING EQUIPMENT CME-55/ATV ¥ 38.0' after drilling DRILLING STARTED 7/20/92 ENDED 7/20/92

BORING NUMBER P-1D 3 OF SHEET CLIENT City of Springfield CWLP PATRICK ENGINEERING INC. PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B LOCATION N 4,806.1 E 1,973.1 LOGGED BY KRR GROUND ELEVATION 553.4 Water Content ELEVATION (FT) PL []-----LL SAMPLE NOTES STRATA SOIL/ROCK 20 50 TYPE & NO. DEPTH & Unconfined Compressive DEPTH (FT) DESCRIPTION TEST RESULTS Strength (TSF) * RECOVERY(IN) 513.4 40.0 Gray silty clay, trace fine sand, medium SS-21 WOH stiff, medium plasticity, wet 40.0-42.0 22.1 24"R 2 * 2 Gray silty clay, trace fine sand, medium stiff, medium plasticity, wet SS-22 2 42.0-44.0 3 Gray and olive from 42.0' 24"R 4 4 SS-23 2 Ceased drilling on 44.0-46.0 2 07/20/92. 2 1.0 24"R 2 * 2 Little fine sand in 3T-24 3T-24 Resumed drilling on 46.0-48.0 07/21/92. 24"R SS-25AB SS-25B: 48.0-50.0 1 Gravel = 0% 504.4 49.0 24"R 3 Sand = 64% Gray clayey fine sand, little silt, loose, Silt or clay = 36% poorly graded, saturated SC SS-26AB WOH 502.6 50.8 50.0-52.0 2 Gray fine sand, some silt, trace coarse to 24"R 2 501.9 51.5 medium sand, trace coarse to fine gravel, 501.4 52.0 very loose, poorly graded, saturated. SM SS-27 41 11/2 Auger refusal at 500.9 52.5 52.0-52.5 120/ 52.5'. Gray coarse to fine sand, trace silt, very loose, poorly graded, saturated 7"R Water level at 38.0' immediately Gray Shale after drilling. End of Boring at 52.5'. Piezometer was installed after completion of drilling. See as-built diagram P-6D for more details. DRILLING CONTRACTOR Patrick Drilling **REMARKS** WATER LEVEL (ft.) **DRILLING METHOD** 4-1/4" I.D. HSA WOH = Weight of ∑ 39.0' during driling Hammer DRILLING EQUIPMENT CME-55/ATV ▼ 38.0' after drilling DRILLING STARTED 7/20/92 ENDED 7/20/92

			ENGINEERING INC.	CLIENT	T & NO.	City FGDS	S Landf	ngfield C\ ill-Hydrog E 1,973.	WLP geo. In	EET vest		OF 6B	3
LOGG			KRR Ation 553.4										
ELEVATION	БЕРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	≥Z	PL 10 Unco	Water Con	0 40	60	N TEST	OTES & RES	
553.4	0.0		Drilled to 36.0' without sampling Boring Log P-1D for soil conditions 0' to 36')										
DRILL	ING N	NETH QUIF	TRACTOR Patrick Drilling HOD 4-1/4" I.D. HSA PMENT CME-55/ATV RTED 7/21/92 ENDED 7/21/92		MARKS		•	WATER	LEVEL	_ (ft.)		

BORING NUMBER P-1S SHEET 2 OF CLIENT City of Springfield CWLP PATRICK ENGINEERING INC. PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B LOCATION N 4,821.3 E 1,973.9 LOGGED BY KRR **GROUND ELEVATION** 553.4 Water Content EVATION E SAMPLE LL **NOTES** STRATA SOIL/ROCK TYPE & NO. DEPTH (Unconfined Compressive DESCRIPTION DEPTH (FT) **TEST RESULTS** Strength (TSF) * RECOVERY(IN) 山 533.4 20.0 Drilled to 36.0' without sampling (See Boring Loag P-1D for soil conditions from 0' to 36') 517.4 36.0 Black to dark gray organic silty clay, SS-1 trace wood fragments, trace coarse to 36.0-38.0 fine sand, stiff, medium plasticity, wet, 20"R 3 Water in SS-2A 5 SS-2A: 515.4 38.0 Gravel = 2% SS-2AB Gray clayey fine sand, little silt, trace 2 514.7 38.7 Sand = 65%38.0-40.0 1 coarse to medium sand, loose, poorly Silt or clay = 33% 24"R 2 graded, saturated * 2 SC DRILLING CONTRACTOR Patrick Drilling REMARKS WATER LEVEL (ft.) **DRILLING METHOD** 4-1/4" I.D. HSA Ā DRILLING EQUIPMENT CME-55/ATV Ā DRILLING STARTED 7/21/92 ENDED 7/21/92

BORING NUMBER

P-1S

SHEET 3 OF 3

CLIENT

LOCATION

City of Springfield CWLP PROJECT & NO.

FGDS Landfill-Hydrogeo. Invest. - 496B

N 4,821.3 E 1,973.9

LOGGED BY KRR

GROUND ELEVATION 553.4

GROU	ND E	LEV	ATION 553.4			
ELEVATION	БЕРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT)	W NTS	PL D D DLL 10 20 30 40 50 Unconfined Compressive
513.4	2000000		Gray silty clay, trace fine sand, medium	RECOVERY(IN)	ω BLOW COUNTS	Strength (TSF) * TEST RESULTS
			stiff to stiff, medium plasticity, wet	40.0-42.0 24"R	3 4 5	来 22.6 No water immediately after
511.4	42.0		End of Boring at 42.0'.			drilling.
						Piezometer P-1S was installed after completion of drilling. Refer to as-built diagram
						P-1S for details.

DRILLING CONTRACTOR	Patrick Drillling
DRILLING METHOD	4-1/4" I.D. HSA
DRILLING EQUIPMENT	CME-55/ATV
DRILLING STARTED 7/21	92 FNDED 7/21/9

REMARKS	WATER LEVEL (ft.)
	$\bar{\Delta}$
	∑
	▼

BORING NUMBER

P-2D

SHEET OF

CLIENT

PROJECT & NO.

City of Springfield CWLP FGDS Landfill - Hydrogeo Invest. - 496B

LOCATION N 5,256.0 E 1,975.9 LOGGED BY KRR **GROUND ELEVATION** 553.9 Water Content ELEVATION PL 🖸 SAMPLE LL **NOTES** SOIL/ROCK BLOW 30 TYPE & NO. STRAT/ DEPTH DEPTH (FT) Unconfined Compressive DESCRIPTION Strength (TSF) * **TEST RESULTS** RECOVERY(IN) 553.9 0.0 Brown coarse to fine sand, some silt, AU-1AB well graded, dry, fill 0.0-2.0 552.9 1.0 SM Dark gray to black silty clay, trace fine 4.8 sand, trace organics, very stiff, low SS-2 5 plasticity, moist, fill 2.0-4.0 7 CL 10"R 9 549.9 4.0 Mottled brown silty clay, trace coarse to SS-3 3 fine sand, trace fine gravel, very stiff, 4.0-6.0 4 medium plasticity, wet, fill 12"R 4 CL 6 SS-4 4 6.0-8.0 5 16"R 8 10 545.9 8.0 Dark gray silty clay, trace organics, trace SS-5 2 coarse to fine sand, very stiff, medium 8.0-10.0 4 plasticity, wet, fill 14"R 6 OL 7 543.9 10.0 Brown and dark gray silty clay, trace SS-6 3 coarse to fine sand, very stiff, medium 10.0-12.0 plasticity, wet, fill 14"R 6 CL 7 Brown and gray at 12.0' SS-7 2 12.0-14.0 4 24.5 20"R Mottled brown from 14.0' 3T-8 14.0-16.0 20"R SS-9 16.0-18.0 6 22"R 9 10 SS-10 2 18.0-20.0 3 22"R 6 Dark brown from 19.0' 6 533.9 20.0

DRILLING METHOD

DRILLING CONTRACTOR Patrick Drilling 4-1/4" I.D. HSA

DRILLING EQUIPMENT

CME-55/ATV

DRILLING STARTED 7/22/92 ENDED 7/22/92

REMARKS

WOH - Weight of Hammer.

WATER LEVEL (ft.)

28.0' during drilling

V

Ā

BORING NUMBER

P-2D

SHEET

CLIENT

LOCATION

City of Springfield CWLP PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B N 5,256.0 E 1,975.9

LOGGED BY KRR

GROU	ND E	LEV	ATION 553.9					
ELEVATION	ОЕРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	10	Water Content	NOTES & TEST RESULTS
533.9 532.9		V////	Dark brown silty clay, trace to little fine sand, very stiff, medium plasticity, wet,	SS-11 20.0-22.0 22"R	6 5 7 8		19.9 O#	
530.7	23.2		Dark gray silty clay, trace fine sand, trace wood fragments and roots, very stiff, medium plasticity, wet, fill CL/OL Changed to brownish-gray and olive at	SS-12 22.0-24.0 24"R	2 3 3 5		22.7 * Q 23.5 *	
			Dark brown silty clay, trace coarse to fine sand, soft to stiff, medium plasticity, wet, fill	SS-13 24.0-26.0 24"R	2 2 2 3		* 26.4 O	
			Mottled from 25.0'	SS-14 26.0-28.0 24"R	2 3 4 3	*	26.6 O	
				3T-15 28.0-30.0 24"R		*	25.9	3T-15: Dry Dens = 99.1pc k = 7.3E-07 cm/s
				SS-16 30.0-32.0 24"R	WOH 1 1 1	*	27.6	
			Mucky at 32.0'	SS-17 32.0-34.0 24"R	1 2 2 2	*	25.6 O	
				SS-18 34.0-36.0 24"R	1 2 2 2	*	24.9 Q 24.0 Q	
516.9 516.4		1444	Brown clayey fine sand, some silt, loose, poorly graded, saturated	SS-19ABC 36.0-38.0 24"R	2 2 3 4	*	22:5 Q 27.3	
513.9	40.0		Dark gray silty clay, trace coarse to fine sand, trace fine gravel, trace shells, very stiff, medium plasticity, wet	SS-20 38.0-40.0 24"R	2 2 3 6		18.7	
			RACTOR Patrick Drilling REN	MARKS			WATER LEVEL (1	ft.)

DRILLING METHOD

4-1/4" I.D. HSA

DRILLING EQUIPMENT

CME-55/ATV

DRILLING STARTED 7/22/92 ENDED 7/22/92

WOH - Weight of Hammer.

WATER LEVEL (IT.)

28.0′ during drilling

V

BORING NUMBER P-2D SHEET OF 3 CLIENT City of Springfield CWLP PATRICK ENGINEERING INC. PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B LOCATION N 5,226.0 E 1,975.9 LOGGED BY KRR **GROUND ELEVATION** 553.9 Water Content **EVATION** F SAMPLE LL NOTES SOIL/ROCK STRATA BLOW TYPE & NO. 50 DEPTH Unconfined Compressive DEPTH (FT) DESCRIPTION TEST RESULTS Strength (TSF) * RECOVERY(IN) 딥 513.9 40.0 Dark gray to gray silty clay, trace fine SS-21 sand, medium to stiff, medium plasticity, 40.0-42.0 191 24"R CL 5 SS-22 2 42.0-44.0 25.1 24"R 2 Pockets of sand at 43.6' Light gray and olive from 44.0' SS-23 WOH 44.0-46.0 1 2.8 24"R 3 3 SS-24 2 46.0-48.0 20.8 24"R 4 Little fine sand in SS-25 SS-25 1" fine sand lense at 48.5 48.0-50.0 2 24"R 2 2 SS-26 WOH 50.0-52.0 24"R Gray and little to some fine sand from 51.0' SS-27AB 5 21.5 52.0-54.0 8 500.9 53.0 24"R 8 Gray clayey coarse to fine sand, little silt, 2.0 medium dense, well graded, saturated 54.0 499.9 SS-28ABC SS-28A: 54.5 499.4 Gray coarse to fine sand, trace silt, 54.0-56.0 Gravel = 3% 498.9 55.0 medium dense, well graded, saturated 20"R 40 Sand = 91%18+ Silt or clay = 6% 55.8 498.1 Gray coarse to fine sand, trace silt, 2" medium dense, poorly graded, saturated SS-29 00 + Piezometer P-2D 56.5 497.4 SP/SP-SM 56.0-57.3 was installed after 98 Gray clayey coarse to fine sand, little silt, completion of trace coarse to fine gravel, dense, well drilling. Refer to graded, saturated as-built diagram SC P-2D for more details. Gray siltstone/shale End of Boring at 56.5'. DRILLING CONTRACTOR Patrick Drilling REMARKS WATER LEVEL (ft.) WOH = Weight of DRILLING METHOD 4-1/4" I.D. HSA 28.0′ during drilling Hammer DRILLING EQUIPMENT CME-55/ATV V DRILLING STARTED 7/22/92 ENDED 7/22/92

BORING NUMBER

P-2S

SHEET

CLIENT

LOCATION

City of Springfield CWLP

PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B N 5,237.1 E 1,976.3

LOGGED BY KRR

GROUND FLEVATION 533.9

SAMPLE SAMPLE	Water Content PL □ △ LL NOTES
I O I E I I I I SAMPLE I	
SAMPLE TYPE & NO. DESCRIPTION SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	PL ☐ LL NOTES
DESCRIPTION DEPTH (FT)	Unconfined Compressive & TEST RESULT
SOIL/ROCK TYPE & NO. DESCRIPTION DESCRIPTION RECOVERY(IN) DESCRIPTION	10 20 30 40 50 NOTES With the confined Compressive Strength (TSF) # TEST RESULT
533.9 0.0 Drilled to 26.0' without sampling. See	
Boring Log P-2D for details on soils	
encountered from 0' to 26'	

DRILLING CONTRACTOR	Patrick Drilling
DRILLING METHOD	4-1/4" I.D. HSA
DRILLING EQUIPMENT	CME-55/ATV
DRILLING STARTED 7/22	/92 FNDED 7/22/9

REMARKS	WATER LEVEL (ft.)
	立
	∑
	▼

BORING NUMBER

P-2S

SHEET 2 OF 2

CLIENT

LOCATION

City of Springfield CWLP PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B

N 5,237.1 E 1,976.3

LOGGED BY KRR

GROUND FLEVATION 533.9

GROU	ND E	LEVA	ATION 533.9						
NO NO	FT)		COLLIDOCK	SAMPLE		PL [Water Content 		NOTES
ELEVATION	БЕРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION	TYPE & NO. DEPTH (FT)	BLOW	10	onfined Compressi	ve	&
		STR	22001 HON	RECOVERY(IN)	BLO	1	Strength (TSF) *	£ 6	TEST RESULTS
513.9	20.0		Drilled to 26.0' without sampling. See Boring Log P-2d for details on soils encountered from 0' to 26'						
507.9	26.0								
			Brown silty clay, trace fine sand, soft, medium plasticity, wet CL	SS-1 26.0-28.0 24"R SS-2 28.0-30.0 24"R	3 4 5 1 1 2	*	25.9 Q I I 27.0		Piezometer P-2S was installed immediately after
503.9	30.0				3				completion of drilling. Refer to
505.5	30.0		End of Boring at 30.0'.						as-built diagram P-2S for more details.

DRILLING CONTRACTOR	Patrick Drilling
DRILLING METHOD	4-1/4" I.D. HSA
DRILLING EQUIPMENT	CME-55/ATV
DRILLING STARTED 7/22	/92 ENDED 7/22/92

REMARKS	WATER LEVEL (ft.)
	포
	▼
	▼

BORING NUMBER

P-3D

SHEET OF

CLIENT

LOCATION

City of Springfield CWLP PROJECT & NO.

FGDS Landfill - Hydrogeo Invest. - 496B N 5,672.5 E 2,645.4

LOGGED BY KRR

530.5

GROUND ELEVATION Water Content (FT) EVATION SAMPLE LL NOTES SOIL/ROCK STRATA 20 TYPE & NO. DEPTH Unconfined Compressive DEPTH (FT) DESCRIPTION TEST RESULTS Strength (TSF) * RECOVERY(IN) 530.5 Brownish gray silty clay, trace coarse to AU-1 fine sand, very stiff, low plasticity, moist, 0.0-2.0 18.4 fill Dark gray and brown at 3.0', trace fine SS-2 gravel and coal in SS-2 2.0-4.0 5 20"R 5 7 SS-3 3 4.0-6.0 4 4 14"R Trace coal and organics in SS-3 5 SS-4 2 524.0 6.5 6.0-8.0 2 Dark gray to black clayey sand to silty 51.7 8"R 3 sand, trace organics, loose, poorly 3 graded, saturated, fill SC/SM SS-5 WOH Water level at 8.0' 8.0-10.0 1 while drilling. O"R 1 SS-6 WOH 10.0-12.0 WOH 6"R WOH WOH 518.5 12.0 Dark gray organic silty clay, trace fine SS-7AB WOH sand, wood fragments present, medium 12.0-14.0 WOH to high plasticity, wet to saturated, fill 24"R WOH 517.0 13.5 3 28 Brown to brownish gray silty clay, trace SS-8 2 coarse to fine sand, stiff to very stiff, 14.0-16.0 3 medium to high plasticity, wet 28 24"R 3 CL 3T-9 16.0-18.0 34.5 Q 20"R 3T-9: Dry dens = 89.2SS-10 WOH pcf 18.0-20.0 WOH 36.9 k = 1.3E-08 cm/s24"R 2 * 2 510.5 20.0

DRILLING CONTRACTOR Patrick Drilling 4-1/4" I.D. HSA **DRILLING METHOD** DRILLING EQUIPMENT CME-55/ATV

DRILLING STARTED 8/17/92 ENDED 8/17/92

WOH - Weight of Hammer.

REMARKS

WATER LEVEL (ft.)

 ∇ 8.0′ during drilling ▼ 14.0' after drilling

V

BORING NUMBER

P-3D

SHEET 2 OF 2

CLIENT

LOCATION

City of Springfield CWLP PROJECT & NO.

FGDS Landfill - Hydrogeo Invest. - 496B

N 5,672.5 E 2,645.4

LOGGED BY KRR GROUND ELEVATION 530.5

GROUND ELEVATION 530.5											
z						Б	Wat	er Con	tent		
<u> </u>	F	1	COIL /BOCK	SAMPLE		PL [3		<u></u>	' LL	NOTES
A T	I	F.	SOIL/ROCK	TYPE & NO.	TS	10			0 4	1	8
	Ы	R A	DESCRIPTION	DEPTH (FT)	35	Un	confine	ed Con	npressi (SF) >	ve	TEST RESULTS
ELEVATION	ОЕРТН (FT)	STRATA		RECOVERY(IN)	BLOW	,	Stre	ngin (1911 7		ILSI NESOLIS
510.5	20.0		Brownish-gray silty clay, trace coarse to	SS-11	WOH	i		·	Í		
1			fine sand, stiff, medium plasticity, wet		WOH						
509.5	21.0		CL C	24"R	2	*				44.2	
			Gray clay to silty clay, trace fine sand,		2	/ I				,	
			very soft to soft, mucky, medium to high							1	
			plasticity, wet to saturated	SS-12	wон					1	
			СН	22.0-24.0	WOH					43.6	
				24"R	WOH	€				Q.	
					1					1	
										``	
				SS-13	WOH	1 1				,	
					WOH					53	.7
					WOH WOH					9	SS-13:
					WOR						LL = 71
				SS-14	wон				□	->>4	APL = 32
				26.0-28.0	1						PI = 39
				24"R	1					5	.5
					1					i	
502.5	28.0									/	
			Gray silty fine sand, very loose, poorly	SS-15	WOH					,	
			graded, saturated	2. TO COMPANY 201 2 8 8	WOH	1 1			١,	1	
			SM		WOH WOH		3		/		
500.5	30.0				WOH				/		
000.0	00.0		Gray silty clay to clayey silt, little fine	SS-16	wон				/		SS-17B:
			sand, soft, low to medium plasticity, wet	1000000000 00 0000	WOH			27	/		Gravel = 0%
			CL/CL-ML	24"R	1	*		27/	ľ		Sand = 58%
					1			1			Silt or Clay = 42%
498.5	32.0							,			
			Gray fine sand, little silt, very loose,	SS-17AB	1		/				
497.5	33.0		poorly graded, saturated ————————————————————————————————————	32.0-34.0 24"R	7		14,1				
497.0	33.5			24 N	10		Ÿ,				
			Gray coarse to fine sand and silt, trace coarse to fine gravel, medium dense, well		10		17.	e			
			graded, saturated	SS-18	42	1 1	1.3				Water level at
495.5	35.0		SM/	34.0-35.0	00/4	· 1	Ö				14.0' immediately
490.5	35.0		Gray shale	10"R							after drilling.
			End of Boring at 35.0'								Piezometer was
			Ella of Bolling at oots								installed
											immediatley after
											drilling. Refer to
				9							As-Built Diagram P-3D for more
											details.
											dotallo.
									<u></u>		
) (

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD

4-1/4" I.D. HSA

DRILLING EQUIPMENT

CME-55/ATV

DRILLING STARTED 8/17/92 ENDED 8/17/92

REMARKS

WOH - Weight of Hammer.

WATER LEVEL (ft.)

∑ 8.0′ during drilling ▼ 14.0' after drilling

Ā

BORING NUMBER

P-3S

SHEET 1 OF 1

CLIENT

LOCATION

PROJECT & NO.

City of Springfield CWLP

FGDS Landfill - Hydrogeo Invest. - 496B N 5,672.5 E 2,651.4

LOGGED BY KRR

GROUND ELEVATION 530.5

GROU	IND E	LEV	ATION 530.5			
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	Water Content PL ☐ LL 10
530.5			Drilled without sampling to 6.0'. Refer to Boring Log P-3D for soil conditions from 0' to 6'.	THE COVERT (IN)	18	Soil conditions were consistent with soil conditions encountered in P-3D based on soil cuttings.
524.5 522.5			Brown and dark gray silty clay, trace coarse to fine sand, trace fine gravel, trace coal, trace organics, soft, medium plasticity, wet CL/OL Dark gray to black silty sand, trace organics, wood fragments present, very loose, poorly graded, saturated SM	10.0-12.0	2 2 2 3 WOH 1 1 1 WOH	58.5 / SS-3: Gravel = 0%
518.5 517.5 516.5	13.0		Gray and olive silty clay, trace to fine sand, trace organics, soft, medium plasticity, wet CL Brown silty clay, trace to fine sand, stiff, medium plasticity, wet to saturated CL End of Boring at 14.0'		WOH WOH 1 2 3	Silt or Clay = 45%
Dell	ING	רוא רי	RACTOR Patrick Drilling REA	MARKS		WATER LEVEL (ft.)

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD

4-1/4" I.D. HSA

DRILLING EQUIPMENT

CME 55/ATV

DRILLING STARTED 8/17/92 ENDED 8/17/92

REMARKS

WOH = Weight of Hammer.

WATER LEVEL (ft.)

 $\bar{\Delta}$ $\underline{\mathbf{v}}$

 $\overline{\mathbb{Z}}$

BORING NUMBER

P-4

SHEET OF

CLIENT

LOCATION

PROJECT & NO.

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B

N 5,156.3 E 2,880.7

LOGGED BY **KRR GROUND ELEVATION** 535.9 Water Content ELEVATION PL G SAMPLE LL ----NOTES SOIL/ROCK STRATA TYPE & NO. 20 30 50 DEPTH Unconfined Compressive DESCRIPTION DEPTH (FT) **TEST RESULTS** Strength (TSF) 米 RECOVERY(IN) 535.9 0.0 Brown silty clay, trace coarse to fine AU-1 sand, stiff to very stiff, medium 0.0-2.0 25.3 Q plasticity, wet CL SS-2 3 2.0-4.0 24.6 24"R 5 * 5 Mottled from 4.0' SS-3 4.0-6.0 2 29 20"R 3 * 3T-4 6.0-8.0 24"R * SS-5 8.0-10.0 3 24"R 4 8 Brownish gray at 10.0' SS-6 3 10.0-12.0 4 24"R 6 10 SS-7 12.0-14.0 25.0 Q

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4-1/4" I.D. HSA DRILLING EQUIPMENT CME 55/ATV DRILLING STARTED 8/16/92 ENDED 8/16/92

Gray clay to silty clay, trace fine sand, very soft to stiff, medium to high plasticity, wet to saturated

519.9 16.0

REMARKS WOH = Weight of Hammer

24"R

3T-8 14.0-16.0 24"R

SS-9 16.0-18.0

24"R

SS-10

18.0-20.0

24"R

CH/CL

6

4

5

1

2

2 Ж *

V.

WATER LEVEL (ft.) 34.0' during drilling Ţ

BORING NUMBER

P-4

SHEET 2 OF 3

CLIENT

LOCATION

PROJECT & NO.

City of Springfield CWLP

FGDS Landfill - Hydrogeo Invest. - 496B N 5,156.3 E 2,880.7

LOGGED BY KRR

GROUND ELEVATION 535.9

GROUND ELEVATION 535.9												
ELEVATION DEPTH (FT) STRATA	SOIL/ROCK	SAMPLE TYPE & NO. DEPTH (FT)	STS	10	Water Cor 	∆ Ll 30 40	NOTES &					
10000	DESCRIPTION	RECOVERY(IN)	BLOW	1	Strength ((TSF) *	TEST RESULTS					
515.9 20.0	Gray clay, trace silt, mucky, very soft, high plasticity, moist to wet CH	3T-11 20.0-22.0 24"R		*			3T=11: Dry Dens.=78.2 pcf k=2.9 E-08cm/s					
	Very mucky at 22.0'		WOH WOH WOH	€			50.4					
			WOH WOH WOH	€		34,4						
	Silty clay lenses at 26.0'		WOH WOH WOH	*		46	; 6 1,					
		24"R	WOH WOH 1 >	€			52.6					
		24"R	WOH WOH WOH	•		□ >>	SS-16: 52 H = 67 - OPL = 30 PI = 37					
501.9 34.0	,	24"R	WOH WOH WOH			!	52.6					
	Gray coarse to fine sand, some fine gravel, trace silt, trace coal, medium dense to dense, poorly graded, saturated SW-SM	SS-18 34.0-36.0 24"R	WOH 6 11 27			7	Water level at 34.0' during drilling.					
		SS-19 36.0-38.0 24"R	7 8 7 7				Blow-in 36.0' washed off with water. SS-19: Gravel = 23%					
		\$\$-20 38.0-40.0 24"R	8 7 7 8				Sand = 69% Silt or Clay = 8%					
					T							

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D. HSA
DRILLING EQUIPMENT CME 55/ATV
DRILLING STARTED 8/16/92 ENDED 8/16/92

REMARKS
WOH = Weight of Hammer.

WATER LEVEL (ft.)

☑ 34.0′ during drilling
☑
☑

BORING NUMBER

P-4

SHEET 3 OF 3

CLIENT

LOCATION

City of Springfield CWLP

PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B N 5,156.3 E 2,880.7

LOGGED BY **KRR**

GROUND FLEVATION 535 9

GROUND ELEVATION 535.9												
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	m O	10	onfined Cor Strength (△ LL 00 40 50 npressive	& TEST RESULTS			
495	.6 42.	3		DEPTH (FT)	MOTH 6 7 8 8 11 100 +/4"	Unco	onfined Cor Strength (npressive TSF) *	& TEST RESULTS			

DRILLING CONTRACTOR Patrick Drilling 4-1/4" I.D. HSA DRILLING METHOD

DRILLING EQUIPMENT

CME 55/ATV

DRILLING STARTED 8/16/92 ENDED 8/16/92

REMARKS WOH = Weight of Hammer.

WATER LEVEL (ft.)

V

BORING NUMBER

P-5D

SHEET 1 OF 2

CLIENT

LOCATION

PROJECT & NO.

City of Springfield CWLP

FGDS Landfill - Hydrogeo Invest. - 496B

N 4,516.7 E 2,885.0

LOGGED BY KRR

GROUND ELEVATION 534.9

GROUND ELEVATION 534.9										
ELEVATION	ОЕРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	10	Water Content	TEST RESULTS	
534.9	2.5		Brown silty clay, trace fine sand, soft, low plasticity, moist, fill	CL	AU-1 0.0-2.0	3		17.6 Q		
032.4	2.0		Dark gray to black organic silty clay, trace coarse to fine sand, trace roots, soft to very soft, medium to high plasticity, wet to saturated, fill	OL	2.0-4.0 20"R SS-3 4.0-6.0	4 6 9 3 6		20.8 + - - 23.3 Q		
					24"R SS-4 6.0-8.0 24"R	11 12 3 4 5	*	31.8 □	SS-4:	
					\$\$-5 8.0-10.0 24"R	2 3 2 4	*	29.4	LL = 45 PL = 25 PI = 20	
					SS-6 10.0-12.0 24"R	2 3 3 2 WOH	*	29.7		
			Changed from organic silty clay to organic clayey silt from 12.0'.		12.0-14.0 24"R	2 3 2	*	26'.3 Q		
					14.0-16.0 22"R	2 2 3	*	31.4		
			Wood fragments in SS-9		16.0-18.0 24"R	2 2 3	*	5	o D	
514.9	20.0				18.0-20.0 18"R	1 2 2	*	37,8		

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D. HSA
DRILLING EQUIPMENT CME 55/ATV
DRILLING STARTED 8/16/92 ENDED 8/16/92

REMARKS
WOH = Weight of Hammer.

BORING NUMBER

P-5D

SHEET 2 OF 2

CLIENT

LOCATION

City of Springfield CWLP

PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B

N 4,516.7 E 2,885.0

LOGGED BY KRR

GROUND FLEVATION 534.9

GROU	IND E	LEVA	ATION 534.9							
ELEVATION	ОЕРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	10	20 confined	Content O 30 4 Compression th (TSF) 3 4	0 50 ve	& TEST RESULTS
512.9			Dark gray to black organic silty clay, trace coarse to fine sand, soft, medium to high plasticity, wet to saturated, fill OL Little coarse to fine sand, trace fine gravel and wood fragments present in SS-11 Gray fine sand, little to some silt, very loose, poorly graded, saturated	SS-11 20.0-22.0 24"R SS-12AB 22.0-24.0 24"R	2 2 3 4 WOH 1 1	*		29.1	19	Water level at
509.9	25.0		Wood in SS-12B Gray coarse to fine sand, some fine gravel, little silt, loose, well graded, saturated	SS-13 24.0-26.0 24"R	WOH 1 3 2				,	22.0' during drilling.
507.6	27.3		Gray shale, soft	26.0-28.0 24"R	3 5 6		16.0			Gravel = 29% Sand = 54% Silt or clay = 17%
502.9	32.0		End of Boring at 32.0'	\$\$-15 28.0-30.0 20"R \$\$-16 30.0-32.0 22"R	10 12 14 15 16 18 22 26		15.1 O 15.0			Piezometer was installed immediately after completion of drilling. Refer to As-Built Diagram P-5D for more details.

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4-1/4" I.D. HSA DRILLING EQUIPMENT CME 55/ATV DRILLING STARTED 8/16/92 ENDED 8/16/92

REMARKS WOH = Weight of Hammer.

WATER LEVEL (ft.) $\underline{\underline{\mathbf{v}}}$

Ā

BORING NUMBER

LOCATION

P-5S

SHEET

1 OF 1

CLIENT PROJECT & NO.

City of Springfield CWLP FGDS Landfill - Hydrogeo Invest. - 496B

N 4,510.7 E 2,887.0

LOGGED BY KRR

GROUND ELEVATION 534.9

GROUND ELEVATION 934.9										
ELEVATION DEPTH (FT) STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	10	Water 20 20 confined Streng	O - 30	∆ pressi	0 50 Ve	NOTES & TEST RESULTS	
534.9 0.0	Drilled to 8.0' without sampling. Refer to Boring Log P-5D for soil conditions from 0.0' to 8.0'.								Soil conditions are consistent with soil conditions encountered in P-5D based on soil cuttings.	
526.9 8.0	Dark gray to black organic silty clay, trace fine sand, soft, medium to high plasticity, wet to saturated, fill OL	SS-1 8.0-10.0 10"R 3T-2 10.0-12.0 16"R	2 2 2 3	*	2	26.0	35.2 O /		3T-2: Dry den. = 95.2 pcf k = 7.6 E-08 cm/s	
522.9 12.0	End of Boring at 12.0'								No water was found during or immediately after drilling. Piezometer was constructed immediately after drilling. Refer to As-Built Diagram P-5S for more details.	
DDII I ING GONT	FRANCISCO PARILLE AND DELLA									

DRILLING CONTRACTOR Patrick Engineering DRILLING METHOD 3-1/4" I.D. HSA DRILLING EQUIPMENT CME 55/ATV DRILLING STARTED 8/16/92 ENDED 8/16/92

REMARKS WOH = Weight of Hammer.

WATER LEVEL (ft.) $\bar{\Delta}$ Ā <u>Ā</u>

BORING NUMBER

P-6D

SHEET 1 OF 2

CLIENT

PROJECT & NO. FO

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B N 4,717.0 E 2,186.8

LOGGED BY KRR

GROUND ELEVATION 524.8

GROU	ND E	LEVA	ATION 524.8					
Z	Ē			CAMPLE		DI -	Water Content	
ELEVATION	DEPTH (FT)	4	SOIL/ROCK	SAMPLE TYPE & NO.	S	1		NOTES
\ \ \	Ŧ	AT	DESCRIPTION	DEPTH (FT)	≥Ľ		confined Compressive	- &
Ë	EP	STRATA	DESCRIPTION	RECOVERY(IN)	BLOW		Strength (TSF) 米	TEST RESULTS
					BO	1	1 2 3 4 6	5
524.8	0.0		Brown silty clay, trace to little fine sand,	AU-1				
			soft, medium plasticity, wet CL	0.0-2.0			22.2	
			CL					
			Mottled at 2.0'	SS-2	2			
				2.0-4.0	1		21/.2	
				18"R	2	*	P	
					3			
				SS-3	1			
				4.0-6.0	1		21.7	
				20"R	2	*		
					2			
518.3	6.5			SS-4AB	1		720	
516.5	0.5	11.7	Brown, clayey, fine sand, little to some	6.0-8.0	2		22.0	
517.3	7.5		silt, loose, poorly graded, saturated	18"R	2	*	25.4	Water level at 6.0'
317.3	7.5		SC /		2		25.4 S	during drilling.
			Brown mottled silty clay, trace fine sand,	SS-5	1		!!!	
			soft, medium plasticity, wet	8.0-10.0	i		21,7	
			CL	10"R	2	*	1 76'	W/ d f
					2			Wood fragments in SS-5.
514.8	10.0		Consider the desired states	66.6				55 5.
			Gray silty clay, trace fine sand, soft to medium stiff, medium plasticity, wet	SS-6 10.0-12.0	3			
			CL	20"R	1	*	29.8	
					1			
				SS-7	2			
				12.0-14.0 20"R	2	*	28.3	
				2011	2			
				SS-8	1			
				14.0-16.0 22"R	2	*	24'.1	
				22 h	3	*		
]			
				SS-9	2			
				16.0-18.0	2	W	24.7	
				24"R	2	*		
					_			
				3T-10	1			
				18.0-20.0				
				24"R		*		
504.8	20.0							
		VIIIA				1	<u> </u>	

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D. HSA
DRILLING EQUIPMENT CME 55/ATV
DRILLING STARTED 8/12/92 ENDED 8/12/92

REMARKS
WOH = Weight of Hammer

V

BORING NUMBER

P-6D

SHEET 2 OF 2

CLIENT

LOCATION

City of Springfield CWLP PROJECT & NO.

FGDS Landfill - Hydrogeo Invest. - 496B

N 4,717.0 E 2,186.8

LOGGED BY KRR

GROUND ELEVATION 524.8

GROU	ואט ב	LEV	411010 524.8						
z	_			CANADIE		DI	Water Conte	ent	
ELEVATION	БЕРТН (FT)	d	SOIL/ROCK	SAMPLE		PL .		A LL	NOTES
I A	工	STRATA		TYPE & NO.	BLOW		10 20 30	40 50	
>	Ы	RA	DESCRIPTION	DEPTH (FT)	185	Ur	nconfined Comp	ressive	TEST RESULTS
)E	150		RECOVERY(IN)	20		Strength (TS		
504.8		111111	Gray silty clay, trace fine sand, soft,	00.11	-		1 2 3	4 5	
304.0	20.0			SS-11	1				
			medium plasticity, wet	20.0-22.0	2		23.3 Q		
			CL	24"R	2	*	0		
					1		1 1: 1		
				00.10			1 1: 1		
				SS-12	WOH		1 11 1		
501.8	23.0		Little fine sand in SS-12	22.0-24.0	1		22.7	1	
				24"R	2	*	22.7		
			Gray clayey silt, trace fine sand, loose, wet to saturated		1		!!!		
							'		
			CL-ML/ML	SS-13	2				
				24.0-26.0	3		18:3		
				24"R	4		Q		
					4				6
				SS-14AB	4		19.5		
				26.0-28.0	4		1 4 1		
497.3	27.5			24"R	7		15/9		
496.8		14444	Gray fine sand, trace coarse to medium	-	10		15/9 Q		
490.8	28.0		sand, some silt, medium dense, poorly	CC 15	١,		'		
			graded, saturated	SS-15	7				
			\ sm/	28.0-30.0 24"R			14.6		
			Gray coarse to fine sand, trace coarse to	24 K	18		9		
			fine gravel, some silt, medium dense,		9		1:11		
			well graded, saturated	SS-16AB	13				144.
			SM	30.0-32.0	16		13.2		Water level at 1.0'
				22"R	17		1, 1		immediately after
493.3	31.5			22 11	100		16.9		drilling.
492.8	32.0		Gray shale	1	+				Piezometer was
102.0	02.0		End of Boring at 32.0'						installed
			Elia of Bolling at Oz.o						immediatley after
									completion of
			· ·						drilling. Refer to As-Built
									Diagram P-6D for
									more information.
									more information.

DRILLING CONTRACTOR Patrick Drilling 4-1/4" I.D. HSA DRILLING METHOD DRILLING EQUIPMENT CME 55/ATV DRILLING STARTED 8/12/92 ENDED 8/12/92 **REMARKS** WOH - Weight of Hammer.

WATER LEVEL (ft.) ∇ **6.0'** during drilling. ▼ 1.0′ after drilling. Ā

BORING NUMBER

P-6S

SHEET 1 OF 1

CLIENT

LOCATION

PROJECT & NO.

City of Springfield CWLP FGDS Landfill - Hydrogeo Invest. - 496B N 4,725.7 E 2,191.4

LOGGED BY KRR

GROUND ELEVATION 524.9

GRUC	ואט ב	LEV	ATION 524.9						
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	PL [LL 50	NOTES & EST RESULTS
524.9	0.0		Drilled to 4.0' without sampling. Refer to Boring Log P-6D for soil conditions from 0.0' to 4.0'.					Ь	frown silty clay ased on soil uttings up to 4.0'.
520.9	4.0		Brown silty clay, trace to little fine sand, medium stiff, medium plasticity, wet CL	3T-1 4.0-6.0 14"R		*	23.4	G S	S-2A: iravel = 0% and = 14% ilt or clay = 86%
518.4 517.4			Gray clayey fine sand, some silt, loose, poorly graded, saturated SC Brown and tan silty clay to clayey silt, little fine sand, soft to medium stiff, medium plasticity, wet	SS-2AB 6.0-8.0 24"R SS-3AB 8.0-10.0	2 1 1 2 2 2	*	22.6 Q 28.2 21.0	dı W in	Vater level at 7.0' uring drilling Vater level at 3.0' nmediately after
515.4 514.9	1		CL/CL-ML 2" fine sand lense at 8.5' Gray silty clay, trace fine sand, medium stiff, medium plasticity, wet CL End of Boring at 10.0'	20"R	1 2	*	27.6 O	Pi in in co di A	rilling. iezometer was istalled nmediately after ompletion of rilling. Refer to is-Built Diagram -6S for more etails.

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D. HSA
DRILLING EQUIPMENT CME 55/ATV
DRILLING STARTED 8/12/92 ENDED 8/12/92

REMARKS
WOH - Weight of Hammer.

WATER LEVEL (ft.)

▼ 7.0' during drilling.

▼ 3.0' after drilling.

BORING NUMBER P-6R SHEET OF 3 CLIENT City of Springfield CWLP PATRICK ENGINEERING INC. PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B LOCATION N 4,719.5 E 2,175.7 LOGGED BY KRR GROUND ELEVATION 524.8 Water Content ELEVATION (FT SAMPLE LL SOIL/ROCK **NOTES** BLOW 50 TYPE & NO. DEPTH Unconfined Compressive Strength (TSF) * DEPTH (FT) DESCRIPTION TEST RESULTS RECOVERY(IN) 524.8 0.0 Drilled to top of bedrock at 32.5 feet without sampling. Refer to Boring Log P-6D for soil conditions above top of bedrock.

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 6-1/4" I.D. HSA.
DRILLING EQUIPMENT CME-55/ATV
DRILLING STARTED 8/5/92 ENDED 8/6/92

	REMARKS	WATER LEVEL (ft.)
		立
		▼
Į		▼

BORING NUMBER P-6R SHEET 2 OF 3 CLIENT City of Springfield CWLP PATRICK ENGINEERING INC. PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B LOCATION N 4,719.5 E 2,175.7 LOGGED BY KRR **GROUND ELEVATION** 524.8 Water Content ELEVATION LL E SAMPLE -0-**NOTES** BLOW STRATA SOIL/ROCK TYPE & NO. DEPTH (Unconfined Compressive DEPTH (FT) DESCRIPTION **TEST RESULTS** Strength (TSF) * RECOVERY(IN) 504.8 20.0 Drilled to top of bedrock at 32.5 feet without sampling. Refer to Boring Log P-6D for soil conditions above top of bedrock.

PQ-1

32.5-38.5 72"R Ceased drilling at 32.5' on 8/5/92. Switched to PQ coring and cored on 8/6/92.

RQD = 100%

RQD = 100%

 ∇

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 6-1/4" I.D. HSA.
DRILLING EQUIPMENT CME-55/ATV

PQ-2
38.5-42.5
48"R

WATER LEVEL (ft.)

▼

▼

ENDED 8/6/92

492.3 32.5

DRILLING STARTED 8/5/92

Gray shale, massive, excellent

				BC	ORING	NUMBER	F	P-6R	2.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	SH	EET	3	OF	3
PA	PATRICK ENGINEERING INC.				LIENT				ngfield C					
				PF	ROJEC DCATI				ill-Hydrog	50	vest	49	96B	
LOGG	FD B	Y	KRR		JUAII	ON	14 4,	/ 19.5	E 2,175.	,				
			ATION 524.8											
NO	FT)			_		SAMPLE		PL G	Water Con		LL		OTE	
/ATI	E	ATA	SOIL/ROCE DESCRIPTIO			TYPE & NO. DEPTH (FT)	V	Unco	20 3	0 40			IOTE:	
ELEVATION	DEPTH (FT)	STRATA	DESCRIPTIO)N		RECOVERY(IN	BLOW	1	Strength (rsf) *	5	TEST	RES	ULTS
484.8	40.0		Gray shale, massive, excelle	ent			1							
482.3	42.5													
			End of Boring at 42.5'.									Piezon was in		
												compl		
												drilling	. Refe	r to
												as-buil P-6R f	or moi	
												details	•	
				96										
				11.535										
[DD:::	INIC 1	2011	IDACTOD Boddel Delline		DEF	AADVC			NA/A TES	1 5 /5	18.	`		
DRILL			FRACTOR Patrick Drilling HOD 6-1/4" I.D. HS	1	HEN	MARKS			WATER	LEVE	L (1t.	<u>)</u>		
11			PMENT CME-55/ATV						\\rightarrow{\ri					
			RTED 8/5/92 ENDED 8/	6/92					Ā					

BORING NUMBER

P-7D

SHEET 1 OF 2

CLIENT

PROJECT & NO.

City of Springfield CWLP

FGDS Landfill - Hydrogeo Invest. - 496B N 5,342.8 E 2,432.5

LOGGED BY KRR

GROUND ELEVATION 526.5

GROU	ND F	LEVA	ATION 526.5			
ELEVATION	ОЕРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	Vater Content
526.5 515.0 514.5	12.0		Brown silty clay, trace fine sand, stiff to very stiff, medium plasticity, wet CL Mottled from 2.0'. Brown clayey fine sand, little silt, loose, poorly graded, moist SC Gray silty clay, trace fine sand, soft to stiff, low to medium plasticity, wet CL	SS-2 2.0-4.0 24"R SS-3 4.0-6.0 24"R SS-4 6.0-8.0 24"R SS-6AB 10.0-12.0 24"R SS-6AB 10.0-12.0 24"R SS-7 12.0-14.0 24"R SS-8 14.0-16.0 24"R SS-9 16.0-18.0 24"R	3 3 4 4 5 5 5 6 2 1 2 2 2 3 3 WOH 1 1 1 2 2 2 WOH 1 1 1 1	19.2
1						

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D. HSA.
DRILLING EQUIPMENT CME-55/ATV
DRILLING STARTED 7/30/92 ENDED 7/30/92

REMARKS WOH - Weight of Hammer. $\begin{array}{l} \underline{\text{WATER LEVEL (ft.)}} \\ \underline{\nabla} \quad \textbf{20.0'} \text{ during drilling.} \\ \underline{\underline{\mathbf{v}}} \end{array}$

 $\underline{\underline{\mathbb{A}}}$

BORING NUMBER

P-7D

SHEET 2 OF 2

CLIENT

PROJECT & NO. LOCATION

City of Springfield CWLP

FGDS Landfill - Hydrogeo Invest. - 496B N 5,342.8 E 2,432.5

LOGGED BY KRR

GROUND ELEVATION 526.5

GROU	IND E	LEV	ATION 526.5	•							
Z	F			SAMPLE		DI	_ Wat	er Con	tent	1.1	
ELEVATION	БЕРТН (FT)	<	SOIL/ROCK	TYPE & NO.	S	1	L 2	 20 3	0 4	\ LL o бо	NOTES
4	표	STRATA	DESCRIPTION	DEPTH (FT)	BLOW		1	ed Cor		1	&
Щ.	ED.	IR	DESCRIPTION	RECOVERY(IN)	35		Stre	ngth (TSF) >	K	TEST RESULTS
100000000000000000000000000000000000000				INCOVERT (IN)			1	2 3	3 4	5	
506.5	20.0		Gray silty clay, trace fine sand, soft, low	SS-11	WOH						Water level at
			to medium plasticity, wet	20.0-22.0	1	*		22.6			20.0' during
			CL	24"R	1			22.6 Q			drilling.
					1			1			
				3T-12		*		l i			
				22.0-24.0				1			
				20"R				i			
								!			
502.5	24.0							i i			
			Gray clayey silt, some fine sand, loose,	SS-13	1			1			SS-13:
			poorly graded, saturated	24.0-26.0	2			24.3			Gravel = 0%
			CL-ML	24"R	1 3			Ò			Sand = 34%
500.5	26.0				3			1			Silt or Clay = 66%
555.5	25.5	KAY!	Gray fine sand, some silt, very loose,	SS-14	1			1			
			poorly graded, saturated	26.0-28.0	1		10	1			
			SM	18"R	1		19	} '			
					1		1				
							/				
				SS-15	1		,				
497.5	29.0			28.0-30.0	1	1	<u>o</u> .′9				
			Gray coarse to fine sand, some coarse to	20"R	3		۲.				
			fine gravel, little silt, loose, well graded,		"		``				
			saturated	SS-16	2		١,	*			SS-16:
495.5	31.0		SW-SM/SM	30.0-32.0	2			342			Gravel = 27%
100.0	01.0	7777	Gray silty clay to clay, trace fine sand,	20"R	4			24.2			Sand = 59%
			very stiff to hard, medium to high		11			,'			Silt or clay = 14%
			plasticity, moist	00.17			/			*	
494.0	32.5		CL/CH _	SS-17 32.0-34.0	28 115		/				
493.3	33.2		Gray shale		200+		13,3				
			End of Boring at 33.2'.		/3"						
											Piezometer was
											installed
											immediately after
											completion of
											drilling.
											Refer to as-built diagram P-7D for
											more details.
				1							

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD

4-1/4" I.D. HSA.

DRILLING EQUIPMENT

CME-55/ATV

DRILLING STARTED 7/30/92 ENDED 7/30/92

REMARKS

WOH - Weight of Hammer.

WATER LEVEL (ft.)

20.0' during drilling.

Ţ

<u>V</u>

BORING NUMBER P-7S SHEET 1 OF CLIENT City of Springfield CWLP PATRICK ENGINEERING INC. PROJECT & NO. FGDS Landfill-Hydrogeo. Invest. - 496B LOCATION N 5,337.1 E 2,426.3 LOGGED BY KRR **GROUND ELEVATION** 526.3 Water Content ELEVATION (FT PL SAMPLE LL NOTES SOIL/ROCK STRATA BLOW 50 TYPE & NO. DEPTH (Unconfined Compressive DEPTH (FT) DESCRIPTION Strength (TSF) * **TEST RESULTS** RECOVERY(IN) 526.3 0.0 Drilled to 10.0' without sampling. Refer to Boring Log P-7D for soil conditions Soil conditions from 0' to 10'. from 0' to 10' were consistent with the soil conditions encountered at P-7D based on soil cuttings. 516.3 10.0 Brown mottled silty clay, trace fine sand, SS-1ABC SS-1B: 515.8 10.5 stiff, medium plasticity, wet 10.0-12.0 2 Gravel = 0% 11.0 515.3 24"R Sand = 43%2 * 2 Silt or Clay = 57% Gray clayey silt to clayey sand, loose, poorly graded, moist 514.1 12.2 SS-2 2 Water was not SC/ML 12.0-14.0 3 encountered during Brown silty clay, trace fine sand, stiff, 28 24"R 3 or immediately medium plasticity, wet after drilling. 512.3 14.0 Gray silty clay, medium fine sand, stiff, Piezometer P-6S medium plasticity, wet was installed after CL completion of End of Boring at 14.0'. drilling. Refer to as-built diagram P-6S for details.

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D. HSA.
DRILLING EQUIPMENT CME-55/ATV
DRILLING STARTED 7/30/92 ENDED 7/30/92

BORING NUMBER

P-7M

SHEET 1 OF

CLIENT

City of Springfield CWLP PROJECT & NO.

FGDS Landfill-Hydrogeo. Invest. - 496B

LOCATION N 5,337.0 E 2,432.8 LOGGED BY KRR GROUND ELEVATION 525.9 Water Content PL 🖸 ELEVATION F LL SAMPLE --0--**NOTES** STRATA SOIL/ROCK BLOW 20 30 50 TYPE & NO. DEPTH Unconfined Compressive DEPTH (FT) DESCRIPTION TEST RESULTS Strength (TSF) * RECOVERY(IN) 525.9 0.0 Drilled to 16.0' without sampling. Refer to Boring Log P-6D for soil conditions Soil conditions from 0' to 16'. from 0' to 16' were consistent with soil conditions in P-6D based on soil cuttings. 3T-2: Dry dens. = 101pcf k = 1.5 E-07 cm/s509.9 16.0 * Gray silty clay, trace fine sand, soft, SS-1 Piezometer P-7M 1 2.0 medium plasticity, wet 16.0-18.0 1 was installed CL 24"R 1 immediately after 2 completion of drilling. * 3T-2 Refer to as-built 18.0-20.0 diagram P-7M for 2.5 20"R more details. End of Boring at 20.0'. **REMARKS** WATER LEVEL (ft.) DRILLING CONTRACTOR Patrick Drilling 4-1/4" I.D. HSA. **DRILLING METHOD** Ā DRILLING EQUIPMENT CME-55/ATV V

DRILLING STARTED 7/30/92 ENDED 7/30/92

soil conditions from 0' to 34'.

BORING NUMBER

P-7R

SHEET 1 OF 3

CLIENT

LOCATION

PROJECT & NO. FG

City of Springfield CWLP FGDS Landfill-Hydrogeo. Invest. - 496B

N 5,326.9 E 2,424.5

LOGGED BY KRR

ELEVATION

525.4

GROUND ELEVATION 525.4

STRATA

DRILLING EQUIPMENT

CME-55/ATV

DRILLING STARTED 7/31/92 ENDED 7/31/92

DEPTH

0.0

Water Content LL SAMPLE NOTES SOIL/ROCK 30 50 TYPE & NO. 20 & Unconfined Compressive Strength (TSF) ** DEPTH (FT) **DESCRIPTION** TEST RESULTS RECOVERY(IN) Drilled to 34.0' (auger refusal) without sampling. Refer to Boring Log P-7D for

DRILLING CONTRACTO	PR Patrick Drilling 6-1/4" I.D. HSA.	REMARKS	WATER LEVEL (ft.)			

BORING NUMBER

P-7R

SHEET 2 OF 3

CLIENT

LOCATION

PROJECT & NO. FGDS La

City of Springfield CWLP

FGDS Landfill-Hydrogeo. Invest. - 496B N 5,326.9 E 2,424.5

LOGGED BY KRR

GROUND ELEVATION 525.4

GROU	ND E	LEVA	ATION 525.4							
z				SAMPLE		DI -	Water Conf		L	
의 의	E	4	SOIL/ROCK	TYPE & NO.	_{(O}	10		A L	50	NOTES
\ \{\bar{\bar{\bar{\bar{\bar{\bar{\ba	E	7		DEPTH (FT)	>E		onfined Com		\dashv	&
ELEVATION	ОЕРТН (FT)	STRATA	DESCRIPTION	RECOVERY(IN)	BLOW		Strength (T	SF) *		TEST RESULTS
		S		TIECO VETT (IIV)	<u>800</u>	1	2 3	4	5	
505.4	20.0		Drilled to 34.0' (auger refusal) without							Soil conditions are
			sampling. Refer to Boring Log P-7D for							consistent with soil
			soil conditions from 0' to 34'.							conditions
								1		encountered at P-7D based on
										soil cuttings.
										oon outtingor
								1		
						1 1				
			ŧ							
491.4	34.0			ļ						27779
			Gray shale, massive, strongly cemented,	PQ-1 34.0-39.0	1	1 1				Changed to PQ
			excellent	60"R						coring from 34.0'.
				00 K						RQD = 100%
				PO 3	-					
				PQ-2 39.0-44.0						
				00.0-44.0						

DRILLING CONTRACTOR	Patrick Drilling
DRILLING METHOD	6-1/4" I.D. HSA.
DRILLING EQUIPMENT	CME-55/ATV
DOLLING STARTED 7/21	/92 ENDED 7/31/9

REMARKS	WATER LEVEL (ft.)
	立
	▼ .

PA	TRI	CK	ENGINEERING INC.	CLIENT	T & NO.	City o	P-7R of Springf Landfill- 326.9 E 2	Hydroge	eo. Invest	3 OF 3
LOGG GROU			KRR ATION 525.4							
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	≥Z	PL 10 Unconfi	ter Conte 20 30 ned Comp ength (TS 2 3	40 50	NOTES & TEST RESULTS
481.4	44.0		Gray shale, massive, stongly cem excellent End of Boring at 44.0'.	ented,	60*R					Piezometer was installed immediately after completion of coring. Refer to as-built diagram P-7R for more details.
DRILI	LING I	METH EQUII	TRACTOR Patrick Drilling HOD 6-1/4" I.D. HSA. PMENT CME-55/ATV RTED 7/31/92 ENDED 7/31/9		MARKS		<u>₹</u> <u>₹</u>		EVEL (ft.	.)

BORING NUMBER

P-8D

SHEET 1 OF 2

CLIENT

LOCATION

PROJECT & NO.

City of Springfield CWLP FGDS Landfill - Hydrogeo Invest. - 496B

N 4,939.7 E 2,482.7

LOGGED BY KRR

GROUND FLEVATION 522 7

GROU	IND E	LEV	ATION 522.7						
ELEVATION 522.7	O DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	10	Water Content 20 30 onfined Compre Strength (TSF)	40 50	NOTES & TEST RESULTS
518.2			Brown to brownish-gray silty clay, trace fine sand, stiff, medium plasticity, wet, fill CL Dark gray organic silty clay, trace fine sand, wood fragments present, soft, medium plasticity, wet to saturated, fill OL Chunks of wood in SS-4	SS-2 2.0-4.0 8"R SS-3 4.0-6.0 10"R	2 2 3 3 1 2 1 1 2 1 1 1	*	25.3 , , 19/3 * 0	3	SS-4: LL = 37 PL = 21 PI = 16
514.7 513.9 513.2 510.5	8.8 9.5		Gray silty sand, little clay, loose, poorly graded, moist, fill SM Gray clayey sand, little silt, loose, poorly graded, moist, fill SC Dark gray to black organic silty clay, wood fragments present, medium to high plasticity, wet to saturated, fill OL/OH Chunks of wood and lenses of sand in SS-6 Gray silty clay, trace fine sand, soft, medium plasticity, wet CL	SS-5AB 8.0-10.0 24"R SS-6 10.0-12.0 20"R SS-7 12.0-14.0 24"R SS-8 14.0-16.0 24"R	2 1 2 2 1 1 1 2	4 95.7 *	21.3 Q 27.7 24.8 Q 24.8 Q	47.	Water level at
				3T-10 18.0-20.0 0"R					Tube pushed but no recovery.

DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD

DRILLING EQUIPMENT

4-1/4" I.D. HSA CME 55/ATV

DRILLING STARTED 8/13/92 ENDED 8/13/92

REMARKS

WOH - Weight of Hammer.

WATER LEVEL (ft.)

▼ 8.0′ after drilling

<u>Ā</u>

BORING NUMBER

P-8D

SHEET 2 OF 2

CLIENT

LOCATION

City of Springfield CWLP

N 4,939.7 E 2,482.7

PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B

LOGGED BY **KRR**

GROU	IND E	LEV	ATION 522.7					
ELEVATION 202.7	O DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION Gray silty clay, trace to little fine sand,	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	Water Content PL	∆ LL 40 50 sive ₩ 4 5	TEST RESULTS
			soft, medium plasticity, wet CL	3T-11 20.0-22.0 14"R				
500.7 499.9			Gray silty fine sand, very loose, poorly graded, saturated SM Gray coarse to fine sand and coarse to		WOH WOH WOH 13			SS-13A Gravel = 34% Sand = 50% Silt or clay = 16%
497.2	25.5		fine gravel, little silt, medium dense, well graded, saturated SW-SM/SM	SS-13AB 24.0-26.0 24"R	15 16 12 12		*	
496.2 495.7			Gray silty clay, trace fine sand, hard, medium to high plasticity, moist CL/CH Gray shale	SS-14 26.0-27.0 6"R	10 28 100+	18.2 O 13/8		Auger refusal at
			End of Boring at 27.0'					Water level at 8.0' immediately after drillling. Piezometer was installed immediately after drilling. Refer to As-Built Diagram P-8D for more details.

DRILLING METHOD

DRILLING CONTRACTOR Patrick Drilling

DRILLING EQUIPMENT

4-1/4" I.D. HSA CME 55/ATV

DRILLING STARTED 8/13/92 ENDED 8/13/92

REMARKS

WOH - Weight of Hammer.

WATER LEVEL (ft.)

▼ 8.0′ after drilling

 $\bar{\mathbf{x}}$

BORING NUMBER

PROJECT & NO.

P-8S

SHEET 1 OF 1

CLIENT

LOCATION

City of Springfield CWLP

FGDS Landfill - Hydrogeo Invest. - 496B N 4,933.1 E 2,486.0

LOGGED BY KRR

GROUND ELEVATION 522.8

GROU	NDE	LEV	ATION 522.8			
Z	E			CAMPIE		Water Content
ELEVATION	БЕРТН (FT)	d	SOIL/ROCK	SAMPLE		PL
LA	王	1		TYPE & NO.	TS	10 20 30 40 50 NOTES
\geq	PT	A A	DESCRIPTION	DEPTH (FT)	185	Unconfined Compressive Strength (TSF) * TEST RESULTS
	DE	STRATA		RECOVERY(IN)	BLOW	1 2 3 4 5
522.8	0.0		Drilled to 6.0' without sampling. Refer		100	+ + + + + + + + + + + + + + + + + + + +
1			to Boring Log P-8D for soil conditions			
			from 0.0' to 6.0'.			
516.8	6.0					
			Dark gray silty clay, trace fine sand,	SS-1	1	
			organics and wood fragments present,	6.0-8.0	1	27.6
			soft, medium plasticity, wet, fill	8"R	1	27.6 S
			OL		1	
514.8	8.0					24!7
			Gray clayey fine sand, little silt, loose,	SS-2AB	1	
			poorly graded, moist	8.0-10.0	2	89.Gravel = 0%
513.3	9.5	///	sc	14"R	1	♥Sand = 12%
			Dark gray to black organic silty clay,		2	/ Silt or clay = 26%
			trace medium to fine sand, wood	SS-3		
			fragments present, soft, medium	10.0-12.0	1 2	
			plasticity, wet to saturated	16"R	1	41.6
			OL	1011	2	
510.8	12.0					
			End of Boring at 12.0'			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
						Water was not encountered during
						or immediately
			i			after drilling.
						Piezometer was
						installed after
						completion of
						drilling. Refer to
						As-Built Diagram
						P-8S for more
						details.
(\ (

DRILLING CONTRACTOR Patrick Drilling 4-1/4" I.D. HSA **DRILLING METHOD** DRILLING EQUIPMENT CME 55/ATV DRILLING STARTED 8/13/92 ENDED 8/13/92 REMARKS WOH - Weight of Hammer.

WATER LEVEL (ft.) $\bar{\Delta}$ V V

BORING NUMBER

P-9D

SHEET 1 OF 3

CLIENT

LOCATION

PROJECT & NO. FGDS Landfill - I

City of Springfield CWLP FGDS Landfill - Hydrogeo Invest. - 496B

N 4,446.3 E 2,422.4

LOGGED BY

KRR

GROUND ELEVATION 553.2

Water Content	
SAMPLE PL D A LL SAMPLE	
SOIL/ROCK SAMPLE TYPE & NO. DESCRIPTION DESCRIPTION SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN) STrength (TSF) ** Strength (TSF) ** Strength (TSF) ** TEST RI	TES
SOIL/ROCK TYPE & NO. DESCRIPTION DESCRIPTION DEPTH (FT) RECOVERY(IN) DEPTH (TSF) Strength (TSF) TEST RI	<u>s</u>
DESCRIPTION DESCR	ESULTS
.2 0.0 Dark brown silty clay, trace fine sand,	
low plasticity, moist, fill	
.7 1.5 CL AU-1 14.8 Q	
2.0-4.0 2 18	
Trace sulfur waste	
Trace sulfur waste	
SS-3 3	
4.0-6.0 4 16.1	
SS-4 3	
18"R 6 15'.1 *	
8.0-10.0 5 18.4 Q *	
SS-6 4 \	
10.0-12.0 5 20.5	
10.0-12.0 5 20.5 18"R 5 **	
SS-7 2	
12.0-14.0 2 16/4 #\$	
3T-8 3T-8:	
14.0-16.0 Dry Den.	=102.3
24"R pcf	
k=1.3 E-0	J8cm/s
SS-9 3 1	
18"R 6 19 5	
.7 18.5 SS-10 4	
Dark brown silty clay, trace fine sand,	
very stiff, low to medium plasticity, noist to wet fill 12"R 9 0 ** 11"	
.2 20.0 moist to wet, fill	

REMARKS

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D. HSA
DRILLING EQUIPMENT CME 75
DRILLING STARTED 8/18/92 ENDED 8/18/92

-1/4" I.D. HSA | WOH = Weight of Hammer.

≖

 $\overline{\mathbf{A}}$

BORING NUMBER

P-9D

SHEET 2 OF 3

CLIENT

PROJECT & NO. LOCATION

City of Springfield CWLP FGDS Landfill - Hydrogeo Invest. - 496B

N 4,446.3 E 2,422.4

LOGGED BY KRR

GROUND ELEVATION 553.2

GROU	IND E	ELEVA	ATION 553.2						
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT)	BLOW	PL 10 Uncor	Vater Content	0 50 ve	&
ELE	DEP	STR	DEGG. III TIGHT	RECOVERY(IN)	BLO	1 1	Strength (TSF) * 2 3 4	5	TEST RESULTS
533.2	20.0		Dark brown silty clay, trace fine sand, very stiff, low to medium plasticity, moist to wet, fill	SS-11 20.0-22.0 18"R	7 10 14 16		19.9	*	
			CL	SS-12 22.0-24.0 12"R	3 3 4 8		22.7 CX		
500.0				SS-13 24.0-26.0 18"R	2 3 4 6		22.7		
526.9	26.3		Brown silty clay, trace fine sand, stiff, medium plasticity, wet CL	SS-14 26.0-28.0 20"R	2 3 3 4	*	25.0 O		
				SS-15 28.0-30.0 24"R	1 2k 2 3	*	24.6		
521.2	32.0			SS-16 30.0-32.0 24"R	WOH WOH 2 3	1 1	25.6		
			Gray silty clay, trace fine sand, medium stiff, medium plasticity, wet		WOH WOH WOH	*	28.3		Water level at 32.5 feet during drilling.
				SS-18 34.0-36.0 24"R	WOH WOH 1 3		23′.9 Q		
				SS-19 36.0-38.0 24"R	WOH WOH 1 2		28.9 Q		
514.6	38.6		Gray silty clay to clayey silt and medium to fine sand, very soft, medium plasticity,	SS-20 38.0-40.0 24"R	WOH WOH 2		32.8		
513.2	40.0		wet		3				
						T			

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D. HSA
DRILLING EQUIPMENT CME 75
DRILLING STARTED 8/18/92 ENDED 8/18/92

REMARKS
WOH = Weight of Hammer.

Ā

BORING NUMBER

P-9D

SHEET 3 OF 3

CLIENT

LOCATION

PROJECT & NO. F

City of Springfield CWLP FGDS Landfill - Hydrogeo Invest. - 496B

N 4,446.3 E 2,422.4

LOGGED BY KRR

GROUND ELEVATION 553.2

GROL	ND E	LEVA	ATION 553.2				
ELEVATION 213.2	OEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	mO.		NOTES & TEST RESULTS
013.2	40.0		Gray silty clay to clayey silt and medium to fine sand, very soft, medium plasticity, wet CL/CL-ML	SS-21 40.0-42.0 24"R	WOH WOH WOH 1	1 296	
	¥			SS-22 42.0-44.0 24"R	WOH WOH WOH 2	1 24/1	
				SS-23 44.0-46.0 24"R	WOH WOH WOH	24.9	
					WOH WOH WOH	* 24.4 O	
				SS-25 48.0-50.0 24"R	WOH WOH 1 2		
501.2	52.0			SS-26 50.0-52.0 24"R	WOH WOH WOH	2g.7 2g.7	SS-26: Gravel = 0% Sand = 33% Silt = 53%
	02.0		Gray silty sand, very loose, poorly graded, saturated	SS-27 52.0-54.0 24"R	WOH WOH 1		Clay = 14% SS-29A Gravel = 22%
497.9	55.3		Gray coarse to fine sand, some fine	SS-28 54.0-56.0 24"R	WOH WOH 3 7		Sand = 66% Silt or clay = 12%
495.7	57.5		gravel, very loose to loose, poorly graded, saturated SP-SM/SM	SS-29AB 56.0-58.0 24"R	6 9 17 32		Piezometer was
495.2		- 1	Gray shale End of Boring at 58.0'		32		installed immediately after drilling. Refer to As-built Diagram P-9D for details.

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D. HSA

DRILLING EQUIPMENT CME 75

DRILLING STARTED 8/18/92 ENDED 8/18/92

REMARKS
WOH = Weight of Hammer.

WATER LEVEL (ft.)

≖

V

PATRICK ENGINEERING INC.				CLIENT PROJEC	CT & NO.	City FGDS	S Landfi	ill-Hydro	WLP geo. In	ET vest.)F 2
LOGG			SAS ATION 553.1	J LOCAT	ION	N 4,	447.3	E 2,415.	ь		
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN	≥5	PL T	Water Con 20 nfined Cor Strength (*2	0 40 npressive	LL 50	TES & RESULTS
553.1	0.0		Drilled to 34' without sampling. Boring Log P-9D for details.	See							
DRILL	.ING N	NETH QUIF	TRACTOR Patrick Drilling HOD 4-1/4" ID HSA PMENT CME 75 ETED 8/19/92 ENDED 8/19/9		MARKS			WATER	LEVEL	(ft.)	

			ENGINEERING INC.	CLIENT	CT & NO.	City FGDS	S Land	ingfield C Ifill - Hyd B E 2,415	rogeo Inve	2 OF 2 st 496B
LOGG GROU			KRR ATION 553.1	~						
ELEVATION	ОЕРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN	≥Z	10		The state of the	NOTES & TEST RESULTS
519.1 516.1	34.0		Gray silty clay, trace fine sand, mestiff, medium plasticity, moist to w		3T-1 34.0-36.0 24"R		*	24.1		3T-1: Dry dens. = 101.2 pcf k = 1.3 E-06cm/s
DRILL DRILL	ING N	1ETH QUIP	RACTOR Patrick Drilling OD 4-1/4" ID HSA MENT CME 75 TED 8/19/92 ENDED 8/19/92	WC	MARKS DH = Weigh nmer.	t of		WATER	LEVEL (ft	.)

PA	TRI	СК	ENGINEERING INC.	CLIENT	CT & NO.	City (S Landf	ngfield C' ill - Hydr E 2,639.	ogeo Inv		1 OF - 496B	2
LOGG GROU			JSV ATION 564.6									
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW	PL T	Water Con 20 3 onfined Cor Strength (0 40 npressive	50	NOTE & ST RES	
564.6 563.6	1.0		Intermediate cover, fill Light gray sludge, fill									
551.6 544.6			Gray sludge, dry, fill		SS-1 13.0-15.0 19"R	4 7 8 6						
DRILL	ING C	ONT	RACTOR Patrick Drilling		/ARKS		2		LEVEL (1	t.)		
	ING E	QUIP	OD 4" I.D. HSA MENT CME-75/ATV FED 7/25/92 ENDED 7/25/9	Han	H = Weight nmer.	of		⊼ ⊼ ∑				

PATRICK ENGINEERING INC. CLIENT PROJECT & NO. LOCATION N 4,326.5 E 2,639.9 COCATION N 4,326.5 E 2,639.9 SOIL/ROCK DESCRIPTION DESCRIPTI					RO	RING	NUMBER		-P-1			CL	JEET	2 05	2
PROJECT & NO. LOCATION PROJECT & NO. LOCA	PATRICK ENGINEERING INC									SHEET 2 OF 2					2
DORILLING CONTRACTOR Patrick Drilling DRILLING CONTRACTOR DRILLING CONTRACTOR DRILLING CONTRACTOR DRILLING CONTRACTOR DRILLING CONTRACTOR DRILLING CONTRACTOR DRILLING CONTRACTOR DRILLING CONTRACTOR DRILLING CONTRACTOR DRILLING CONTRACTOR DRILLING CONTRACTOR DRILLIN	PA	TRI	CK	ENGINEERING INC.	1			-	-	_			Invoc	+ 1065	
DRILLING CONTRACTOR Patrick Drilling DRILLING CONTRACTOR PATRICK DRILLING CONTRACTOR PATRICK DRILLING CONTRACTOR PATRICK DRILLING CONTRACTOR PATRICK DRILLING CONTRACTOR PATRICK DRILLING CONTRACTOR PATRICK DRILLING CONTRACTOR PATRICK DRILLING CONTRACTOR PATRICK DRILLING CONTRACTOR PATRICK DRILLING CONTRACTOR PATRICK DRILLING CONTRACTOR PATRICK DRILLING CONTRACTOR PATRICK DRILLING CONTRACTOR PATRICK DRI					1								IIIVE5	1 4500)
SAMPLE SOLL/ROCK TYPE & NO. DEPTH ETH SOLL SAMPLE SOLL SAMPLE SOLL SAMPLE SOLL SAMPLE SOLL SAMPLE SOLL Soll	LOGG	ED B	v	ISV	LO	CAIN	JIN	14 4,	320.5	L Z,	033.	9			
SAMPLE TYPE & NO. DETRICON DESCRIPTION DEPTH (FI) SECULTIVE NO. DEPTH (
DeliLling Contractor Patrick Drilling Drilling Grilling								Т	T	Wate	er Con	tent			
DRILLING CONTRACTOR Petrick Drilling DRILLING CONTRACTOR Petrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING BOUPMENT CME-75/ATV DRILLING COUPMENT CME-75/ATV DRILLING CONTRACTOR Petrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV DRILLING CONTRACTOR Petrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV DRILLING CONTRACTOR Petrick Drilling DRILLING CONTRACTOR Petrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV	0.	(FT	₫	SUII /BUCK				100	_			<u>^</u>	7	ТОИ	FS
DRILLING CONTRACTOR Petrick Drilling DRILLING CONTRACTOR Petrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING BOUPMENT CME-75/ATV DRILLING COUPMENT CME-75/ATV DRILLING CONTRACTOR Petrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV DRILLING CONTRACTOR Petrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV DRILLING CONTRACTOR Petrick Drilling DRILLING CONTRACTOR Petrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV	[A	프	AT,	1				>N TS	1	onfine	d Con		1	8	
DRILLING CONTRACTOR Petrick Drilling DRILLING CONTRACTOR Petrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING BOUPMENT CME-75/ATV DRILLING COUPMENT CME-75/ATV DRILLING CONTRACTOR Petrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV DRILLING CONTRACTOR Petrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV DRILLING CONTRACTOR Petrick Drilling DRILLING CONTRACTOR Petrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV	LE))EP	TR	DESCRIPTION				55		Stren	ngth (1	rsF) >	K	TEST RE	SULT
End of Boring at 22.0°. End of Boring at 22.0			1000000	Dark gray sludge, saturated, fill			SS-2					4	5		
End of Boring at 22.0'. End of Boring at 22.0'. End of Boring at 22.0'. End of Boring at 22.0'. End of Boring at 22.0'. End of Boring at 22.0'. End of Boring at 22.0'. End of Boring at 22.0'. Leachate piezometer was installed immediatel after completion of drilling. Refor to as-built diagram LP-1 for details. DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV REMARKS WOH = Weight of Hammer.			XXX				20.0-22.0								
End of Boring at 22.0'. End of Boring at 22.0'. End of Boring at 22.0'. End of Boring at 22.0'. End of Boring at 22.0'. Leachate piezometer was installed interested intere			XXX				22"R								
DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4* I.D. HSA DRILLING EQUIPMENT CME-75/ATV Leachste piezomoter was installed immediatel efter completion of drilling, Refer to as-built diagram LP-1 for detaile.	542.6	22.0	\ggg					6							
DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING GOUIPMENT CME-75/ATV REMARKS WOH = Weight of Hammer. WATER LEVEL (ft.) WATER LEVEL (ft.) WATER LEVEL (ft.) WATER LEVEL (ft.) WATER LEVEL (ft.) WATER LEVEL (ft.) WATER LEVEL (ft.) WATER LEVEL (ft.) WATER LEVEL (ft.) WATER LEVEL (ft.) WATER LEVEL (ft.) WATER LEVEL (ft.)				End of Boring at 22.0'.				1						Leachate	
DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV REMARKS WOH = Weight of Hammer. WATER LEVEL (ft.) Y THE Completion of drilling and immediate the result of the set built disgram I.P.1 for details.															was
DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV REMARKS WOH = Weight of Hammer. WATER LEVEL (ft.) Y THE PATRICK DRILLING WATER LEVEL (ft.)															lt after
DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV REMARKS WOH = Weight of Hammer. WATER LEVEL (ft.) V. V. V. V. V. V. V. V. V. V. V. V. V.															
DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV DRILLING EQUIPMENT CME-75/ATV DRILLING WATER LEVEL (ft.) Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q															
DRILLING CONTRACTOR Patrick Drilling DRILLING METHOD 4" I.D. HSA DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV REMARKS WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer. ▼ ▼										ĺ					
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer. ▼ ▼															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer. ▼ ▼															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.				*					1 1						
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer. ▼ ▼															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.					r										
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer. ▼ ▼															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer. ▼ ▼															
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer. ▼ ▼					_									<u> </u>	
DRILLING METHOD 4" I.D. HSA DRILLING EQUIPMENT CME-75/ATV WOH = Weight of Hammer.	DRILL	ING C	CONT	RACTOR Patrick Drilling		REM	ARKS			WA	TER	LEVE	L (ft)	
DRILLING EQUIPMENT CME-75/ATV Hammer.	11							t of				v L	- 116.	<u> </u>	
						Ham	mer.								
(DRILLING STARTED 1/23/32 ENDED 1/23/32 / \				TED 7/25/92 ENDED 7/25/92						▼ ▼					

BORING NUMBER LP-2 SHEET 1 OF 2 CLIENT City of Springfield CWLP PATRICK ENGINEERING INC. PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B LOCATION N 4,257.5 E 2,365.8 LOGGED BY **JSV** GROUND ELEVATION 568.2 Water Content ELEVATION SAMPLE **NOTES** SOIL/ROCK BLOW STRATA TYPE & NO. DEPTH Unconfined Compressive DEPTH (FT) DESCRIPTION TEST RESULTS Strength (TSF) * RECOVERY(IN) 568.2 0.0 Intermediate cover, fill 567.2 Light gray sludge, fill 555.2 13.0 Light gray sludge, dry, fill SS-1 13.0-15.0 34 15"R 60 DRILLING CONTRACTOR Patrick Drilling **REMARKS** WATER LEVEL (ft.) **DRILLING METHOD** 4-1/4" I.D. HSA WOH = Weight of $\bar{\Delta}$ Hammer. DRILLING EQUIPMENT CME-75/ATV V DRILLING STARTED 7/25/92 ENDED 7/25/92

BORING NUMBER LP-2 SHEET 2 OF CLIENT City of Springfield CWLP PATRICK ENGINEERING INC. PROJECT & NO. FGDS Landfill - Hydrogeo Invest. - 496B LOCATION N 4,257.5 E 2,365.8 LOGGED BY JSV GROUND ELEVATION 568.2 Water Content (FT) ELEVATION SAMPLE LL **NOTES** SOIL/ROCK STRATA BLOW TYPE & NO. 30 DEPTH (Unconfined Compressive DESCRIPTION DEPTH (FT) TEST RESULTS Strength (TSF) * RECOVERY(IN) 548.2 20.0 Light gray sludge, saturated, fill SS-2 9 20.0-22.0 10 19"R 12 26 546.2 22.0 End of Boring at 22.0'. Leachate piezometer was installed immediately after completion of drilling. Refer to as-built diagram LP-2 for more details.

DRILLING CONTRACTOR Patrick Drilling
DRILLING METHOD 4-1/4" I.D. HSA
DRILLING EQUIPMENT CME-75/ATV
DRILLING STARTED 7/25/92 ENDED 7/25/92

REMARKS	WATER LEVEL (ft.)
WOH = Weight of	立
Hammer.	Ā
	₩

APPENDIX A2: FGDS UNIT 2 LANDFILL MONITOR WELL LOGS

Professional Service Industries, Inc.

RECORD OF SUBSURFACE EXPLORATION

Во	ring	R-	-101

Project Name: Monitoring Well Installations Date of Boring: January 15, 1990

Site: CWLP Ash Disposal Facility Project No.: 020-05001

DESCRIPTION	DEPTH	SAMPLE	Ĥ	a _u	Q _p	Mc	REMARKS
SURFACE							
*Note 1	1 -	-					_
	-	1					_
Silty clay to clayey silt, light		1-55	35%				-
brown, light grey	5 =		33%				
`·.	-	-					-
-	-	2-55	100%				-
		1					_
=1	10 1						
	-	-					While _
- 13.0'-13.2': Brown sand, fine to medium	-	3-55	75%				VDrilling -
medium	-						
	15 :	-					
- Silty clay, grey, mottled brown	-	-					-
		j					
] .	4-SS	100%				_
Silt to clayey silt, grey, brown,	20 1	-	-				
- some sand, fine to medium		-					-
		j					
-		5-SS	100%				-
	25	-	-				1
· '		-					-
		☐ 6-SS	100%				
-		-					
	30	-	-				1
		\dashv					
		7-SS	100%				
Shale, grey, brown (weathered) End of Boring	-	+	-	-			
-							1
*Note 1: 0"-6" Brown silty clay		j					
with organics		4					
-	2	-					
Market Control of the		=					
]					
		-					
-		-					
<u> </u>		=					
		1	1				

RECORD OF SUBSURFACE EXPLORATION

Boring	R-102
0011119	

Project Name: Monitoring Will Install	lations		Da	ate of Bo	ring: _J	nuary	11, 1990
Site: CWLP Ash Disposal Facil	lity		Pı	oject No	0.:020	0-0500	
DESCRIPTION	DEPTH	SAMPLE	N	Qu	o _p	Mc	REMARKS
SURFACE *Note l Clayey silt, light brown, light grey	5	1-SS	100%				-
Silty clay, grey, mottled brown	10	2-SS	80%		·		
Clayey silt to silt, dark grey, some sand, fine	15	3-SS 4-SS	100%			~*	- - - - - -
	20	5-SS	75%				While Drilling
	30	6-ss	100%				
	35	7-55	75%				
Sand, fine to medium, grey Shale, grey, weathered		- 8-SS	100%				
End of Boring - *Note l: Dark brown silty clay with organcis							

RECORD OF SUBSURFACE EXPLORATION

Boring R-103

Project Name:	Monitoring Well Installations	Date of Boring	: January 13, 1990
Citor	CWLP Ash Disposal Facility	Project No.:	020-05001

DESCRIPTION	DEPTH	SAMPLE	N	o _u	o _p	Мe	REMARKS
SURFACE—							-
- *Note l	-						-
- - Clayey silt, light brown, light		1-88	100%]
grey, with white streaks	_	-					-
	5 =					,	=
	-	-]
	-	2-SS	100%				
	10 =						
_	-	-					1
-		3-55	100%				
	-	1 00	100%				177-47
-	15 1						While Varilling
], ,,	100%				
101 10 51 Crow and fine		4-SS	100%				
- 19'-19.5' - Grey sand, fine	20]
Silty clay, some sand, fine,		-					_
organics, grey		5-SS	100%			8	
-		-					-
(Coal fragments from 22'-29')	25		1				
- (Coal fragments from 22 -29)		6-ss	100%				
,		1 33	100%				
	30						=
- Shale, grey, weathered		-					-
		- 7-SS	100%				
- End of Boring		-					-
		=					
*Note 1: Black silty clay with		7					
- organcis		_					
							=
-		4					-
t .		_					
-		-					-
;		4					
<u></u>		1					

RECORD OF SUBSURFACE EXPLORATION

Boring G-104

Project Name:	Monitoring Well Installations	Date of Boring: January 12, 1990
Site:	CWLP Ash Disposal Facility	Project No.: 020-05001

	DESCRIPTION	DEPTH	SAMPLE	и	Ou	O _p	Mc	REMARKS
	SURFACE————							
-		-						
+	Clayey silt with coal fragments,	-	1 00	1005				-
	organics, mottled brown	_	1-55	100%				
-		5 ⊨						
-	•	_						-
-		-	2-55	100%				
			1					
		10 =						_
-		-	1					4
-		-	1					-
	Silty clay, black to dark brown,	_	3-SS	75%				1
	some organics to 16'	15 =						
-		-	-					-
			4-88	100%				
		-						While _
-		20 =	-					Drilling =
-		-	1					_
	Grey sand, fine to coarse] [
F		-	5-SS	60%				_
-	Silty clay, trace sand, grey	25 =						
+	**	-	-					-
	·		6-88	100%				
-		-	1.	200%				
-	Silty sand, grey, fine to medium	30 1	+	-				=
-	***	-	1					
	2 Fe]	7-SS	60%				
-		-	1. 55	00%				-
-	Shala and mathemal	35 1	8-SS	100%				=
	Shale, grey, weathered End of Boring		0 00	100%	<u> </u>	 		
F	2.1.4 01 2011.1.6							-
-			-			-		-
-		1	=					
		'						
-	v.	.						-
-		1 .	-					_
		1	4					
			1					

RECORD OF SUBSURFACE EXPLORATION

Boring G-105

Project Name:	Monitoring Well Installations	Date of Boring:	January 9, 1990	
Troject Hame.		-		
	CUIP Ach Disposal Facility	Project No :	020-05001	

DESCRIPTION	DEPTH	SAMPLE	N	o _u	Q _p	Mc	REMARKS
SURFACE———							-
Silty clay to clayey silt, trace organics, brown (fill)	-	1-SS	20%				-
trace organics, brown (1111)	5 "						- -
	10	2-SS	35%				-
Ciles also duck ever to black	-	3-88	25%				-
- Silty clay, drak grey to black, - some organics	15						
- Silty clay to clay, grey, mottled - brown, trace sand	20	4-SS	100%				
		5 - SS	40%				
- Silty clay with sand, fine to medium, brown	25	6-SS	35%				While
	30						Drilling —
	35	7-SS	40%				
		8-ss	100%				
Silty clay, trace sand, dark grey, fine	40	9-SS	100%				
-	45						

RECORD OF SUBSURFACE EXPLORATION

Boring G-105 (Continued)

Project Name:	Monitoring Well Installations	Date of Boring:January 9, 1990
Project Hamo.		
Sita	CWLP Ash Disposal Facility	Project No.: 020-05001

	DESCRIPTION	DEPTH	SAMPLE	N	Q _u	O _p	Mc	REMARKS
		45 =				P		
F	Silty clay, some sand, fine, dark grey	45 -	1					-
L	gicy	-	10-SS	100%				
-	491 49 71: Cray and fine to	-						-
-	48'-48.7': Grey sand, fine to medium	50 =						
F		-	11 - SS	80%				
-	Shale, grey, weathered End of Boring							
	224 02 2012							
-	•	-	-					-
t			1					_
-			-					
-								-
F			-					-
-			_					
	,	,	-					
-			-					-
								_
-			-					-
-	**							1
F			7					
-								
								,
-	*		-					
			1					
-		2	-					
F			=					
	? •		7					
-			-					
	!							
F	· •		-					
			_					
F			4					
-			=					
1	•		1					

RECORD OF SUBSURFACE EXPLORATION

Boring G-106

Proje	ct Name: Monitoring Well Inst	allati	ons	D	ate of Bo	oring: _F	ebruar	y 23, 1990
Site:	CWLP Ash Disposal Facilit	у		P	roject No	o.:0	20-050	01
	DESCRIPTION	DEPTH	SAMPLE	н	Q _u	o _p	Мс	REMARKS
	SURFACE							-
	Silty clay, brown, moist, trace organics	- - -	1-55	75%			24	V O HR
		5 m						10
_	Silty clay, grey, mottled brown Sand, fine to course, brown, wet	-	2-55	100%			26	
		10 "	3-ss	100%			37	- -
	Silty clay to clayey silt, grey,	15 :					25	
-	trace sand, fine		4-SS	100%			27	-
		20	5-ss	100%			23	- -
	Sand, fine to medium, trace silt,	25						
-	grey, wet		6-SS	70%				
-	* * * * * * * * * * * * * * * * * * *	30						,
-	Shale, grey, hard		7-SS	50%			9	
	END OF BORING	. 35						
						٠		
			_					

							_	-		and the Real Property lies and		The second named in column 2 is not the				and the same of		AND REAL PROPERTY.	and the same of the same of	
-	Andrews Environmental Engineering 3535 Mayflower Boulevard, Springfield, IL 62707													nc.	-2334	Fie	eld Boring Log			
	Site Information: Name: City Water, Light, and Power Location: Springfield, IL County: Sangamon Site No.: 1678250020 AEEI No.: 93-118 Drilling Contractor: Name: AE Exploration Corp. City: Springfield, IL Equipment: CME 55												Northing Easting Persone	Systeg: : st: B. M. M.		Boring Information: Boring No.: GIIO Well No.: GIIO Surf. Elev.: 554.5 Depth Information: Total: 59.5 Auger: 59.5 Rotary: N/A Dates: Start: 7/12/93 Finish: 7/12/93				
f		Sam	ple	Тур	e:		7	Conti	าบอนร	Barrel	D	s	plit Spoon		- Shelby Tube	00	Core	<u></u>	Blind	Drill
	Sample . 5 . Borehole Detai									Bore	hole (Detail	Litholog	ÿ	Description	n/Con	nments		USÇ	(MSL)
	Depth (1	Run No.	Туре	No.	Recov.	Blow Count	qu/[qs (in tsf)	% Moisture												Elev.
			П							1			minis	Gra	avel backfill-acces	s road.		_		554.5
		1		1A	3.2'		3.5			Concrete	"" " " " " " " " " " " " " " " " " " "				rk gray silty CLAY, evel, with rootlets.	little s	and and .			-549.5
- (′	2		28			2.8 2.5								rk gray-black clayend, rootlets.	ey SIL	T, some fine	<u>.</u> سر		
	10-	3		2C	5.0'		0.8		,	e	" " " "				rk gray-black silty tiets, some fine sa		soft, with			-544.5
		4		44	2.8'		0.7			_ Cement/Bentonite Grout		2 2 2 2 2								
	15-	. 5		5A			0.65 3.25 2.75 2.25				, 28 28 28 28 2	Z		SIL	k gray, very moist T, numerous plant a opears to be origin	and wo	od fragments			-539.5
		6		58	4.8'	÷	2.0 2.8 1.8 2.2				" " " " " "									

Page 1 of 3

NOTE: $\dot{\underline{\mathbf{y}}} =$ groundwater encountered while drilling.


Andrews Environmental Engineering, Inc. 3535 Mayflower Boulevard, Springfield, IL 62707 (217) 787-Field Boring Log (217) 787-2334 Site Information: Location: Boring Information: Name: City Water, Light, and Power Coord. System: Site Coordinates Boring No.: GIIO Location: Springfield, IL Northing: 3728.6 Well No.: GIIO County: Sangamon Easting: 2315.7 Surf. Elev .: 554.5 Site No.: 1678250020 . Depth Information: AEEI No.: 93-118 Total: 59.5 Personel: Auger: 59.5 Drilling Contractor: Rotary: .N/A Geologist: B. Hunsberger Name: AE Exploration Corp. Driller: M. Moore . Dates: City: Springfield, IL Helper (s): R. Smith Start: 7/12/93 Equipment: CME 55 Finish: 7/12/93 - Spill Spoon - Shelby Tube Sample Type: - Continuous Barrel - Blind Drill Count Borehole Detail Lithology Description/Comments USC Sample 3 Moisture Depth Blow Elev. Run ŝ Dark gray silty CLAY, moist, trace fine sand, little organics. 1.7 5.0 68 1.6 Gray mottled light gray-brown siity CLAY, little fine sand, some plant roots. -529.5 25 2.0 84 0.7 2.0 88 Cement/Bentonite 1.2 3,0" 1.3 2.2 Gray mottled brown silty CLAY, trace fine 2.2 sand, little organics. 524.5 30-2.2 2.75 2.75 Gray clayey SILT. 9B 5.0 1.75 0.75 10A 0.3 519,5 35 0.2 0.2 Gray CLAY, very soft, some organic clay 10 H strata present. (* The clay was too soft for the pocket penetrometer).

NOTE: $\dot{\underline{\mathbf{y}}}$ = groundwater encountered while drilling.

5.0

Page 2 of 3

Andrews Environmental Engineering, Inc. Field Boring Log 3535 Mayflower Boulevard, Springfield, IL 62707 (217) 787-2334 Site Information: Location: Boring Information: Name: City Water, Light, and Power Coord, System: Site Coordinates Boring No.: GIIO Location: Springfield, IL Northing: 3728.6 Well No.: GIIO County: Sangamon 2315.7 Easting: Surf. Elev.: 554.5 Site No.: 1678250020 Depth Information: AEEI No .: 93-118 Total: 59.5 Auger: 59.5 Personel: Drilling Contractor: Rotary: N/A Geologist: B. Hunsberger Name: AE Exploration Corp. Driller: M. Moore Dates: City: Springfield, IL Helper (s): R. Smith Start: 7/12/93 Equipment: CME 55 Finish: 7/12/93 - Shelby Tube - Split Spoon - Continuous Barrel - Core - Blind Drill Sample Type: Borehole Detail Lithology Description/Comments USC Count Sample X Moisture Run No. Depth Blow ŝ 514.5 11 118 Gray fine silty SAND, little clay. 5.0 12A -509.5 45-12 128 5.0 Gray, fine clayey SAND, some silt. 504.5 50-13 13A 5.0 -499.5 55-Gray shale with muscovite mica. (Since there was no recovery in Run # 14, the 14 bedrock contact was determined at the depth the down pressure increased from 300 psi to 1500 psi on the auger column.) 0.0 15A 10 31 E.O.B.=59.5 feet NOTE: y = groundwater encountered while drilling. Pano 7 nt 2

Andrews Environmental Engineering, Inc. Field Boring Log 3535 Mayflower Boulevard, Springfield, IL 62707 (217) 787 - 2334Site Information: Location: Boring Information: Name: City Water, Light, and Power Coord. System: Site Grid Boring No.: G-111 Location: Springfield, IL Northing: 4,445.0 Well No .: G-111 County: Sangamon Easting: 2,249.0 Surf. Elev.: 553.6 Site No.: 1678250020 Depth Information: AEEI No.: 93-118 Total: 59.60 **Drilling Contractor:** Personel: Auger: 59.60 Rotary: 0.00 Name: AE Exploration Corp. Geologist: R. Hasenyager City: Springfield, IL Driller: A. Weisenhofer Dates: Equipment: CME 45 - 44" HSA /w 5 foot Start: 7/20/93 Helper (s): K. Doetzel continuous barrel sampler. Finish: 7/21/93 Sample Type: Continuous Barrel - Split Spoon - Shelby Tube - Core - Blind Drill **Blow Count** Sample Borehole Detail Lithology Description/Comments USC (MSL) Ξ Moisture /Iqs n tst) S Depth Type Elev. 35 Run ŝ. 36 533.6 Brown mottled gray, moist, plastic, silty CLAY, with trace sand and organics. 3.40 6 2.0 Soil sample contained 1,170 ppm sulfate. 3.0 25 2.10 -528.8 8 Cement/Bentonite Grout 5.0 30--523.6 Ÿ-- Free water during drilling Brown, very moist, clayey SILT with some sand (fine-grained). Very thin SAND (fine-grained) seam at 30.1' Brown, mottled gray, very moist, clayey 8 SILT, with some sand (fine- grained) and trace organics. 5.0 35-518.6

NOTE: • water level 13 hours after completion.
Torvane values are actual dial readings.

0.85

0.75

2.0

10

Page 2 of 3

Gray, very moist, sandy SILT.

trace organics.

Reddish brown, moist clayey SILT, with

Gray, very moist, clayey SILT, with sand (very fine- to fine- grained). Sandier zones at 38.2'-38.3' and 38.5'-38.8'

Andrews Environmental Engineering, Inc. Field Boring Log 3535 Mayflower Boulevard, Springfield, IL 62707 (217) 787-2334 Site Information: Location: Boring Information: Name: City Water, Light, and Power Coord. System: Site Grid Boring No.: G-III Location: Springfield, IL Northing: 4.445.0 Well No.: G-111 County: Sangamon Easting: 2,249.0 Surf. Elev.: 553.6 Site No.: 1678250020 Depth Information: AEEI No.: 93-118 Total: 59.60 Drilling Contractor: Personel: Auger: 59.60 Rotary: 0.00 Name: AE Exploration Corp. Geologist: R. Hasenyager City: Springfield, IL Driller: A. Weisenhofer Dates: Equipment: CME 45 - 414" HSA /w 5 foot Helper (s): K. Doetzel Start: 7/20/93 continuous barrel sampler. Finish: 7/21/93 Sample Type: Continuous Barrel - Split Spoon - Shelby Tube - Core - Blind Drill Sample Blow Count \mathcal{H} Borehole Detail Lithology Description/Comments USC Moisture No. /[qs In tst] Depth Recov. Type de la Run Š. 34 Roots at 39.3' 513.6 12 Gray, saturated, clayey SILT, with some sand (very fine-grained). 2.0 0.25 0.35 13 0.25 5.0 508.6 Gray, saturated, silty SAND (very fineto fine-grained). 14 Gray, saturated, sandy SILT. Gray, saturated, silty SAND (very fineto fine-grained). 5.0 50-503.6 Gray, saturated, SAND (very fine- to fine-grained), with some silt. Gray, saturated, silty SAND (very fineto fine-grained). 15 Gray, very moist, interbedded clayey SILT, with some sand (very-fine grained) and silty SAND (very fine- to fine-grained). · ... Gray, saturated, silty SAND (fine- to 4.0 55 498.6 coarse-grained) and PEBBLE (very fine-32 to medium-grained). 41

27 17

6

14

12

60+

2.0

1.7

18

18

493.6

Shale and sandstone fragments more

E.O.B. = 59.6 feet

Gray, slightly moist, hard, massive, SHALE.

abundant in lower 10'

Bedrock

.0.

SOIL BORING LOG

Page 1_of 2

Date 05/26/2009

ROUTE DESCRIPTION	SKS P	roject / Land	No. 911 Ifili Wel	l607 I Repla	cement	LOGGED BY	T. Mathias/EK/AL			
SECTION N/A	LOCATI	ON _S	Springfi	eld, IL	SEC.	TWP.	RNG.		_ PM	
COUNTY Sangamon	DRILLING	METHO	DD H	ollow S	item Auger	HAMMER TYPE	140# Safety Hammer			
STRUCT. NO. Station BORING NO. R111 Station Offset Ground Surface Elev.	P T H	B L O W S	C S Qu (tsf)	M O ! S T (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs	ft ft ft ft ft ft ft ft ft ft ft ft ft f	D B E L P O T W H S (ft) (/6")	C S Qu (tsf)	M O I S T (%)	
GRASS		447	()	(117)	7.007	**********			(10)	
BLIND DRILLED TO 44.5 FT.	-10 -10 -15 -15 -20						-30			

SOIL BORING LOG

Page 2 of 2

Date <u>05/26/2009</u>

ROUTE DESCRI	PTION			No. 911 Ifill Wel		cement	LOGGED BY	T. Ma	thias/E	K/AL	
SECTION N/A		LOCATI	ON _	Springfi	eld, IL	SEC.	TWP.	R	NG.		PM
COUNTY Sangamon	DR	ULLING	METH	DD H	ollow S	item Auger	_ HAMMER TYPE	140#	Safe	y Ham	nmer
STRUCT. NO		D E P	B L O	U C S	M O	Surface Water Elev. Stream Bed Elev.	ft ft	D E	B L O	U C s	M O I
BORING NO. R111 Station Offset		T	w	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	n n	л Н	W S	Qu	S
Ground Surface Elev.	ft	(ft)	(/6")	(tsf)	(%)	After Hrs	ft'	(ft) ((/6°)	(tsf)	(%)
Gray, Saturated, Silty Fine Sand Gray, Saturated, Silty Fine Sand Gray, Saturated, Silty Fine Sand	44.5 46.5 49.5		(/6")	(tsf)	(%)	2" Groundwater Monitor Installed			<i>μ</i> 6")	(tsf)	(%)
END OF BORING @ 59.5 FT.	59.5							-			

Andrews Environmental Engineering, Inc. Field Boring Log 3535 Mayflower Boulevard, Springfield, IL 62707 Site Information: Location: Boring Information: Name: City Water, Light, and Power Coord. System: Site Grid Boring No.: G-112 Location: Springfield, IL Northing: 4,450.9 Well No .: G-112 County: Sangamon Easting: 2,560.6 Surf. Elev .: 552.7 Site No.: 1678250020 Depth Information: AEEI No.: 93-118 Total: 57.80 Drilling Contractor: Personel: Auger: 57.80 Rotary: 0.00 Name: AE Exploration Corp. Geologist: R. Hasenyager City: Springfield, IL Driller: A. Weisenhofer Dates: Equipment: CME 45 - 414" HSA /w 5 foot Helper (s): K. Doetzel Start: 7/21/93 continuous barrel sampler. Finish: 7/23/93 - Split Spoon Sample Type: - Continuous Barrel - Shelby Tube - Core - Blind Drill Count Borehole Detail Sample Lithology Description/Comments USC (MSL) (F.) Moisture [qs Depth Run No Blow (Type Qu/ (In) Š. 552.7 Very dark brown, slightly moist, clayey SILT with roots, other organic matter, and trace sand. 0.0 Brown, soft, slightly moist, silty CLAY, with trace sand. 5. 547.7 1.3 2 Cement/Bentonile Grout 542.7 10 Dark brown, slightly moist, plastic, silty 5.0 CLAY, with trace sand. 3 1.25 1.00 Brown, moist, plastic, silty CLAY, with trace sand. 537.7 15-1.7 Brown mottled gray, moist, plastic, silty CLAY, with trace sand and organic 1.75 matter. 1.50 3.0 5 Black, moist, friable, clayey SILT, with no sand or pebbles. 532.7 NOTE: y = water level 14 hours after completion. Page 1 of 3 Torvane values are actual dial readings.

Andrews Environmental Engineering, Inc. Field Boring Log 3535 Mayflower Boulevard, Springfield, IL 62707 Site Information: Location: Boring Information: Name: City Water, Light, and Power Coord. System: Site Grid Boring No.: G-112 Location: Springfield, IL Northing: 4,450.9 Well No.: G-II2 County: Sangamon Easting: 2,560.6 Surf. Elev .: 552.7 Site No.: 1678250020 Depth Information: AEEI No.: 93-118 Total: 57.80 Drilling Contractor: Personel: Auger: 57.80 Rotary: 0.00 Name: AE Exploration Corp. Geologist: R. Hasenyager City: Springfield, IL Driller: A. Weisenhofer Dates: Equipment: CME 45 - 44" HSA /w 5 foot Helper (s): K. Doetzel Start: 7/21/93 continuous barrel sampler. Finish: 7/23/93 Sample Type: - Continuous Barrel - Split Spoon - Shelby Tube - Core - Blind Drill Count Sample Borehole Detail Lithology Description/Comments USC (MSL) Ξ Moisture Qu /[qs Depth Recov. Type Blow Run Š. 532.7 4.00 5.0 8 Brown mottled gray, slightly moist, plastic, 2.75 silty CLAY, with trace sand and organics. [1.00]1.50 25. -527.7 2.0 7 Brown mottled gray, slightly moist, plastic, 0.50 silty CLAY, with trace sand and organic 3.0 matter. Cement/Bentonite Grout 8 0.50 30-Ÿ-- Free water during drilling -522.7 0.75 0.38 5.0 9 0.30 0.50 0.75 -517.7 35 5.0 0.60 10 1.25 Dark gray, moist, clayey SILT, with trace Reddish brown, moist, clayey SILT, with trace organic matter. 1.25 Greenish gray, very moist, silty CLAY, with trace sand. High-angle, dry, parting surfaces at 38.7', 39.1', and 39.5' NOTE: y = water level 14 hours after completion. Page 2 of 3 Torvane values are actual dial readings.

Andrews Environmental Engineering, Inc. Field Boring Log 3535 Mayflower Boulevard, Springfield, IL 62707 Site Information: Location: Boring Information: Name: City Water, Light, and Power Coord, System: Site Grid Boring No.: G-112 Location: Springfield, IL Northing: 4,450.9 Well No.: G-112 County: Sangamon Easting: 2,560.6 Surf. Elev.: 552.7 Site No.: 1678250020 Depth Information: AEEI No.: 93-118 Total: 57.80 Drilling Contractor: Personel: Auger: 57.80 Rotary: 0.00 Name: AE Exploration Corp. Geologist: R. Hasenyager City: Springfield, IL Driller: A. Weisenhofer Dates: Equipment: CME 45 - 44" HSA /w 5 foot Helper (s): K. Doetzel Start: 7/21/93 continuous barrel sampler. Finish: 7/23/93 Sample Type: - Continuous Barrel - Split Spoon - Shelby Tube - Blind Drill - Core Count Borehole Detail Sample Lithology Description/Comments USC (MSL) Ξ Moisture [qs Depth Recov. Blow Type Run Gr. Š 512.7 0.50 Wood chips and small twigs at 41.4" Cement/Bentonite Grout 3.0 11 0.25 Gray, very moist, clayey SILT, with trace [0.10]sand. Small (2-3 mm.) Bivalvia and Gastropoda throughout bed. 12 2.0 Gray, saturated, soft, sandy SILT. -507.7 0.25 Gray, saturated, silty SAND (very fine-13 to fine-grained). 3.0 0.22] Gray, very moist, plastic, sandy SILT. 0.25 Gray, saturated, silty SAND (very fineto fine-grained). SAND (fine-grained) seams at 48.5' and 46.8'. 14 2.0 502.7 50-0.35 Gray, very moist, clayey SILT, with 0.50 organics and trace sand. Thin SAND 4.5 15 (fine-grained) seams at 53.7' and 53.9'. 0.30 Decreasing organic content with depth. 0.50 No organics lower 0.5'. 0.50 Gray, very moist, sandy SILT. 497.7 55-Gray, saturated, silty SAND (fine- to 16 1.5 coarse-grained) and PEBBLE (very fineto medium-grained). Shale and sandstone fragments upper 0.3' Gray, slightly moist, hard, massive, SHALE. Bedrock E.O.B. = 57.8 feet 60 NOTE: y = water level 14 hours after completion. Page 3 of 3 Torvane values are actual dial readings.

BORING LOG

ENGINEERING and APPLIED SCIENCE	
	821 SOUTH DURKIN - SPRINGFIELD IL 62704 - (217)787-2118
Site Name: FGDS Development Landfill	Boring No: <u>AW-1</u>
Drilling Firm: Reynolds Drilling Corp. Drilling	Method: HSA Surface Elev: 552.85
Logged By: KJM Checked By: KJM	Date Started: 12/29/08

DE	Material Description	Sa	Samplin		To	ests			T w	D
DEPTH	Classification System	Tube No.	Туре	% Rec.	OVM (ppm)	Qu t/sf	Moist	Comments	e I	D E P T
-0-	Fill (not sampled)		-			FER				H
										H
-										
-										
-5-			2							-5-
-						١		Blind drilled to 15'		
-10-										H
-10-										-10-
-			SAMPLER							
	*		SAME							\vdash
-15-			SI							15
	Gray to brown silty clay fill; Moist; Soft to firm; Sand, pebbles & coal		CONTINUOUS							-15-
	fragments	1	NO	od						
			ີດໍ							
-20-			-	_				1		-20-
H	per-								}	-
	Plant debris	2	1	od						\dashv
	Dk. brown to gray clayey silt; Moist; Firm to hard; Laminated							Base of fill @ 23.6'		
-25-	rirm to hard; Laminated	_	-	\dashv				:		-25-
	,									
		3	h	od						
\dashv										4
-30-L								· [7]	بلنا	30_

BORING LOG

ENGINEERING and APPLIED SCIENCE	204 2017
Site Name: FGDS Development Landfill	821 SOUTH DURKIN - SPRINGFIELD IL 62704 - (217)787-2118
	Boring No: AW-1
Drilling Firm: Reynolds Drilling Corp. Drilling Method: HSA	
Logged By: KJM Checked By: KJM Date Star	rted: 12/29/08 Completed: 12/30/08

_										
E P	Material Description	So	ımp	ling	Т.	ests	;		T	D
P	Classification System	Tube			OVM	Qu		Comments	W	D E P T H
H -30	ordestriction System	No.	Туре	Rec.	(ppm)	t/sf PEN	Moist			T
"	Trace fine sand; Mottled	1	\vdash						177	-30-
										_
	1	4		100				Wet seam @ 32.2'		
	1	+		100						4
	1							Wet seam @ 33.3'		Ш
-35		-		\vdash						-35-
-	Softer									
-	Gray fine to cogree again Maint	1								
-	Gray fine to coarse sand; Moist to wet; Clayey and silty zones;	5		1 O C			- 1			
-	Trace gravel				1					
-40-	· \				1	- 1			围肩	
-									削削	-40-
_			FR		- 1				2558777117711771177117	
_		6	SAMPLER	90						\neg
			SA			- 1				\neg
-45-		1 1	- 1							\dashv
			CONTINUOUS		1					-45-
			Z							\dashv
		7	8	80						\dashv
		- 1								-
			2						1	\dashv
-50-		-	-	\dashv					1	50-
	Pebbles							v		
	Deale agencial Maria						1	ncreased resistance	用上	
\vdash	gray endia, modulated blokell	8	12	25				,	泪上	
							1.) - C 1	HL	
-55-	End of boring @ 54.34'	\dashv	-	_			1	Refusal		55-
\dashv	Ì								[
-				1						
\dashv										
\dashv										
-60 <u></u>	/									7
									6	0-1

Water Level____after___hrs.

Sheet_2_of_2_

ENGINEERING and APPLIED SCIENCE	FOA COUTY DUDING
Site Name: FGDS Development Landfill	821 SOUTH DURKIN - SPRINGFIELD IL 62704 - (217)787-2118
	Boring No: AW-2
Drilling Firm: Reynolds Drilling Corp. Drilling Method: HS	
L D VIV	
Logged By: KJM Date St	arted: 1/2/09 Completed: 1/2/09

	D E	Material Description	Sa	mp	ling	T	ests			T	D
- 1	DEPTT	Classification System	Tube No.	Туре	% Rec.	OVM (ppm)	Qu t/sf PEN	Moist	Comments	W e 1	DEPTH
	0-	Dark brown silty clay; Moist; Firm	1		100	,					
-5		Sandy							Water on bit Wet seam @ 19'		-5-
			2		100						
-10)- -	Lt. brown to gray mottled clayey silt; Moist; Firm; Trace sand; Fe oxidation stains		~							-10-
	1	Dark gray silt; Moist; Firm	- 1	SAN	00						-10-
-15		Softer; Trace sand		CONTINUOUS							15-
-20-				2. CON	00				Wet seam @ 19'		
		Sandy	5	1	00				Net seam @ 20.7'	in the second second	20-
-25-										-2	5-
	G	tray fine to medium sand	5	10	oc						
-30										30	

ENGINEERING and APPLIED SCIENCE	
	821 SOUTH DURKIN - SPRINGFIELD IL 62704 - (217)787-2118
Site Name: FGDS Development Landfill	Boring No: AW-2
Drilling Firm: Reynolds Drilling Corn	borning No.7W Z
Drilling Firm: Reynolds Drilling Corp. Drilling Method: HS/	A Surface Elev <u>; 526.68</u>
Logged By: KJM Date Sto	
Date Ste	arted: 1/2/09 Completed: 1/2/09

=	Material Description	Sampl		ing	To	ests			wD
P H	Classification System	Tube No.	Туре	% Rec.	OVM (ppm)	Qu t/sf PEN	Moist	Comments	e P T
-35-	Gravelly @ base End of Boring @ 32.22'	7	Туре		OVM (ppm)	_	T -	Refusal Broken shale in bit	Well TH
-55-									-55-

BORING LOG

ENGINEERING and APPLIED SCIENCE	COL COURT DURING
Site Name: FGDS Development Landfill	821 SOUTH DURKIN - SPRINGFIELD IL 62704 - (217)787-2118
	Boring No: AW-3
Drilling Firm: Reynolds Drilling Corp. Drilling Method: HSA	•
17.15.1	
Logged By: KJM Date Sta	orted: 12/30/08 Completed: 12/31/08

D		_								
D E P	Material Description	Sa	mp	ling	T	ests			We	D
TH	Classification System	Tube No.	Туре	% Rec.	OVM (ppm)	Qu t/sf PEN	Moist	Comments	e	171
-0-	Dark brown clayey silt; Moist; Firm; Organic debris & plant roots					I EN				H
	Gray to brown mottled silty clay; Moist; Firm; Trace sand; Laminated; Fe oxidation stains	1		100						
-5-	•									-5-
		2		100						-5-
-10-										-10-
		3	SAMPLER	95				Wet seam @ 11.5'		
-15-	Gray sandy clay; Moist; Firm; Finely laminated									-15
			5' CONTINUOUS	95				Water on rods	┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸	
-20-		\dashv	+	\dashv						20-
	Dark gray sandy silt; Moist; Soft to firm; Some clay	5	8	10				v.		
-25-		-	-							25-
		6	3	0			1	lo recovery 26.5'—30'		
-30										

Site Name: FGDS Development Landfill

Drilling Firm: Reynolds Drilling Corp. Drilling Method: HSA

Logged By: KJM

Checked By: KJM

Date Started: 12/30/08

SUTH DURKIN - SPRINGFIELD IL 62704 - (217)787-2118

Boring No: AW-3

Surface Elev: 537,75

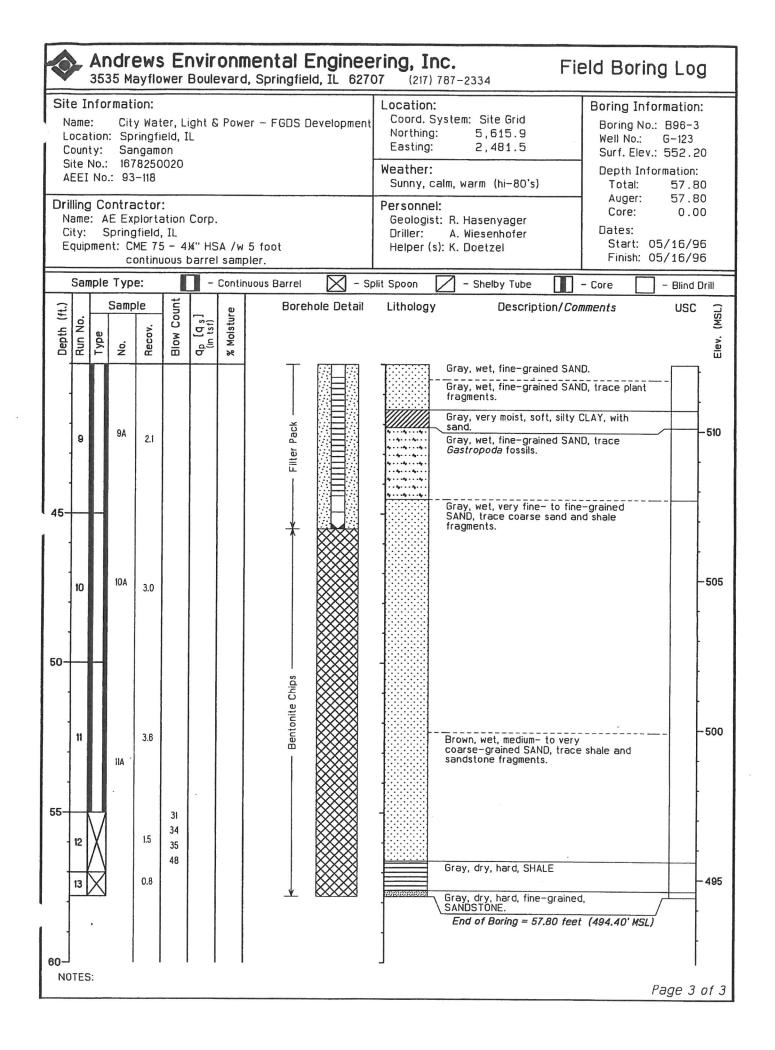
Completed: 12/31/08

DE	Material Description	Sa	mpl	ing	T	ests			w	D
DEPTH-30-	Classification System	Tube No.	Туре	% Rec.	OVM (ppm)	Qu 1/sf PEN	Moisi	Comments	9 	DEPTH5
-30-	Dark gray silt; Trace sand									-30-
		7		100						
-35-										-35-
	Sandy Gray fine to medium silty sand; Wet; Gravelly @ base	8		00				Broken shale in bit		
-40-	Gray shale		~	\exists	ĺ			No recovery past 40'		40-
-45-	End of Boring @ 41.83'	- 1	SAN	0				Refusal		
		- 1	5. CONTINUOUS						-	45-
-50-										50-
-55-									-5	5-
-60			\perp							

Andrews Environmental Engineering, Inc. Field Boring Log 3535 Mayflower Boulevard, Springfield, IL 62707 (217) 787-2334 Site Information: Location: Boring Information: City Water, Light & Power - FGDS Development Coord. System: Site Grid Boring No.: B96-1 Location: Springfield, IL Northing: 5,612.8 Well No.: G-121 County: Sangamon Easting: 2,130.0 Surf. Elev.: 553.80 Site No.: 1678250020 Weather: Depth Information: AEEI No.: 93-118 Sunny, calm, warm (hi-80's) Total: 56.70 **Drilling Contractor:** Auger: 56.70 Personnel: Name: AE Explortation Corp. Core: 0.00 Geologist: R. Hasenyager City: Springfield, IL Dates: Driller: A. Wiesenhofer Equipment: CME 75 - 414" HSA /w 5 foot Helper (s): K. Doetzel Start: 05/17/96 continuous barrel sampler. Finish: 05/17/96 Sample Type: - Continuous Barrel - Split Spoon - Shelby Tube - Core - Blind Drill Count Sample Ξ Borehole Detail Lithology Description/Comments Moisture USC (MSL) ŝ [ds] Depth Recov. Blow Stickup = 1.87 Run 9 Š. 36 Brown with 35% dark brown mottles, dry, firm, silty CLAY, trace sand. 2.25 5.0 2.25 3.25 -550 2.75 3.00 Brown, moist, firm, silty CLAY, trace sand. 2.25 5.0 2.75 Dark brown with 10% greenish blue mottles, moist, firm, silty CLAY, trace sand. High-solids Bentonite Grout 3.00 Brown, moist, firm, silty CLAY, trace sand. -545 Dark brown, moist, firm, silty CLAY, trace 4.5+ 3.00 3 5.0 2.00 3.50 540 15 Black, moist, firm, silty CLAY, trace sand. Dark brown, moist, firm, silty CLAY, trace 3.25 4.25 5.0 Very dark brown, dry, friable, silty CLAY, trace sand, trace roots. topsoil 4.00 535 3.00 Brown, moist, firm, silty CLAY, trace sand. NOTES: Page 1 of 3

		}	A I 35	ndre 35 Ma	W S	S E	nvir Boule	onn	nent 1, Spri	al ngfie	Engeld, I	jinee	ering, 1 07 (217	n(3. 87-2334	Fie	eld Bo	ring l	og	
	N: C: Si	ame oca oun ite l	: tior ty: No.	n: Spi	y Wat ringfi ngam 18250	ield, I on	ight 8 L	Pow	er – F	GDS	Devel	opment	Northin Easting Weather	Sy:	stem: Site Grid 5,612.8 2,130.0 m, warm (hi-80's)		Well No Surf. E	No.: B9 .: G-1 lev.: 55: Informat	6-1 121 3 . 80	
	Na Ci Ed	ame ty: quip	me	CC	field ME 75	ation , IL 5 – 4		A/w	5 foot				Driller:	ist:	R. Hasenyager A. Wiesenhofer K. Doetzel					
ŀ		San	ple	Тур	_			Contir	nuous B				plit Spoon		- Shelby Tube	I -	- Core	BI	ind Dri	11
	Depth (ft.)	Run No.	Type	Samp	Recov.	Blow Count	qp [q s] (in tsf)	% Moisture		Bore	hole I	Detail	Ĺitholog	IУ	Description	/Com	ments	U	ISC	Elev. (MSL)
		5			5.0		3.00 2.00 1.75 0.75								Brown, moist, firm, silty of the silty of the silty of the silty clay, roots.	h brov trace	∾n mottles, sand, trace		-5	:30
	25	6			5.0		<.50 2.50 2.50 2.00 2.50			tonite Grout				1	CLAY, trace sand. Light brown with 15% gre mottles, very moist, firm, sand.	enish silty	brown CLAY, trac	е	-5	25
	30	7			5.0		2.00 <.50 1.25 1.75 3.75			High-solids Benton				V	ight brown with 20% light ery moist, soft, silty CL Gray, moist, hard, silty C	.AY, ti	race sand.		-52	20
	35	8			5.0		1.00 <.50 <.50 <.50							P m	ery dark brown, moist, strace plant fragments. Tark gray, moist, soft, clant fragements. Tore clayey with depth Tery dark gray, moist, softh very fine-grained safth	ayey ·	SILT, trace			
	10 — 01 ГОИ	res:					<.50 <.50											Page	-51	

Andrews Environmental Engineering, Inc. Field Boring Log 3535 Mayflower Boulevard, Springfield, IL 62707 (217) 787-2334 Site Information: Location: Boring Information: Coord. System: Site Grid Name: City Water, Light & Power - FGDS Development Boring No.: B96-1 Northing: Location: Springfield, IL 5,612.8 Well No.: G-121 Easting: 2,130.0 County: Sangamon Surf. Elev.: 553.80 Site No.: 1678250020 Weather: Depth Information: AEEI No.: 93-118 Sunny, calm, warm (hi-80's) 56.70 Total: Auger: 56.70 **Drilling Contractor:** Personnel: 0.00 Core: Name: AE Explortation Corp. Geologist: R. Hasenyager City: Springfield, IL Dates: Driller: A. Wiesenhofer Equipment: CME 75 - 41/1" HSA /w 5 foot Start: 05/17/96 Helper (s): K. Doetzel continuous barrel sampler. Finish: 05/17/96 Sample Type: - Continuous Barrel - Split Spoon - Shelby Tube - Core - Blind Drill Count (Ft.) Sample Borehole Detail Lithology Description/Comments USC (MSL) Moisture ŝ ξ. 2 Depth Recov Type Blow Run P_E No. 36 Very dark gray, moist, soft, silty CLAY, with very fine-grained sand. 1.00 - High-solids Bentonite Grout 1.00 9 5.0 1.50 Very dark gray, very moist, soft to firm, sandy/silty CLAY. -510 1.00 1.00 Very dark gray, very moist, soft, silty CLAY, with very fine-grained sand. 1.00 Bentonite Chips 10 5.0 Very dark gray, very moist, soft to firm, sandy/silty CLAY. 505 1.00 50 11 5.0 Filter Pack Very dark gray, wet, soft, clayey, very fine- to fine-grained SAND. Dark gray, very moist, soft, sandy CLAY. Gray, wet, fine- to medium-grained 500 SAND. 11A Gray, moist, firm, clayey SILT, with sand and rock fragments. 55 31 Gray, dry, hard, SHALE. 34 4.51 1.6 12 35 48 Gray, dry, hard, fine-grained, SANDSTONE. End of Boring = 56.70 feet (497.10' MSL) 495 NOTES: Page 3 of 3


1	\rightarrow	>	35	35 M	ayflo	s E	nvir Boule	oni	mental Engine d, Springfield, IL 62		Inc. 7) 787-2334	Field Borin	g Log
	N L C Si	amoca our ite	e: etio nty: No.	n: Sp	y Wat ringfi ngam 18250	ield,] on	ight & [L	Pow	er – FGDS Developme	Northi Eastin Weathe	System: Site Griding: 5,613.2 g: 2,305.1	Boring Info Boring No. Well No.: Surf. Elev. Depth Info Total:	B96-2 G-122 552.70
	N: Ci	ame ty:	e: /	Spring nt: Cl	plorta Ifield ME 75	ation , IL 5 – 4	Corp. ¼" HS barrel	iA /w	5 foot pler.	Personi Geolog Driller:	nel: gist: R. Hasenyager	Auger: Core: Dates: Start: 0	58.40 58.40 0.00 5/20/96 5/20/96
L	_	Sai	mple	Тур	e:		1-	Conti	nuous Barrel 🔀 -	Split Spoon	- Shelby Tube	- Core	- Blind Drill
	Depth (ft.)	Run No.	Type	Samp	Recov.	Blow Count	qp [qs] (in tsf)	% Moisture	Borehole Detai	Litholog	gy Description	n/Comments	SS DS DS DS DS DS DS DS DS DS DS DS DS D
							3.50		Stickup Congrete		Brown, moist, firm, şilty	CLAY, trace sand.	
	1	1			4.7		3.00				Very dark brown, moist trace sand.	, firm, silty CLAY,	- 550
	-						4.5+				Brown, moist, hard to fi trace sand.	irm, silty CLAY,	
	5-						3.50						
		2			5.0		3.00						
	1				0.0		3.00		at a little with the state of t		Very dark brown with 4 moist, firm, silty CLAY, t	0% brown mottles, race sand.	-545
10	,		Н				4.5+		onite Grout				-
							3.25		High-solids Bentoni		Brown, moist, firm, silty	CLAY, trace sand.	
		3			5.0		2.25		High-sol		Dark brown with 50% br firm, silty CLAY, trace s	own mottles, moist,	_
							1.25				iniii, siity cear, trace s	and.	-540
15	;-}		H				2.25				Very dark brown, firm, m trace sand.	ioist, silty CLAY,	-
							3.50				Brown, moist, soft, silty sand.		_
	-	4			5.0		3.25				Dark brown, moist, soft, sand.	silty CLAY, trace	-535
							3.00						
20	TON	ES	:	İ	1	1	4.00	1			Very dark brown, dry, fr SILT, trace sand.		
								-				<i>P</i>	age 1 of 3

\$		35	35 M	ayflo	s E	nvir Boul	oni evar	nen d, Sp	tal ringf	Enç ield, I	gine L 627	ering, I	nc	7-2334	Fi	eld Bo	ring	Log	g
N	lame oca Coun Site	e: itior ity: No.	n: Sp	y Wa ringf ngam 78250	ield, i	ight 8 IL	S Pow	er - 1	FGDS	S Deve	lopmen	Northin Easting Weather	Sys g: j:	tem: Site Grid 5,613.2 2,305.1		Boring Dering Well No Surf. E	No.: 1	896-2 6-122 552 . 7	0
C	lame ity:	e: A	Spring nt: C	plort gfield ME 7	ation , IL 5 – 4	Corp. M" HS barre	SA /w		ot			Personn Geologi Driller:	el: st:	n, warm (hi-80's) R. Hasenyager A. Wiesenhofer K. Doetzel			r: : 05/	58.40 58.40 0.00 20/98	0 0
-	Sar	nple	Тур			<u> </u>	Conti	nuous				plit Spoon	Z	_ Shelby Tube		- Core] -	Blind D)rill
Depth (ft.)	ė.	\vdash	Samp	T	Count	Lo E	Molsture		Bor	ehole	Detail	Litholog	У	Descriptio	n/ <i>Col</i>	mments		USC	(SL)
Dept	Run No.	Type	Š.	Recov.	Blow	qp [qs] (in tsf)	% Mols												Elev. (MSL)
	5		_	5.0		2.00 2.50 3.00	₽€						V S	ery dark brown, dry, ILT, trace sand.	friable	e, clayey			-530
25-						3.00							B	lack, dry to slightly m	oist, f	riable, claye			
-	6			5.0		2.25							٧	ILT, trace sand. ery dark brown, moist LAY, trace sand.	, firm t	to soft, silty			
30-						<.50			High-solids Bentonite Grout		11 11 11		Di tr	ark brown, very moist, ace sand.	soft,	silty CLAY,			525
30						<.50			h-solids Be				Br CL	ownish gray, very mo .AY, trace sand.	ist, so	ft, silty			
	7			5.0		1.00			Hig				Gr	ay with 25% reddish b		mottles ver	,	-	520
35-						1.50							mo	ist, soft, silty CLAY, i	race	sand.			
40	8			5.0		<.50 1.25 1.25												-5	515
NOT	TES:					-						-					D= -		
				-													Page	e 2 o	13

*	>	35	35 N	layti	s E	Nvir Boul	oni evar	mental Eng d, Springfield, Il	ginee L 627	ering,] 07 (217	Inc.	-2334	Fie	eld Bo	ring I	Log
Di	Nam Loca Cour Site AEE	e: ation ty: No. I No	Ci n: S _l Si : 16 o.: 9	oringf angam 7825 3-118 actor	field, non 0020 r:	IL.		rer – FGDS Devel	opment	Northin Easting Weather Sunny, Personn	Systeng: g: r: calm,	em: Site Grid 5,613.2 2,305.1 warm (hi-80's)		Boring 3 Boring Well No Surf. E Depth Total Auger Core:	16-2 122 2.70 tion: 8.40 8.40	
	City: Equi	ome	Sprin nt: C	gfield CME 7 contin	I, IL 5 - 4	barre	SA /w Isam			Driller: Helper	A.	. Hasenyager . Wiesenhofer . Doetzel		Dates: Start	: 05/2 : 05/2	
-	1	ПРІЕ	Тур		T	 	Conti	nuous Barrel		olit Spoon		- Shelby Tube]] -	- Core	BI	lind Drill
Depth (ff.)	Run No.	Type	Sam	Recov.	Blow Count	qp [qs] (in tsf)	% Moisture	Borehole (Detail	Litholog	IУ	Description	n/Com	nments	L	Elev. (MSL)
45-	9		10A	5.0		1.25 1.00 1.00 <.50 1.50 2.00		Bentonije Chips			Grad San Grad Biva	ny, moist, soft, clayey d. ny, wet, soft, fossilife dium-grained SAND. alvia <i>and</i> Gastropoda	sandy of firm, ery fin silty (Sand. LAY, with CLAY. silty CLAY. e- to CLAY, trace fine- to (3-7 mm.)		-510 -505
50- 55-	11		11A 12A	3.0	3 10 12	1.00		Filter Pack and/or Formation Sand			Gray grain Gray sand Bluis Gray grain	y, wet, soft, fine- to ined, SAND, with shel y, very moist, soft, c	very I fragr layey silty C very I fragr	coarsements. SILT, with LAY. coarsements.		-500
80 NC	13			1.7	10 0 3 4 23				<u>\$</u>		Gray	gray, moist, soft, sild. 7, dry, hard, SHALE. d of Boring = 58.70	T-10-10-10-10-10-10-10-10-10-10-10-10-10-		L)	-495
60-	13		12A		10 12 10 0 3 4						Gray	o. v, dry, hard, SHALE.	T-10-10-10-10-10-10-10-10-10-10-10-10-10-			Page

Andrews Environmental Engineering, Inc. Field Boring Log 3535 Mayflower Boulevard, Springfield, IL 62707 (217) 787-2334 Site Information: Location: Boring Information: Coord. System: Site Grid City Water, Light & Power - FGDS Development Boring No.: B96-3 Northing: 5,615.9 Location: Springfield, IL Well No .: G-123 Easting: 2,481.5 County: Sangamon Surf. Elev.: 552.20 Site No.: 1678250020 Weather: Depth Information: AEEI No.: 93-118 Sunny, calm, warm (hi-80's) Total: 57.80 Auger: 57.80 **Drilling Contractor:** Personnel: Core: 0.00 Name: AE Explortation Corp. Geologist: R. Hasenyager Springfield, IL Driller: A. Wiesenhofer Equipment: CME 75 - 41/1" HSA /w 5 foot Start: 05/16/96 Helper (s): K. Doetzel Finish: 05/16/96 continuous barrel sampler. Sample Type: - Continuous Barrel - Split Spoon - Shelby Tube - Core - Blind Drill Count Sample Borehole Detail Lithology Description/Comments USC (MSL) Moisture ŝ. Recov. 5.0 Blow (Stickup = 1.70° Type Run P E ŝ 36 Dark brown, moist, firm, silty CLAY, trace Brown, moist, firm, silty CLAY, trace sand. Dark brown, moist, firm, silty CLAY, trace -550 4.9 3.00 Brown with 10% dark brown mottles, moist, firm, silty CLAY, trace sand. 4.00 Dark brown, moist, firm, silty CLAY, trace 3.00 2.50 545 2 5.0 2.00 High-solids Bentonite Grout 1.50 Brown, moist, soft, silty CLAY, trace Dark brown, moist, soft, silty CLAY, trace 10 1.75 Brown, moist, soft, silty CLAY, trace 1.75 -540 Yellowish brown, moist, soft, silty CLAY, 3 5.0 trace sand, trace fly ash. 2.50 Dark brown with 30% greenish blue mottles, very moist, soft, silty CLAY, trace 2.00 Dark brown, very moist, soft, silty CLAY, trace sand. 15 3.25 Yellowish brown, slightly moist, hard, silty 4.00 CLAY, trace sand. -535 5.0 Dark brown, very moist, soft, silty CLAY, 3.75 trace sand. Yellowish brown, slightly moist, friable, silty 4.00 CLAY, trace sand. Dark brown, moist, firm, silty CLAY, trace 20 NOTES: Page 1 of 3

Andrews Environmental Engineering, Inc. Field Boring Log 3535 Mayflower Boulevard, Springfield, IL 62707 (217) 787-2334 Site Information: Location: Boring Information: Coord. System: Site Grid Name: City Water, Light & Power - FGDS Development Boring No.: B96-3 Northing: 5,615.9 Location: Springfield, IL Well No .: G-123 Easting: 2,481.5 County: Sangamon Surf. Elev.: 552.20 Site No.: 1678250020 Weather: Depth Information: AEEI No.: 93-118 Sunny, calm, warm (hi-80's) Total: 57.80 Auger: 57.80 **Drilling Contractor:** Personnel: Core: 0.00 Name: AE Explortation Corp. Geologist: R. Hasenyager City: Springfield, IL Driller: A. Wiesenhofer Equipment: CME 75 - 414" HSA /w 5 foot Start: 05/16/96 Helper (s): K. Doetzel continuous barrel sampler. Finish: 05/16/96 Sample Type: - Continuous Barrel - Split Spoon - Shelby Tube - Core - Blind Drill Count Sample Borehole Detail Lithology Description/Comments USC (MSL) Moisture Š. [Q Depth Blow Run 9= Š. 36 Black, moist, firm, silty CLAY, trace sand, trace fly ash, trace plant fragments. Black, moist, firm, silty CLAY, trace sand. 3.00 3.50 -530 5 5.0 Black, moist, soft, clayey SILT, trace 1.25 Black, moist, soft, silty CLAY, trace sand. 1.00 25 1.00 <.50 Dark brown, moist, soft, silty CLAY, trace High-solids Bentonite Grout <.50 525 6 5.0 Brown, very moist, soft, silty CLAY, trace <.50 <.50 Gray, very moist, soft, silty, very fine- to fine-grained SAND. 30-<.50 Brown, very moist, soft, silty CLAY, trace <.50 Gray, wet, soft, silty, very fine- to fine-grained SAND. 520 4.3 Gray, very moist, soft, silty CLAY, with <.50 Gray, very moist, soft, clayey SILT, with sand and plant fragments. 35 Peat layer at 35.5'-35.6' <.50 Bentonite Chips Gray, very moist, soft, sandy SILT, trace 515 8 5.0 Filter Pack organic matter. <.50 Gray, very moist, soft, silty CLAY, with sand and plant fragments. Gray, wet, fine-grained SAND. NOTES: Page 2 of 3

APPENDIX A3: IMPOUNDMENT WELL BORING LOGS

	F){	3)	480 Spi Tel	No ningfi epho	ional Service Industries, Ir rth Street ield, Illinois 62704 one: 217/544-6663 17/544-6143							OF E	BORI	NG WATI	SI	neet	1 of 1
	PSI Joi Project Location	t:	Ple CV Ea	VLP st L	Ash ake	Pond	Drive	Samplin Hamme	Location:	Split : CME See :	Spoon Auton	natic; E ad borlr	TR = 8	6%	∇w	hile Dr	illing		9 feet N/A N/A
	Elevation (feet)	Depth, (feet)	Graphic Log	Sample Type	Sample No.	Recovery (inches)	Station: N/A Offset: N/A MATERIAL DESCRIPTIO	USCS Classification	SPT Blows per 6-inch (SS)	Moisture, %	×	DARD PE TEST I N in blow Moistun 22 STRENG Qu	DATA. vs/ft © B STH, tsf	PL LL 50	Additio Remar				JPlug Well Diagram
)		10-10-20-20-30-30-30-30-30-30-30-30-30-30-30-30-30			1 2 3 4 5 6 7 8	18 18 18 18 18 18 18 18 18	Dark brown sitty CLAY, very stiff, slightly moist Dark brown clayey SILT, stiff, slightly moist Gray clayey SILT, trace brown, firm, moist Gray sitty CLAY, few brown sand, firm, saturated Gray sandy CLAY, stiff, saturated Blue-gray clayey SILT, soft to very stiff, moist to saturated Gray SAND with SILT, medium dense/very stiff, saturated Gray SAND with SILT, medium dense/very stiff, saturated Gray SAND with SILT, medium dense/very stiff, saturated Gray SAND with SILT, medium dense/very stiff, saturated Gray SAND with SILT, medium dense/very stiff, saturated Gray SAND with SILT, medium dense/very stiff, saturated	ML CLS ML.	7-8-9 N ₈₀ =24 5-5-5 N ₈₀ =14 2-2-3 N ₈₀ =7 1-2-2 N ₈₀ =6 1-2-2 N ₈₀ =6 4-3-4 N ₈₀ =10 1-2-1 N ₈₀ =10 1-2-1 N ₈₀ =4					>> ®			2000年の「東京の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の	プログラスの が出来るとのできます。 シャン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Concrets Cap 2º PVC Solid Riser Bentonite Seal Sand Fitter Pack 0.01" PVC Stotad Vetel Sorrein
		- 35																•	

Latitude:
Longitude:
Drill Rig: ATV D50
Remarks: N_∞ denotes the normalization to 60%
efficiency as described in ASTM D4633. Moistures
determined by visual methods

Auger Cutting
Split-Spoon
Rock Core Date Boring Completed: 4/21/10
Logged By: Rob Preuss Logged By: Rob Preuss
Drilling Contractor: PSI, Inc.

The stratification lines represent approximate boundaries. The transition may be gradual. Texas Cone

Sample Types:

Shelby Tube

Hand Auger

35.0 ft 4/21/10

Completion Depth:

Date Boring Started:

Professional Service Industries, Inc. 480 North Street Springfield, Illinois 62704 Telephone: 217/544-6663

LOG OF BORING AP-2

PSI Job No.: 0020522 Project: Plezometer Installation Location: CWLP Ash Pond East Lake Shore Drive Springfield, Illinois Station: N/A							Drilling Method: Hollow Stem Auger Sampling Method:Split Spoon Hammer Type: CME Automatic; ETR = 869 Boring Location: See attached boring location plan. 26 STANDARD PENETRATIO						WATER LEVELS ☑ While Drilling 9 feet ☑ Upon Completion N/A ☑ Delay N/A			
Elevation (feet) Depth, (feet)	Graphic Log	Sample Type	Sample No.	Recovery (inches)	Offset: N/A MATERIAL DESC		USCS Classification	SPT Blows per 6-inch (SS)	Moisture, %	× Mc	est DATA n blows/ft (pisture 4 25 RENGTH,	PL LL 50	Additional Remarks		Well Diagram	
- 10			1.2345678	10 8 6 18 18 18 18 14	Dark brown silty CLAY sand, stiff, slightly mot Dark brown silty CLAY firm, moist Gray silty CLAY, soft to moist Gray clayey SILT, soft saturated Light gray SAND, dens saturated Gray SHALE, hard, silt Boring terminate at -20	, soft to o firm, to firm,	CL CL CL ML SP CL	4-4-6 N ₆₀ =14 2-2-2 N ₆₀ =6 1-1-2 N ₈₀ =4 2-2-2 N ₈₀ =3 2-1-1 N ₈₀ =3 2-1-2 N ₈₀ =4 4-9-16 N ₉₀ =36 19-24-50/2				4.0			Concrete Cap 2° P/C Bold Filter Bentonite Seel Seel Concrete Con	
Completion I Date Boring Date Boring Logged By: Drilling Cont	Started Comple	etec		PSI,	10 10 Preuss	Sample Ty	cutting oon ore	Ha Te	elby T	iger	Latitud Longitu Drill Rig Remari efficien determi	de: J: ATV ts: N ₆₀ cy as d	D50 denotes the non escribed in ASTN visual methods	nalization to	o 60% Noistures	

)	PSI Joi Project Location		CV Ea	VLP st La	480 Spi Tel Fax 22 neter Ash ake 8	No ringf eph c: 2 Insta Pond	Drive is	663	Drilling Samplir Hamme	Location:	Split S CME See a	Spoon Autom ittache on plai	36%	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	WAT	AP-3 Sheet 1 of 1 ER LEVELS rilling None feet ompletion N/A N/A			
	Elevation (feet)	Depth, (feet)	Graphic Log	Sample Type	Sample No.	Recovery (inches)	Station: N/A Offset: N/A MATERIAL DES		USCS Classification	SPT Blows per B-inch (SS)	Moisture, %	×	ARD PE TEST D N in blow Moisture 25 STRENG Qu 2.0	OATA PS/ft © TH, ts	PL LL 50		itional narks		Well Diagram
		- 10			1 2 3 4 5 6 7 8	18 18 18 18 16 16	Dark brown slity CL/ slightly moist Gray/brown clayey S stiff, moist to saturate Gray dayey SILT, so stiff, saturated Gray SHALE, hard. Boring terminated at	SILT, soft to ed	CL ML ML	6-7-8 N ₆₀ =21 3-3-4 N ₆₀ =10 1-1-1 N ₆₀ =3 2-1-2 N ₆₀ =4 2-2-4 N ₆₀ =9 2-2-4 N ₈₀ =9 4-4-6 N ₈₀ =14 32-50/3**					>>@				Concrete Cap 2* PVC Solid Riser Bentonite Seal
4																			

Latitude:

Shelby Tube

Hand Auger

Texas Cone

Landitude:
Drill Rig: ATV D50
Remarks: N_{eo} denotes the normalization to 60% efficiency as described in ASTM D4633. Moistures determined by visual methods

PSI, Inc. Drilling Contractor: PSI, Inc. Rock Core Texas

The stratification lines represent approximate boundaries. The transition may be gradual.

20.0 ft

4/21/10

4/21/10

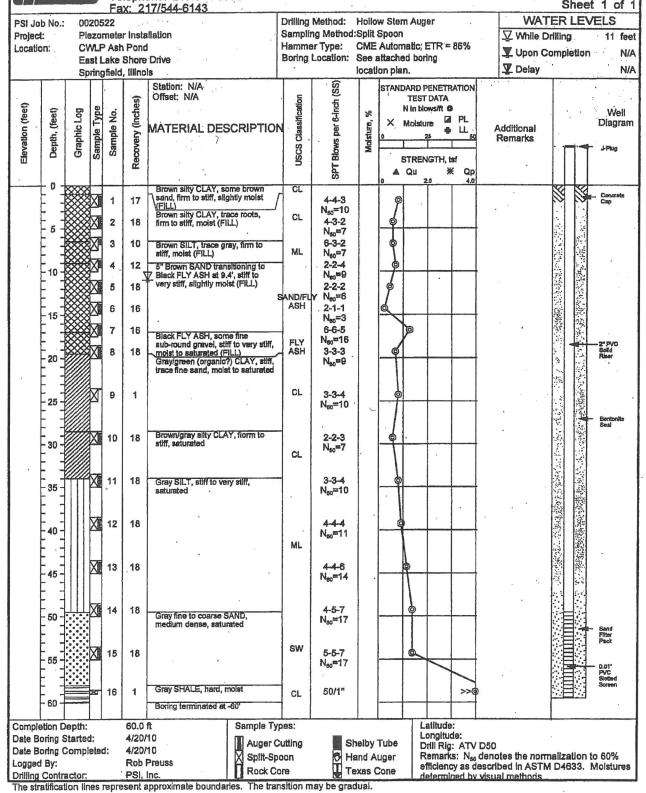
Rob Preuss

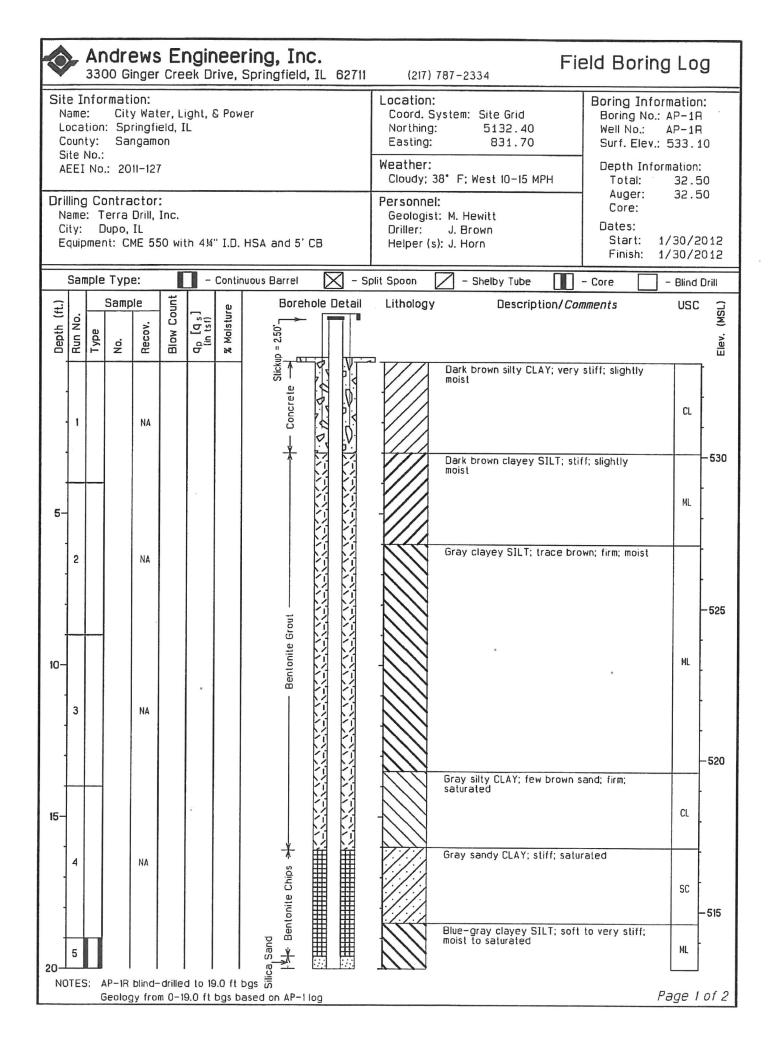
Completion Depth:

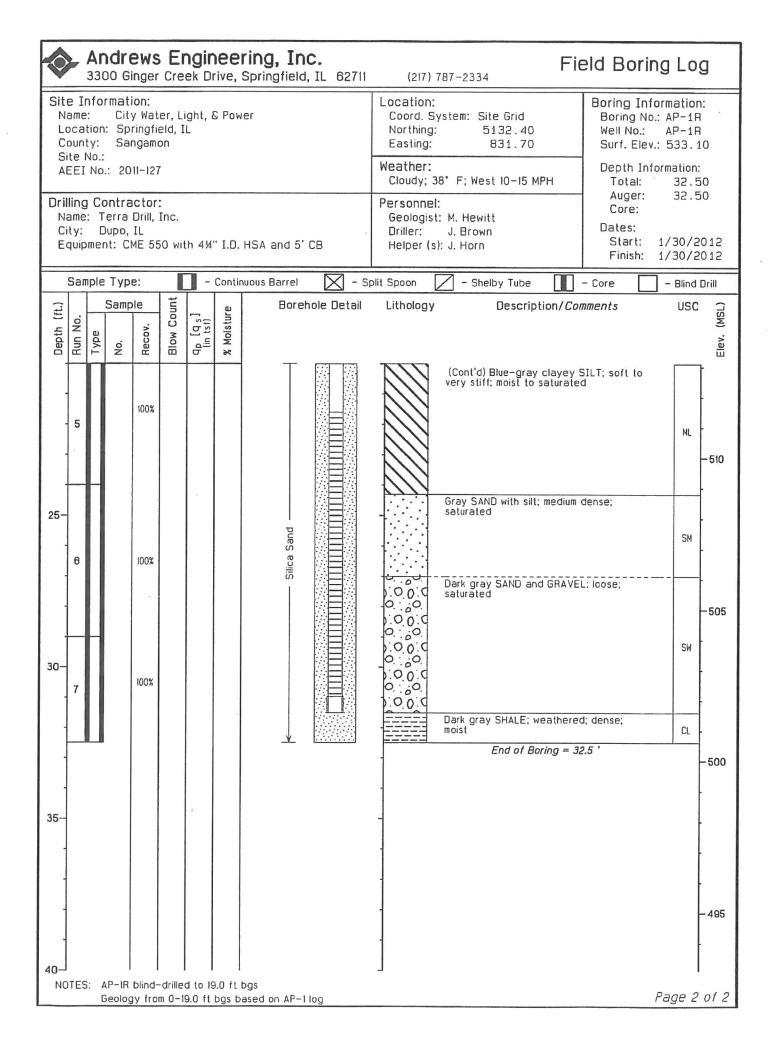
Logged By:

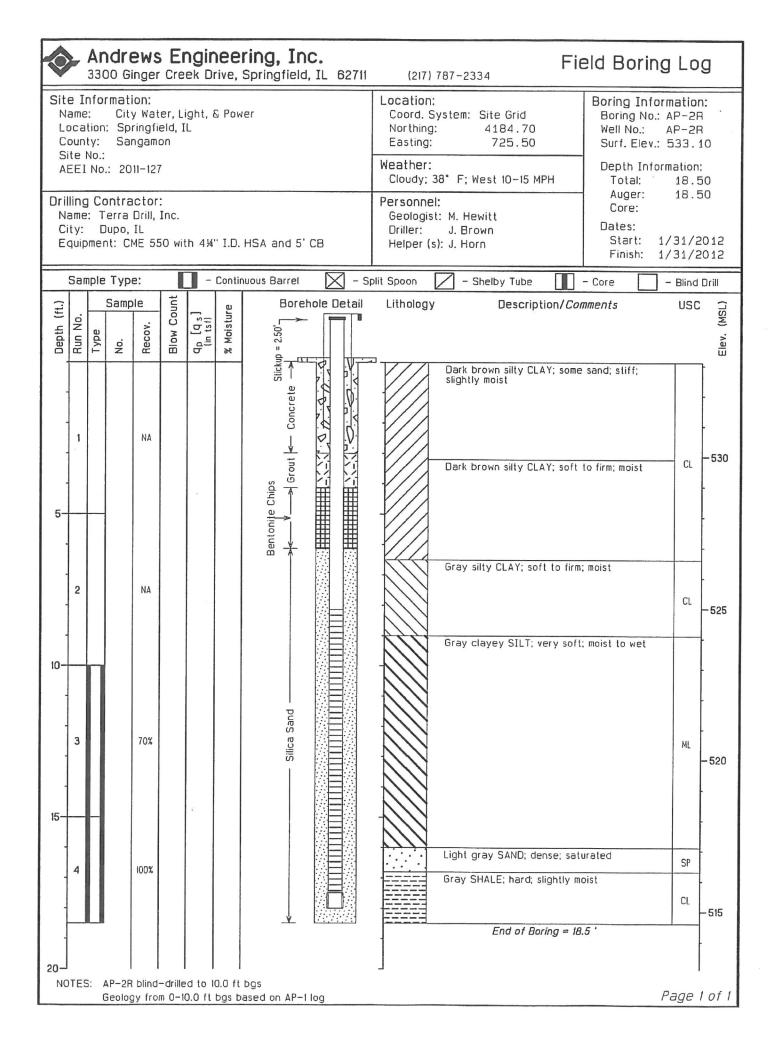
Date Boring Started:
Date Boring Completed:

Sample Types:

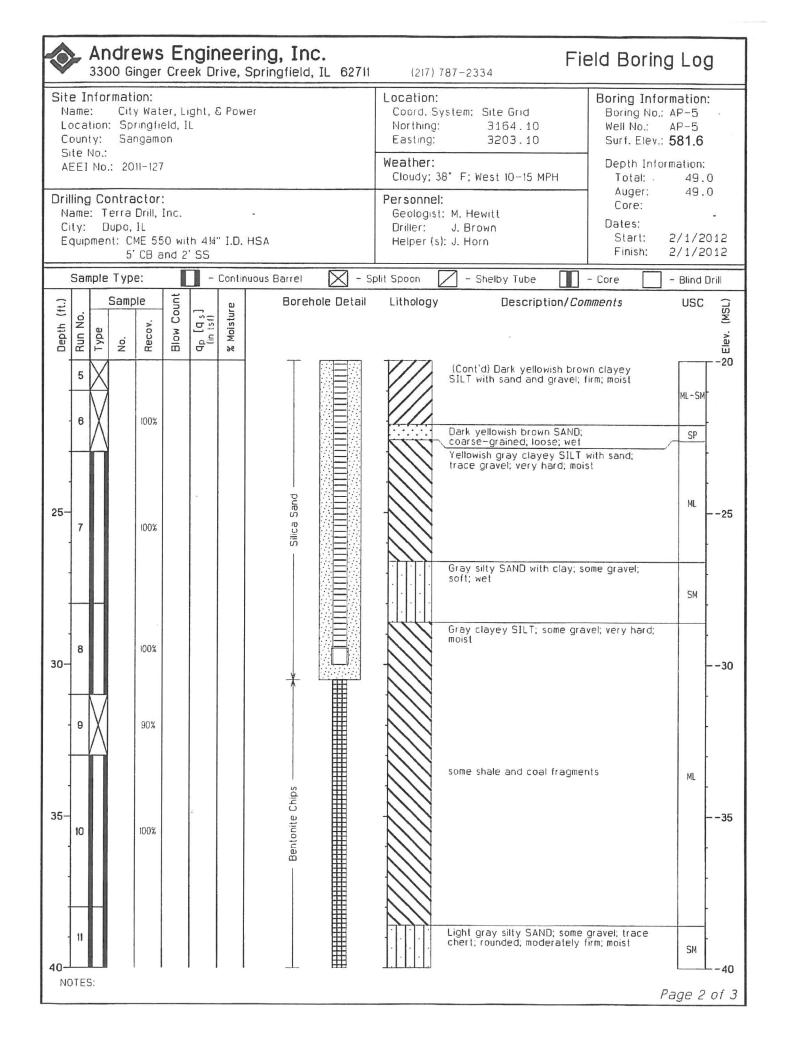

Auger Cutting
Split-Spoon

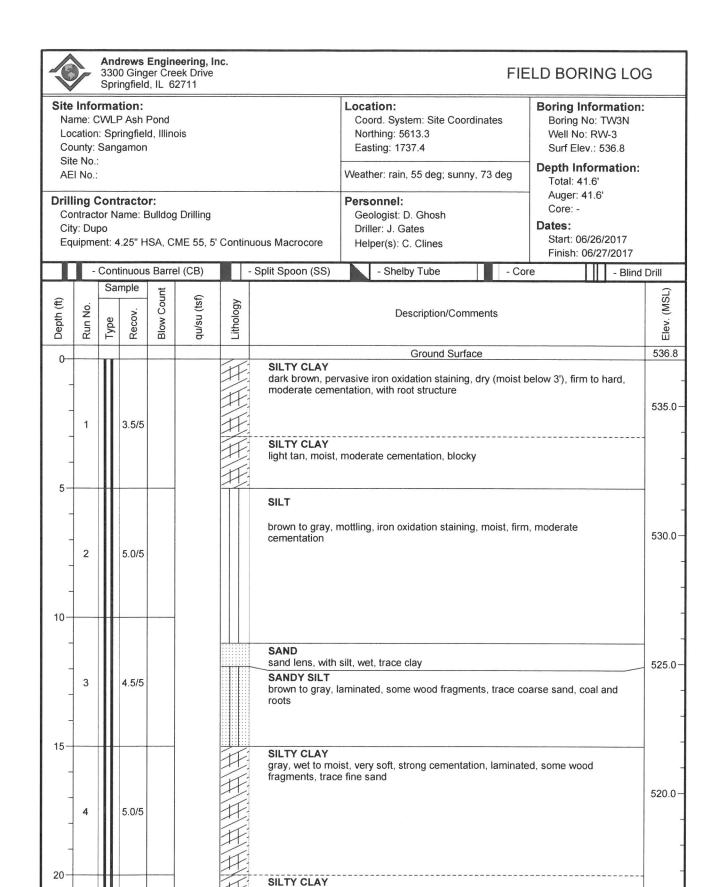

Rock Core


Professional Service Industries, Inc. 480 North Street Springfield, Illinois 62704 Telephone: 217/544-6663


LOG OF BORING AP-4

Sheet 1 of 1



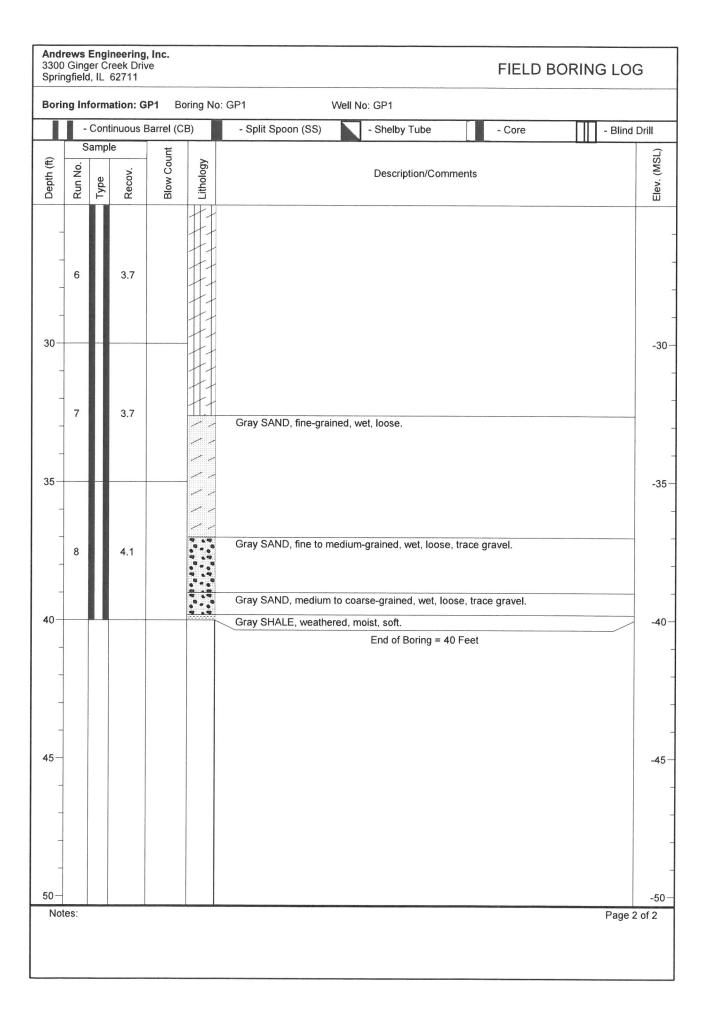

Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG Site Information: Location: **Boring Information:** Name: Springfield City Water, Light, and Power Coord. System: Site Grid Boring No: AP-2A Location: Springfield, IL Northing: 4185.2 Well No: AP-2A County: Sangamon Easting: 735.9 Surf Elev.: 533.6 Site No .: **Depth Information:** AEI No.: 160192 Weather: Sunny, 40F Total: 19.0 Auger: 19.0 **Drilling Contractor:** Personnel: Core: Contractor Name: Bulldog Drilling Geologist: C. Myrvold Dates: City: Dupo, IL Driller: J. Edwards Start: 2/16/16 Equipment: AMS Powerprobe w/ 4.25" HSA and 5' MC Helper(s): Z. Strickland Finish; 2/16/16 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample Count (MSL) da/sa (tst) Depth (ft) Lithology Run No. Description/Comments Blow (Elev. 533.6 Ground Surface Blind drilled to 9.0 feet. For detailed geology refer to the original log for AP-2R 530.0-525.0 Gray CLAYEY SILT; moist to wet; moderately loose 10-2 3.2/4 520.0 15-3 4.0/4 Light gray SAND; fine to medium grained; saturated; some gravel Gray SHALE; weathered; hard; slightly moist 2.0/2 515.0-End of Boring = 19 Feet 20 Notes: Page 1 of 1

Andrews Engineering, Inc. Field Boring Log 3300 Ginger Creek Drive, Springfield, IL 62711 (217) 787-2334 Site Information: Location: Boring Information: Name: City Water, Light, & Power Coord. System: Site Grid Boring No.: AP-5 Location: Springfield, IL Northing: 3164.10 Well No .: AP-5 Sangamon County: Easting: 3203.10 Surf. Elev.: 581.6 Site No .: Weather: Depth Information: AEEI No.: 2011-127 Cloudy; 38° F; West 10-15 MPH Total: 49.0 Auger: 49.0 Drilling Contractor: Personnel: Core: Name: Terra Drill, Inc. Geologist: M. Hewitt Dates: Dupo, IL Driller: J. Brown Start: 2/1/2012 Equipment: CME 550 with 414" I.D. HSA Helper (s): J. Horn Finish: 2/1/2012 5' CB and 2' SS Sample Type: - Continuous Barrel - Split Spoon - Shelby Tube - Core Blind Drill Blow Count Sample Borehole Detail Lithology Description/Comments (FL.) USC (MSL) Moisture [q₃] Depth Type Run Elev. ^d E Š. 36 Dark yellowish brown silty CLAY; very firm; moist; some dark brown mottling; trace organics 100% CL 5--5 Olive brown clayey SILT; moderately soft; moist; some dark yellowish brown mottling 2 76% grades dark yellowish brown; clay content increasing ML 10 -10 Olive brown silty CLAY; very firm; moist; trace coarse sand; few iron concretions; some dark yellowish brown mottling 3 100% CL 15--15 some gravel Bentonite Chips 100% Dark yellowish brown sandy CLAY; some gravel; very soft; moist to wet Silica Sand SC Dark yellowish brown clayey SILT with ML-SM NOTES: sand and gravel; firm; moist Page 1 of 3

Andrews Engineering, Inc. Field Boring Log 3300 Ginger Creek Drive, Springfield, IL 62711 (217) 787-2334 Site Information: Location: Boring Information: Name: City Water, Light, & Power Coord. System: Site Grid Boring No.: AP-5 Location: Springfield, IL Northing: 3164.10 AP-5 Well No .: County: Sangamon Easting: 3203.10 Surf. Elev.: 581.6 Site No .: Weather: AEEI No.: 2011-127 Depth Information: Cloudy; 38° F; West 10-15 MPH Total: 49.0 Auger: 49.0 Drilling Contractor: Personnel: Core: Name: Terra Drill, Inc. Geologist: M. Hewitt Dates: City: Dupo, IL Driller: J. Brown Start: 2/1/2012 Equipment: CME 550 with 44" I.D. HSA Helper (s): J. Horn 5' CB and 2' SS Finish: 2/1/2012 Sample Type: - Continuous Barrel - Split Spoon - Shelby Tube - Core - Blind Drill (£f.) Count Sample Borehole Detail Lithology Description/Comments USC (MSL) Moisture Run No. [as] Depth Type Blow Elev. 9= Š. 40 Dark gray silty CLAY; some gravel; some shale fragments; trace coal fragments; very firm; moist 11 CL Bentonite Chips 45-12 100% -45 Gray SHALE; hard; moist CL 13 55% End of Boring = 49.0 50--50 55--55 60--60 NOTES: Page 3 of 3

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 Site Information: Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: TW3E Location: Springfield, Illinois Northing: 0 Well No: TW3E County: Sangamon Surf Elev.: 0 Easting: 0 Site No .: Depth Information: AEI No.: Weather: sunny, 73 deg Total: 40.5' Auger: 40.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Bulldog Drilling Geologist: D. Ghosh Dates: City: Dupo Driller: J. Gates Start: 06/27/2017 Equipment: 4.25" HSA, CME 55, 5' Continuous Macrocore Helper(s): C. Clines Finish: 06/27/2017 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample Count qu/su (tsf) Lithology Depth (ft) Run No. Description/Comments Blow (Elev. (Type 0.0 **Ground Surface** 0-**CLAYEY SILT** dark brown, iron oxidation staining, moist, firm to hard, moderate cementation, with root structure 4.5/5 5 -5.0-SILT brown to gray, iron oxidation, moist, 2" wet seam at 12', firm, moderate cementation, blocky, some clay 2 5.0/5 10 -10.0-5.0/5 3 SILT gray, firm to hard, trace fine grained sand sandy 14.5-15' 15 -15.0 SILTY CLAY dark gray, moist to wet, soft to firm, strong cementation, laminated, some 4.5/5 wood fragments 20 -20.0 Notes: Page 1 of 2

Notes: Page 1 of 2


dark gray, wet, very soft, strong cementation, homogeneous

Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG Site Information: Location: Boring Information: Name: CWLP Ash Pond Coord. System: Boring No: TW3W Location: Springfield, Illinois Northing: 0 Well No: TW3W County: Sangamon Easting: 0 Surf Elev.: 536.80 Site No.: **Depth Information:** Weather: rain, 55 deg AEI No .: Total: 23.8' Auger: 23.8' **Drilling Contractor:** Personnel: Core: -Contractor Name: Bulldog Drilling Geologist: D. Ghosh City: Dupo Dates: Driller: J. Gates Equipment: 4.25" HSA, CME 55, 5' Continuous Macrocore Start: 06/26/2017 Helper(s): C. Clines Finish: 06/26/2017 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) **Blow Count** qu/su (tsf) Run No. Depth (Recov. Description/Comments Type Elev. **Ground Surface** 0.0 0 dark brown, dry, firm to hard, moderate cementation, root structure in upper 2 4.5/5 high clay content, moist, soft to firm, blocky iron oxidation spots -5.0 SILT brown to gray, iron oxidation pervasive, moist, soft to firm, moderate cementation, some clay 2 4.5/5 very soft SILTY SAND brown, fine to medium grained sand, wet, poor cementation, moderately 10 -10.0 sorted, trace clay 3 4.0/5 **CLAYEY SAND** brown to dark gray, with gravel, coarse grained towards bottom, wet, strong cementation, poorly sorted 15 -15.0 SILTY CLAY dark gray, with coal fragments, moist, very soft, strong cementation, homogeneous appearance, coal content high at 19-19.5' 4.5/5 SILTY CLAY 20--20.0 blue gray, till, wet, soft, moderate cementation, homogeneous appearance, trace coarse sand and gravel 5 2.8/3.8 light tan, silty from 22-22.5' **SANDY SHALE** End of Boring = 23.8 Feet

Page 1 of 1

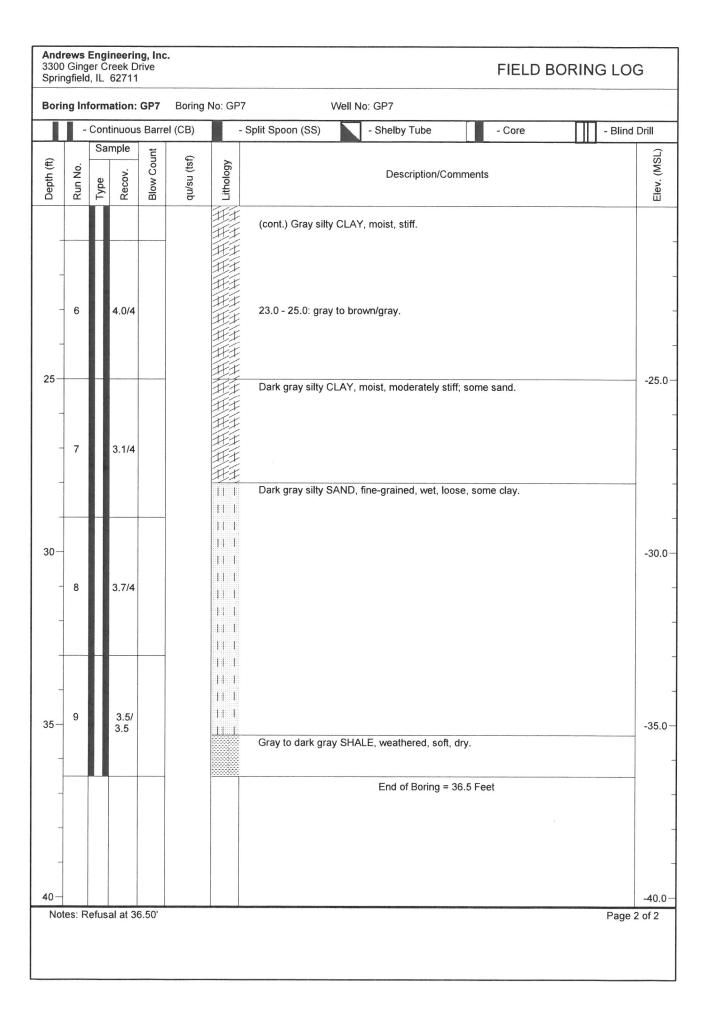
Notes: Borehole refusal at 23.8'.

Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG Site Information: Location: **Boring Information:** Name: CWLP Coord. System: Boring No: GP1 Location: Springfield, IL Northing: 0 Well No: GP1 County: Sangamon Easting: 0 Surf Elev.: 537.06 Site No .: Depth Information: AEEI No.: 180247 Weather: 65, overcast Total: 40.0' Auger: 40.0' **Drilling Contractor:** Personnel: Core: N/A Contractor Name: Bulldog Drilling Geologist: B. Kenning Dates: City: Dupo, IL Driller: C. Clines Start: 6/14/2019 Equipment: CME 55cc 4.25" HSA w/ 5' MC and 2' SS Helper(s): D. Smith Finish: 6/14/2019 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample **Blow Count** Elev. (MSL) Depth (ft) Lithology Run No. Recov. Description/Comments Type 0.0 **Ground Surface** 0 Brown clayey TOPSOIL. Light brown to gray silty CLAY, moist, stiff. 4.2 5 -5.0 2 2.2 10 -10.0 3 4.6 15 -15.0 Gray clayey SILT, moist to wet, moderately stiff. 4.3 20 -20.0 5 4.2 Brown/gray silty CLAY, moist, moderately stiff, contains coal fragments. Gray clayey SILT, moist to wet, moderately stiff. -25.0 Notes: Page 1 of 2

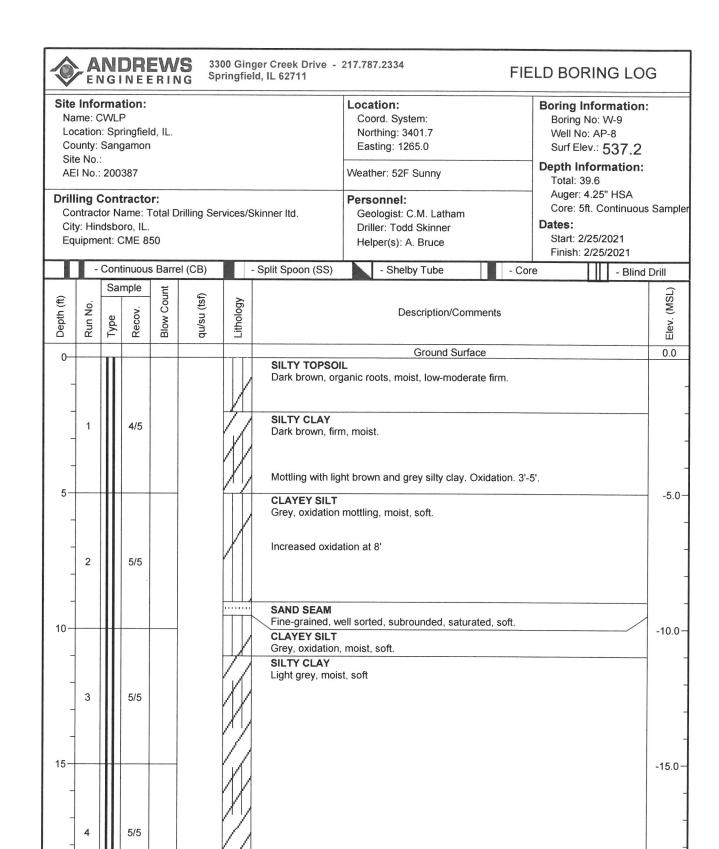
Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG Site Information: Location: **Boring Information:** Name: CWLP Coord. System: Boring No: GP2 Location: Springfield, IL Northing: 0 Well No: GP2 /AP-7 County: Sangamon Easting: 0 Surf Elev.: 425-25 Site No .: **Depth Information:** AEEI No.: 180247 Weather: 60, partly cloudy, light breeze Total: 40.0' Auger: 40.0' **Drilling Contractor:** Personnel: Core: N/A Contractor Name: Bulldog Drilling Geologist: B. Kenning Driller: C. Clines Dates: City: Dupo, IL Start: 6/14/2019 Equipment: CME 55cc 4.25" HSA w/ 5' MC and 2' SS Helper(s): D. Smith Finish: 6/14/2019 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample Blow Count Elev. (MSL) Lithology Depth (ft) Run No. Recov. Description/Comments Type 0.0 **Ground Surface** 0 Brown clayey TOPSOIL. Brown silty CLAY, moist, stiff. 3.0 5 -5.0 2 3.5 10 -10.0 Brown/gray clayey SILT, moist, stiff. 3.0 3 15 -15.0 3.8 4 20 -20.0 5 2.7 -25.0 Notes: No signs of freewater Page 1 of 2

3300	Ging	er C	ineering reek Driv 62711	, Inc. ve						FIELD E	BORING LC)G	
Bori	ng Ini	form	ation: G	P2 B	oring No:	GP2	Well N	lo: AP-7					
	_			Barrel (C	B)	- Split Spoon (SS)		- Shelby Tube		- Core	- Blin	d Drill	
Depth (ft)	Run No.	amp	T	Blow Count	Lithology		Description/Comments						
Dep	Run	Type	Recov.	Blov	Lithc							Elev. (MSL)	
-	6		4.1			Gray clayey SAND	, fine-gra	iined, moist, moder	ately stiff.			-	
30-												-30	
35—	7		4.1			Gray clayey SILT,	moist, sti	ff, coal fragments a	nt 30.4'.			-	
	8		3.4			Gray SHALE, weat	thered, si	ightly moist, soft.	-			-35	
40-								End of Boring =	40 Feet			-40-	
45-												-45-	
50 — Not	tes: N	o sig	ins of fre	ewater			50000000000000000000000000000000000000			and the second s	Page	-50 —	

Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG Site Information: Location: **Boring Information:** Name: CWLP Coord. System: Boring No: GP3 Location: Springfield Northing: 0 Well No: GP3 County: Sangamon Easting: 0 Surf Elev.: 549.12 Site No.: **Depth Information:** AEEI No.: 180247 Weather: 65, partly cloudy Total: 25' Auger: 25' **Drilling Contractor:** Personnel: Core: N/A Contractor Name: Bulldog Drilling Geologist: B. Kenning City: Dupo, IL Dates: Driller: C. Clines Equipment: CME 55cc 4.25 in HSA w/ 5' MC and 2' SS Start: 6/13/2019 Helper(s): D. Smith Finish: 6/13/2019 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample **Blow Count** Elev. (MSL) Lithology Depth (ft) Š Description/Comments Run **Ground Surface** 0.0 0 Brown silty to clayey TOPSOIL, moist, stiff. Brown silty CLAY to clayey SILT, moist, stiff. 4.7 -5.0 4 4 6 2 1.6 Light brown clayey SILT, slightly moist, stiff. 4 9 1.6 3 12 12 6 11 10-4 1.8 -10.0 11 12 Brown clayey SAND, fine-grained, slightly moist, moderately stiff. 5 3.0 15 -15.0-Brown silty CLAY, moist, stiff, contains coal fragments. 6 4.0 Brown clayey SAND, fine-grained, moist, moderately loose. -20.0 Notes: Macrocore refusal at 23'; Split spoon refusal at 24'; blind drilled to EOB depth of 25' Page 1 of 2


Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG												
Boring Information: GP3 Boring No: GP3 Well No: GP3												
_			Barrel (C	B)	- Split Spoon (SS)	- Shelby Tube	- Core	- Blind Drill				
Run No.	Type	Recov.	Blow Count	Lithology		Description/Comments	3	Elev. (MSL)				
7		2.2	41		Gray SHALE, weathered	slightly moist, soft.						
8		0.7	50 3"									
9		0.0				End of Boring = 25 Fee	at	-25				
								-30				
								-3£				
	g Inf	- Cont Sample ON UN Abbet 7	g Information: G - Continuous E Sample ON DESCRIPTION OF THE CONTINUOUS E Sample 7 2.2	g Information: GP3 - Continuous Barrel (Continuous Barrel) Sample ON DO DO DO DO DO DO DO DO DO DO DO DO DO	reg Information: GP3 Boring No: - Continuous Barrel (CB) Sample ON DO	Figure 1	Continuous Barrel (CB) Sample Sample Solution	Continuous Barrel (CB) Sample Sam				

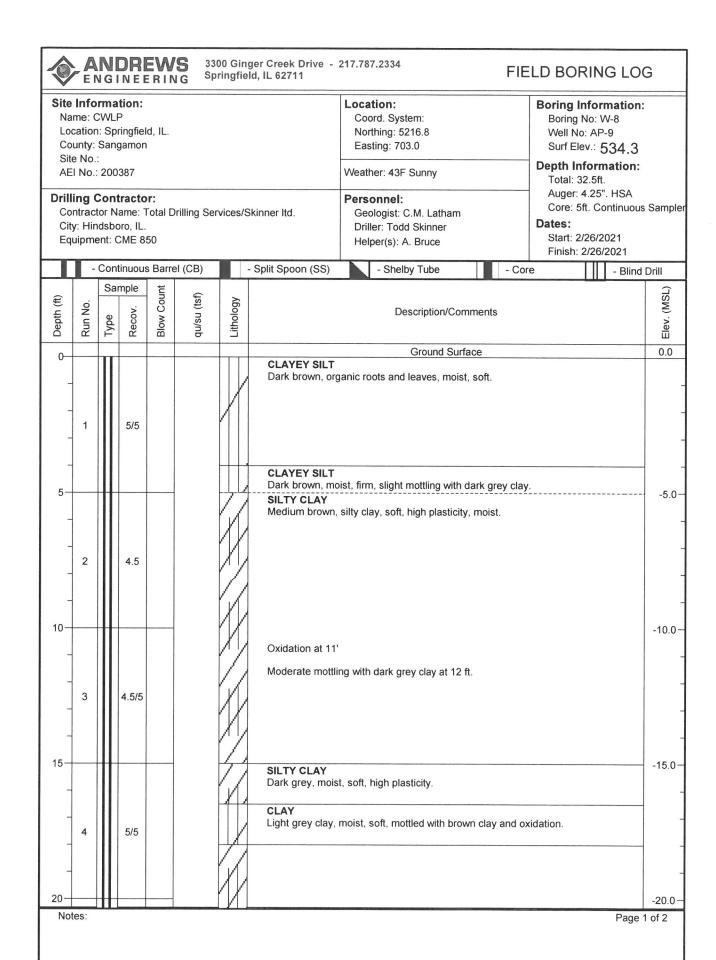
Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG Site Information: Location: **Boring Information:** Name: Springfield City Water Light and Power Coord. System: Boring No: GP4 Location: Springfield, IL Northing: 0 Well No: GP4 County: Sangamon Easting: 0 Surf Elev.: 0 Site No .: **Depth Information:** Weather: 80's F, Sunny AEI No.: 180247 Total: 38.0 Auger: 38.0 **Drilling Contractor:** Personnel: Core: N/A Contractor Name: Bulldog Drilling, Inc. Geologist: C. Myrvold Dates: City: Dupo, IL Driller: J. Edwards Start: 5/17/19 Equipment: AMS PowerProbe 9500 w/ 5' MC Helper(s): S. Guy Finish: 5/17/19 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) **Blow Count** du/su (tst) Lithology Depth (ft) Run No. Recov. Description/Comments Type Elev. (0.0 Ground Surface 0-Gray clayey SILT, moist, loose. Brown/gray silty CLAY, moist, stiff. 4.3/5 5 -5.0 3.7/4 2 Gray clayey SILT, moist, moderately loose. Brown silty SAND, fine to medium-grained, moist, moderately tight. 11 1 1111 10--10.0 11 1 4.0/4 3 Gray to dark gray silty CLAY, moist, stiff; trace to some sand. 15-1.3/4 4 -15.0 5 4.0/4 20 -20.0 Notes: Page 1 of 2


Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG Site Information: Location: **Boring Information:** Name: CWLP Coord. System: Boring No: GP5 Location: Springfield, IL Northing: 0 Well No: GP5 County: Sangamon Easting: 0 Surf Elev.: 0 Site No .: **Depth Information:** AEEI No.: 180247 Weather: Total: 15.5' Auger: 15.5' **Drilling Contractor:** Personnel: Core: N/A Contractor Name: Bulldog Drilling Geologist: C. Myrvold City: Dupo, IL Dates: Driller: C. Clines Equipment: CME 55cc w/ 4.25" HSA and 5' MC Start: 6/11/2019 Helper(s): D. Smith Finish: 6/11/2019 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample Blow Count Elev. (MSL) Lithology Depth (ft) S. Recov. Description/Comments Run **Ground Surface** 0.0 0 Brown silty CLAY, moist, stiff. 0.5 5 -5.0 Brown to gray silty CLAY, moderately stiff, shows of iron oxidation. 2 4.5 Black COAL, slightly moist, soft. 10 -10.0 3 2 Gray SHALE, weathered, dry, soft. 4 3 15 -15.0-5 0.5 End of Boring = 15.5 Feet -20.0 Notes: Refusal at 15.5'; No well installation Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG Site Information: Location: **Boring Information:** Name: Springfield City Water Light and Power Coord. System: Boring No: GP6 Location: Springfield, IL Northing: 0 Well No: GP6 /AP-6 County: Sangamon Easting: 0 Surf Elev.: 535.40 Site No .: **Depth Information:** AEI No.: 180247 Weather: 80's F, Sunny Total: 37.0 Auger: 37.0 **Drilling Contractor:** Personnel: Core: N/A Contractor Name: Bulldog Drilling, Inc. Geologist: C. Myrvold City: Dupo, IL Driller: J. Edwards Equipment: AMS PowerProbe 9500 w/ 5' MC Start: 5/17/19 Helper(s): S. Guy Finish: 5/17/19 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample **Blow Count** Elev. (MSL) dn/su (tst) Lithology Run No. Depth (Description/Comments Ground Surface 0.0 0-Dark brown clayey silt TOPSOIL, moist, moderately loose. Brown/gray silty CLAY to clayey SILT, moist, stiff. 4.1/5 -5.0 2 4.0/4 10--10.0 4.0/4 3 Brown silty SAND, fine-grained, saturated, loose. 11 1 Dark gray clayey SAND, fine-grained, wet to saturated, moderately loose, some silt. Dark gray clayey SILT, moist, moderately stiff to stiff, some sand. 15-4 1.3/4 -15.0 5 3.0/4 -20.0 Notes: refusal at 37 Page 1 of 2

Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG Site Information: Location: **Boring Information:** Name: Springfield City Water Light and Power Coord. System: Boring No: GP7 Location: Springfield, IL Northing: 0 Well No: GP7 County: Sangamon Easting: 0 Surf Elev.: 0 Site No .: **Depth Information:** AEI No.: 180247 Weather: 80's F, Sunny Total: 36.5 Auger: 36.5 **Drilling Contractor:** Personnel: Core: N/A Contractor Name: Bulldog Drilling, Inc. Geologist: C. Myrvold Dates: City: Dupo, IL Driller: J. Edwards Start: 5/16/19 Equipment: AMS PowerProbe 9500 w/ 5' MC Helper(s): S. Guy Finish: 5/16/19 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample Blow Count Elev. (MSL) qu/su (tsf) Depth (ft) Lithology Run No. Description/Comments Type 0.0 **Ground Surface** 0 Dark brown clayey silt TOPSOIL, moist, moderately loose. Brown/gray silty CLAY to clayey SILT, moist, stiff, trace sand. 4.1/5 5 -5.0 2 4.0/4 10 -10.0 3 4.0/4 Gray silty CLAY, moist, stiff. 15-4 2.7/4 -15.0 17.0 - 18.0: Soft, saturated. 18.0 - 25.0: moderately loose to moderately stiff. 5 4.0/4 -20.0 Notes: Refusal at 36.50' Page 1 of 2

Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG Site Information: Location: **Boring Information:** Name: Springfield City Water Light and Power Coord. System: Boring No: GP8 Location: Springfield, IL Northing: 0 Well No: GP8 County: Sangamon Easting: 0 Surf Elev.: 530.08 Site No.: Depth Information: AEI No.: 180247 Weather: 80's F, Sunny Total: 42.0 Auger: 42.0 **Drilling Contractor:** Personnel: Core: N/A Contractor Name: Bulldog Drilling, Inc. Geologist: C. Myrvold City: Dupo, IL Dates: Driller: J. Edwards Equipment: AMS PowerProbe 9500 w/ 5' MC Start: 5/15/19 Helper(s): S. Guy Finish: 5/16/19 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample **Blow Count** Elev. (MSL) du/su (tst) Lithology Depth (ft) Run No. Description/Comments Type 0.0 **Ground Surface** 0-Dark brown clayey SILT, moist to wet, loose. Brown silty CLAY, moist, stiff, trace sand, black mottling. 2.7/4 1 5--5.0 2 3.3/4 10-3 4.0/4 -10.0 4 4.0/4 Gray silty CLAY, moist, moderately stiff. 15 -15.0 5 4.0/4 20 -20.0 Notes: Refusal at 42.00 Page 1 of 3



Notes: Page 1 of 2

-20.0

20-

③	ANDREWS ENGINEERING 3300 Ginger Creek Drive - 217.787.2334 Springfield, IL 62711 FIELD BORING LO											
Bori	Boring Information: W-9 Boring No: W-9 Well No: AP-8											
			Barrel (Cl	3)	- Split Spoon (SS)		- Shelby Tube	- Co	ге	- Blin	nd Drill	
Depth (ft)	ġ	Sample Name										
-	5	5/5			CLAYEY SILT Brown, moist, sof Organic roots at 2 Mottling with grey	20'					-	
25-				7	SILTY CLAY Grey, moist, soft. SILTY CLAY Dark grey, firm, m		-25.0					
-	6	5/5			Mottled dark grey CLAY Dark grey, firm, m	clay	with blue clay at 26.5				-	
30-	7	5/5			SILTY CLAY Blue, with trace o	ITH S		ist, soft, mode	rate plasticity.		-30.0-	
35	8	3.5/5	60 40	<i>X</i>	SAND Loose sands, satu						-35.0 -	
40-					Disco, moist, weath		End of Boring = 3	9.6 Feet			-40.0	
Not	es:									Page	e 2 of 2	

	ANDREWS 3300 Ginger Creek Drive - 217.787.2334 FIELD BORING LOG											
Bori	ng Info	rmation:	W-8	Boring	No: W-	-8 Well N	No: AP-9					
	- C	ontinuou	s Barro	el (CB)		- Split Spoon (SS)	- Shelby Tube	- Core	- Blind	Drill		
Depth (ft)	Sample Sample Tithology Autority Sample Description/Comments											
25 — 30 — 35 — -	5 6 7	3/ ₁ 5/5	30 88 4	/nb			and oxidation. high plasticity. SAND sand content; poorly so	s; moist, poorly sorted.		-35.0 — -35.0 — -		
40 — Not	tes:								Page 2	-40.0 — 2 of 2		

3300 Ginger Creek Drive - 217.787.2334 Springfield, IL 62711

FIELD BORING LOG

Name: CWLP Location: Springfield County: Sangamon

Site No .: AEI No.: 200387

Location:

Coord. System: Northing: 4684.0 Easting: 695.6

Weather: 40F Partly cloudy

Boring Information:

Boring No: W-5 Well No: AP-10 Surf Elev.: 534.4

Depth Information:

Total: 34.97 Auger: 4.25" HSA

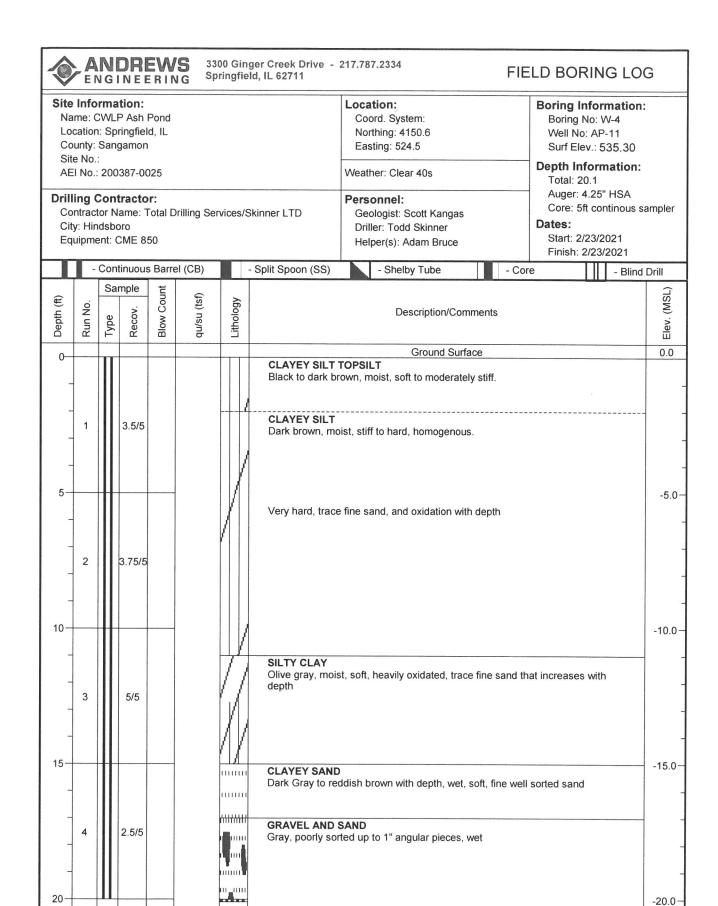
Core: 5ft. Continous Sampler

Dates:

Start: 2/24/2021 Finish: 2/24/2021

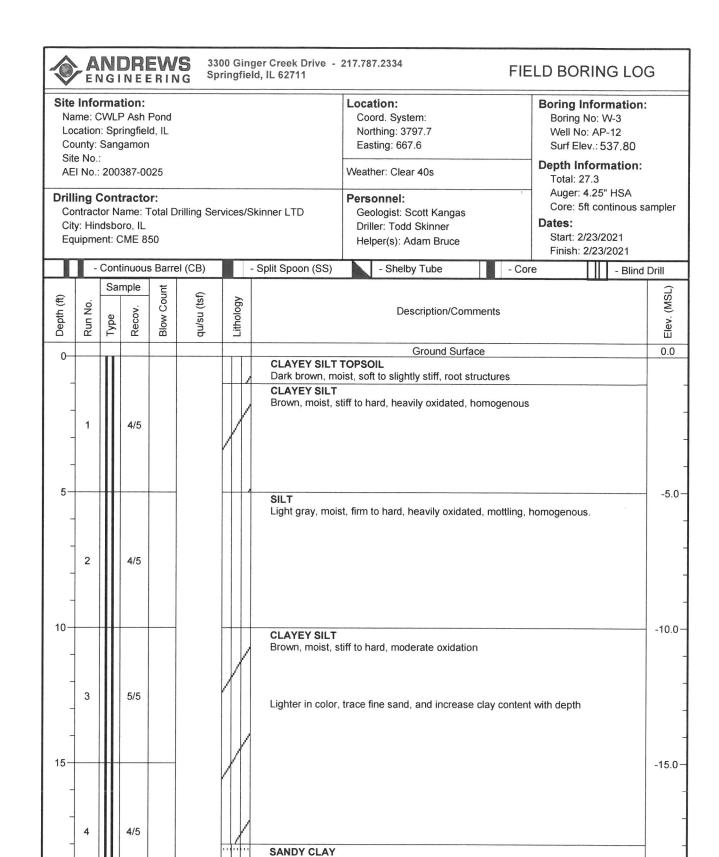
Drilling Contractor:

Contractor Name: Total Drilling Services/Skinner ltd.


City: Hindsboro, II. Equipment: CME 850

Personnel:

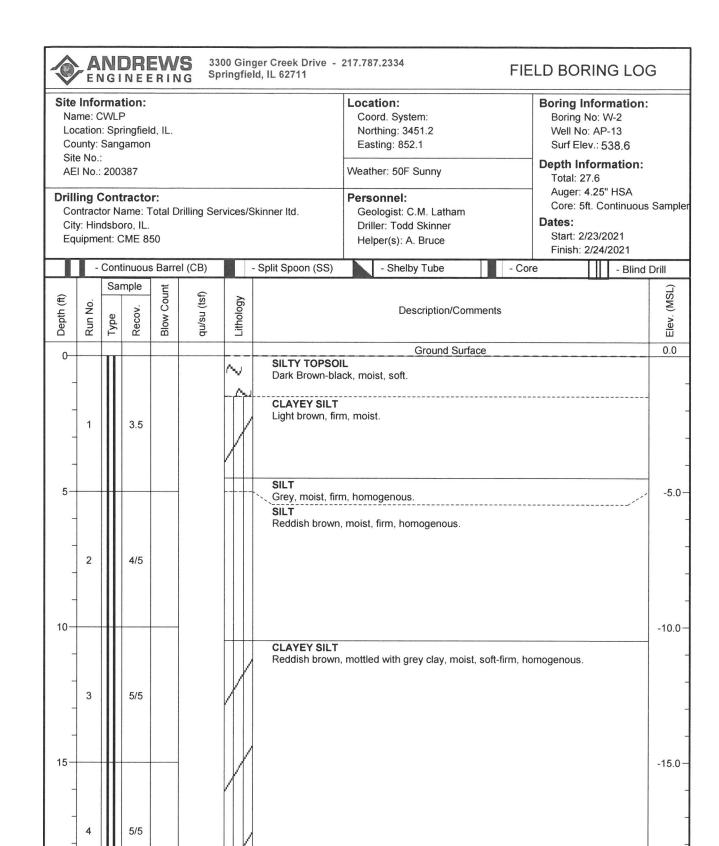
Geologist: C.M. Latham Driller: Todd Skinner Helper(s): A. Bruce


	1	Con	tinuous	Barre	el (CB)		- Split Spoon (SS)		- Shelby Tube	- 0	Core	. 2/24/2	- Blind	Drill		
			mple		(02)	- Billio								T		
Depth (ft)	Run No.	Type	Recov.	Blow Count	qu/su (tsf)	Lithology		Description/Comments								
0-									Ground Surfac	ce		300000000000000000000000000000000000000		0.0		
						SILTY TOPSOIL Dark brown, moist, very firm, hard silt in shoe.										
-	1		2.5/5				SILT Medium brown,	moist,	very firm, hard silt in sh	noe.				-		
5-							CLAYEY SILT Brown, moist, so	oft, hoi	mogenous.					-5.0 -		
-	2		4/4			SILTY CLAY Brown, high plasticity, moist, very soft, homogenous. Trace sand seen in top of barrel.										
10-			_				Wet from 10'-15'							-10.0 - -		
15—	3		5				Free water at 12	'5"						-		
	4		5			7	SILTY CLAY Grey, soft, moist Fine sands, trace CLAYEY SILT V	e grav	SAND					-15.0 - -		
-	4		5				Blueish grey with	trace	gravel, soft, moderate	sorting.				-		
20 – Not	OC.					//	',					-	/	-20.0		
INOI	CS.												Page 1	1 01 2		

	ANDREWS ENGINEERING 3300 Ginger Creek Drive - 217.787.2334 Springfield, IL 62711 FIELD BORING LOG													G			
Borir	ng Inf	orm	ation:	W-5	Boring	No: W-	5 V	Vell N	o: AP-10								
	-	Cont	tinuous	s Barre	el (CB)		- Split Spoon (SS)		- Shelby Tube		- Core		- Blind	Drill			
Depth (ft)	Run No.	Type Sar											Elev. (MSL)				
	5		5/5			SANDY GRAVEL Poorly sorted, sub rounded, saturated, unconsolidated sands. Poorly sorted angular gravel. SILTY CLAY Blue, high plasticity, firm, moist, tight clay. Very thin sand seam, fine grained, saturated at 23' Very thin sand seam, fine grained, saturated at 29.5'											
30	6		5/5											-25.0			
-	7		4/5	33 60			Angular gravels;	poorly	orly sorted sandy clay, v v sorted. Trace silts, sat towards bottom with tra ation.	urate	d. Gradation into	0.3ft. larger		-30.0			
35 —									End of Boring = 34.9	97 Fe	et		Page 2	-35.0 — - - - -40.0 — 2 of 2			

Notes:

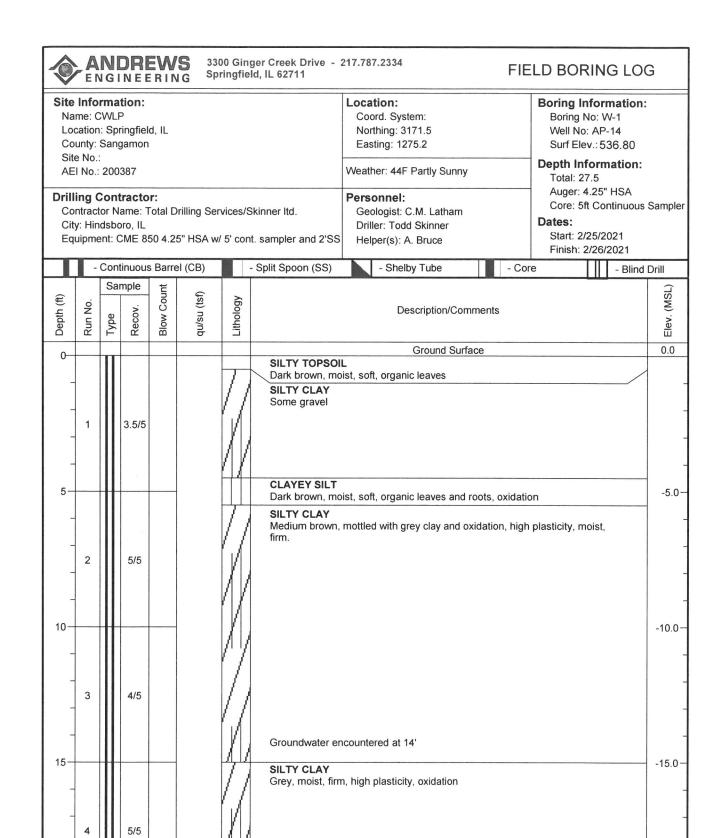
③	ANDREWS ENGINEERING 3300 Ginger Creek Drive - 217.787.2334 Springfield, IL 62711 FIELD BORING LOG									3	
Borir	Boring Information: W-4 Boring No: W-4 Well No: AP-11										
	-	The same of the last of the la	-	Barre	el (CB)		- Split Spoon (SS)	- Shelby Tube	- Core	- Blind I	Drill
Depth (ft)	Run No.	Type	Recov. alc	Blow Count	qu/su (tsf)	Lithology		Description/Con	nments		Elev. (MSL)
25-							SHALE Weathered, gray	End of Boring = 2	20.1 Feet		-25.0 —
30-											-30.0 —
35-											-35.0 — - - - -40.0 —
Not	es:									Page 2	? of 2


Notes: Page 1 of 2

20-

Gray, wet, soft, fine sand, well sorted and homgenous

-20.0


	ANDREWS 3300 Ginger Creek Drive - 217.787.2334 FIELD BORING LOG Springfield, IL 62711)G				
Bori	Boring Information: W-3 Boring No: W-3 Well No: AP-12													
	L	-			el (CB)		- Split Spoon (SS)		- Shelby Tube		- Core		- Blin	d Drill
Depth (ft)									Elev. (MSL)					
-	5		2.5/ 2.5			/	CLAYEY SAND		iall corted fine cond					-
-	6		2/2.5			Dark gray, wet, stiff, well sorted fine sand GRAVEL AND SAND Gray, poorly sorted, angular to subangular, 1.5" or less in size								
25 – - -	7		2.3/				SHALE Gray, weathered							-25.0
- -									End of Boring = 2	27.3 Fe	et			_
30-														-30.0 —
35-														-35.0
Not	40—													

Notes:

-20.0

Page 1 of 2

21-21.5' coal fragments with undifferentiated organic materials

-20.0

Page 1 of 2

20

Notes:

	E	NI	DRI	ERIN	S 33	300 Gin oringfie	ger Creek Drive - 217. eld, IL 62711	787.2334	FIELD E	ORING LO	G
Bori	Boring Information: W-1 Boring No: W-1 Well No: AP-14										
	- Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind I										Drill
Depth (ft)	Run No.	Type advT	Recov.	Blow Count	dn/su (tst)	- Lithology		Description/Co	omments		Elev. (MSL)
25-	5		3/5				Coarse grained, poo	orly sorted, unconsolida	ated, saturated.		-
	6		3/5	30 60 4			Grey, weatherd with				25.0 — - -
20								End of Boring =	27.5 Feet		-
30-											-30.0
35-											-35.0
	40 - -40.0 - -40.0 - Page 2 of 2										

Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG Site Information: Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B1 Location: Springfield, Illinois Northing: 1128150.33 Well No: T1 County: Sangamon Easting: 2455538.81 Surf Elev.: 535.33 Site No.: Depth Information: AEI No.: 240227 Weather: Sunny 66 F Total: 19.5' Auger: 19.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Skinner Limited Geologist: S. Van Hook Dates: City: Hindsboro, Illinois Driller: T. Skinner Start: 05/01/2024 Equipment: 4 1/4" HSA 5' CSD 3" Helper(s): NA Finish: 05/01/2024 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample Blow Count (MSL) qu/su (tsf) Depth (ft) Lithology Run No. Description/Comments Elev. 535.3 **Ground Surface** Dark brown silty CLAY (topsoil); Sample CS1A 4.0/5 Dark brown silty CLAY; moist 0.25 530.0-0.25 Sample CS2 7.0-7.5'; saturated 7.5' 5.0/5 2 Free water 9.5' 10 525.0 Light brown silty CLAY; gray mottling; Sample CS3A 11.0-11.3' 2.0 5.0/5 3 Sample CS3B 13.0-13.5' 2.75 15 520.0 1.75 Sample CS4A 15.5-16.0' 0.5 Brown SAND and GRAVEL; fine to coarse grained; silty clay matrix B.0/4.5 Gray SANDSTONE; weathered 1111 Greenish gray SANDSTONE; fine grained End of Boring = 19.5 Feet 20-Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG Site Information: Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B2 Location: Springfield, Illinois Northing: 1128803.76 Well No: T2 County: Sangamon Easting: 2455006.85 Surf Elev.: 547.22 Site No.: Depth Information: AEI No.: 240227 Weather: Sunny 66 F Total: 35.0' Auger: 35.0' **Drilling Contractor:** Personnel: Core: -Contractor Name: Skinner Limited Geologist: S. Van Hook Dates: City: Hindsboro, Illinois Driller: T. Skinner Start: 05/01/2024 Equipment: 4 1/4" HSA 5' CSD 3" Helper(s): NA Finish: 05/01/2024 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample Blow Count Elev. (MSL) Depth (ft) qu/su (tsf) Lithology Run No. Recov. Description/Comments Type 547.2 **Ground Surface** 0-Dark brown silty CLAY (topsoil); Sample CS1A 0-0.5 Brown silty CLAY; moist; Sample CS1B 2.5-3.0 545.0-4.3/5 3.0 3.0 Brown clayey SILT; greenish gray mottling; moist 540.0 2 4.0/5 Sample CS2A 8.0-8.5' 2.25 10 Sample CS3A 11.0-11.5 Dark brown CONCRETIONS; Sample CS3B 12.1-12.3' 535.0 3 5.0/5 Brown silty CLAY; Sample CS3C 1.5 15 Notes: Page 1 of 3

3300	Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG										G
Bori	ng In	form	ation:	B2	Boring	No: B2	Well	No: T2			
	- Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind									Drill	
Depth (ft)	Sample The Sample Blow Count Blow Count Blow Count Description/Comments								Elev. (MSL)		
35—	8		5.0/5				Sample CS8A Gray to brownish gra Gray SHALE; Sample	y SHALE; weathered; e CS8C 32.25-33.0' End of Boring =			515.0
											510.0 <i>-</i> -
45—							-				- 505.0 — - -
Not	tes:									Page	3 of 3

Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG Site Information: Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B4 Location: Springfield, Illinois Northing: 1130726.70 Well No: T4 County: Sangamon Easting: 2455622.14 Surf Elev.: 546.56 Site No .: **Depth Information:** AEI No.: 240227 Weather: Cloudy 50 F Total: 35.0' Auger: 35.0' **Drilling Contractor:** Personnel: Core: -Contractor Name: Skinner Limited Geologist: S. Van Hook Dates: City: Hindsboro, Illinois Driller: T. Skinner Equipment: 4 1/4" HSA 5' CSD 3" Start: 04/26/2024 Helper(s): NA Finish: 04/26/2024 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample **Blow Count** Elev. (MSL) du/su (tst) Depth (ft) Lithology Run No. Recov. Description/Comments Type **Ground Surface** 546.6 0-Brown silty CLAY; moist; organics 545.0-0.5 4.7/5 1 Brown clayey SILT; moist; trace organics; becoming more dense with depth 540.0-3.5 2 5.0/5 >5 10 535.0-Black organics; Sample CS3A 3 5.0/5 0.5 0.25 Brown silty CLAY; Sample CS3B 15-Notes: Page 1 of 2

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 Site Information: Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B5 Location: Springfield, Illinois Northing: 1130996.32 Well No: T5 County: Sangamon Easting: 2455852.04 Surf Elev.: 538.15 Site No.: **Depth Information:** AEI No.: 240227 Weather: Sunny 43 F Total: 20.0' Auger: 20.0' **Drilling Contractor:** Personnel: Core: -Contractor Name: Skinner Limited Geologist: S. Van Hook Dates: City: Hindsboro, Illinois Driller: T. Skinner Start: 04/25/2024 Equipment: 4 1/4" HSA 5' CSD 3" Helper(s): NA Finish: 04/25/2024 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample **Blow Count** (MSL) qu/su (tsf) Lithology Depth (ft) Run No. Description/Comments Type Elev. **Ground Surface** 538.2 Brown SILT; moist 0.25 Dark brown silty CLAY; moist 4.6/5 2.0 535.0-Dark brown silty CLAY; brown/tan mottling; moist 2.25 Olive green to brown silty CLAY; mottling; moist 5 2 4.8/5 2.25 530.0 8.0' Free water 10-Brown SAND; fine grained; with silt; saturated Olive green clayey SILT; brown mottling >5.0 3.8/5 3 Gray SHALE; weathered 525.0-Notes: Page 1 of 2

Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG										G	
Boring Information: B5 Boring No: B5 Well No: T5											
	- Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind D										Drill
Depth (ft)	Run No.	Type Sa	Recov.	Blow Count	qu/su (tsf)	Lithology		Description/Co	omments		Elev. (MSL)
	4		1.6/5				Black SHALE; satu	End of Boring	= 20 Feet		520.0 -
25—											515.0 —
30- No	tes:									Page 2	510.0 — - 2 of 2
140										rage :	2 01 2

Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG Site Information: Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B6 Location: Springfield, Illinois Northing: 1131175.15 Well No: T6 County: Sangamon Easting: 2456259.47 Surf Elev.: 535.96 Site No.: **Depth Information:** AEI No.: 240227 Weather: Sunny 43 F Total: 42.2' Auger: 42.2' **Drilling Contractor:** Personnel: Core: -Contractor Name: Skinner Limited Geologist: S. Van Hook Dates: City: Hindsboro, Illinois Driller: T. Skinner Start: 04/25/2024 Equipment: 4 1/4" HSA 5' CSD 3" Helper(s): NA Finish: 04/25/2024 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample Blow Count (MSL) qu/su (tsf) Lithology Depth (ft) Run No. Description/Comments Type Elev. **Ground Surface** 536.0 Dark brown silty CLAY (topsoil) 535.0-1.5 Greenish brown silty CLAY; moist; trace organics 4.1/5 5 Greenish brown silty CLAY; gray mottling; trace organics 530.0 4.2/5 2 2.0 10 Gray/brown clayey SILT; greenish mottling; moist 525.0 5.0/5 3 4.5 14.0' Wet Notes: Page 1 of 3

Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711 FIELD BORING LOG											G		
Bori	ng Inf	forn	nation:	: B6	Boring	No: B6	S We	ell N	o: T6				
	1 -	Con	tinuou	s Barr	rel (CB)		- Split Spoon (SS)	V	- Shelby Tube	- Core		- Blind	Drill
Depth (ft)	Run No.	Type	Sample Blow Count Blow Count Cithology Cithology Cithology Description/Comments									Elev. (MSL)	
_	7		5.0/5		0.5		Dark gray SILT; sa	tura	ited; trace white clast	ts			505.0 -
35—													-
-					0.5		Gray SILT to silty S	SAN	D; fine to coarse grai	ined			500.0-
40-	8		3.5/5										-
-	9		1.5/5				Gray SHALE (bedre	ock)	End of Boring = 4	12.2 East			495.0-
-									End of Boring = 4	tz.z reel			
45-													
Not	tes:											Page	3 of 3
												, age (

APPI IMPOUNDMENT GEOTECHNICAL INVESTIGAT	ENDIX A4: ION LOGS

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-1U Location: Springfield, Illinois Northing: 1127408.40 Well No: B-1U County: Sangamon Easting: 2456167.19 Surf Elev.: 564.17 Site No.: **Depth Information:** AEI No.: 220408 Weather: Rainy 62 F Total: 19.5' Auger: 19.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: A. Kergel Start: 10/13/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/13/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Run No. Description/Comments Type Elev. 564.2 **Ground Surface** Black CINDERS; moist; loose 1 Dark brown silty CLAY; moist; stiff; some black cinders; trace organics; trace 2 .0/1.5456 2.0 3 560.0 5-0.9/1.5235 4 1.5 5 Black fly ASH with CINDERS; moist to wet; moderately stiff .0/1.5266 6 1.0 7 555.0 10 0.8/1.5256 8 9 10 .8/1.5121 11 550.0 15-Black fly ASH; wet; soft 4/1.5011 12 **CINDERS** 13 Black fly ASH; wet; soft; laminated 14 .1/1.5123 0.25 15 545.0 End of Boring = 19.5 Feet 20 Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-1L Location: Springfield, Illinois Northing: 1127370.68 Well No: B-1L Surf Elev.: 552.56 County: Sangamon Easting: 2456072.07 Site No.: **Depth Information:** Weather: Sunny 72 F AEI No.: 220408 Total: 24.5' Auger: 24.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: A. Kergel Start: 10/11/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/11/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) 8 Description/Comments Type Run | Elev. 552.6 **Ground Surface** Brown silty CLAY; moist; stiff; some dark brown mottling; few organics; trace ash fragments; trace gravel 1 550.0 2 .1/1.5267 3.75 3 5-4 .0/1.5354 3.5 5 545.0 6 b.6/1.5233 2.5 7 16 mm VST@ 9.5' = 7.7, 2.4, 2.8 10 2.25 0.6/1.5143 Brown SAND; medium to coarse grained; moist; loose 8 9 Black coal ASH fragments; wet, loose 540.0 10 0.3/1.5133 11 15 12 0.6/1.5022 13 535.0 14 b.5/1.54 10 3 Dark gray sandy SILT; wet; soft; trace gravel 15 More clayey 20 0.25 16 .1/1.5002 Dark gray CLAY; moist; soft; some organic fragments; trace gravel 0.5 17 20 mm VST@ 22.0' = 13.0+, 3.9, 3.9 530.0 .4/2.0 18 19 2.0 25 End of Boring = 24.5 Feet Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-2U Location: Springfield, Illinois Northing: 1128045.00 Well No: B-2U County: Sangamon Easting: 2456005.51 Surf Elev.: 562.33 Site No.: **Depth Information:** Weather: Sunny 78 F AEI No.: 220408 Total: 26.0' Auger: 26.0' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/12/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/12/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Run No. Description/Comments Type Elev. 562.3 **Ground Surface** Black coal ASH (cinders); moist; loose 1 560.0 .4/1.52 5 1 2 3 5-.2/1.5112 4 5 Gray silty CLAY; some yellow brown mottling; some iron concretions; moist; 555.0 6 0.8/1.5248 stiff; trace gravel 2.0 7 Black coal ASH (cinders); wet; loose 10-8 0.4/1.5254 9 Black fly ASH; wet; soft; some cinders 550.0 10 .5/1.51 2 11 <0.25 11 15 <0.25 .0/1.5102 12 With cinders 13 Black coal ASH (cinders); wet; loose 545.0 14 .4/1.5334 15 Black fly ASH; wet; soft; 20 mm VST@ 19.5' = 3.0, 3.2, 3.8 20-0.5/2.0 16 <0.25 17 Black CINDERS; wet; loose 540.0).5/1.5 1 2 5 18 19 Olive brown CLAY; moist; stiff; some organics 25 20 .5/1.5012 1.25

End of Boring = 26 Feet

Page 1 of 1

Notes:

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-2L Location: Springfield, Illinois Northing: 1128015.70 Well No: B-2L Surf Elev.: 536.92 County: Sangamon Easting: 2455909.16 Site No.: **Depth Information:** Weather: Sunny 65 F AEI No.: 220408 Total: 24.5' Auger: 24.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/10/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/10/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) 8 Description/Comments Type Run | Elev. 536.9 **Ground Surface** Gray/brown silty CLAY; some iron concretions; moist; stiff; some organics; some ash fragments; some gravel 1 535.0 2 .5/1.5 144 1.25 3 5 4 .3/1.5223 1.0 5 Light gray clayey SILT; few dark yellow brown mottling; moist; firm; trace iron 530.0 concretions .8/2.0 6 2.25 7 20 mm VST@9.5' = 13.0, 3.2, 2.8 10 8 .5/1.5 1 2 2 0.75 Gray clayey SAND; wet; soft 111111 <0.25 9 525.0 10 .5/1.50 1 1 <0.25 11 15 12 .0/1.5001 < 0.25 13 1111111 520.0 Gray clayey SILT; laminated; moist to wet; soft 14 .0/1.50 1 1 0.25 15 Brown SAND; medium to coarse grained; wet; loose 203/1.50 1 2 16 17 Dark gray clayey SILT; laminated; moist; soft; organic fragments 515.0 18 .5/1.5 1 3 3 0.25 19 25 End of Boring = 24.5 Feet Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-2 Location: Springfield, Illinois Northing: 1128026.78 Well No: B-2 County: Sangamon Easting: 2455971.03 Surf Elev.: 554.71 Site No.: **Depth Information:** Weather: Cloudy 62 F AEI No.: 220408 Total: 30.0' Auger: 30.0' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: S. Van Hook Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/06/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/06/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) 8 Description/Comments Type Run Elev. 554.7 **Ground Surface** Gray brown SILT; dry 1 4.75 0.4/1.5355 2 3 550.0 Becoming moist 5-2.5 0.8/1.5346 4 5 Brown silty CLAY; moist 2.0 6 D.7/1.53 4 4 7 2.5 545.0 10 0.9/1.5244 8 Greenish brown silty CLAY; moist 9 1.5 0./1.5234 10 11 540.0 Brown silty CLAY; moist; trace black organics; 16 mm VST@ 14.5' = 7.0, 4.3, 15-12 .0/1.5135 2.0 13 2.0 .0/1.5124 14 15 535.0 2.5 20-16 .4/1.5134 Brownish gray silty CLAY; black/orange inclusions; organics; moist 17 18 .9/2.0 19 530.0 25 20 .5/1.5 1 3 4 Brownish/greenish gray silty CLAY; moist; trace brown organics; 16 mm 1.0 VST@ 25.0' = 5.4, 3.2, 3.5 21 Becoming trace fine grained sand <0.25 <0.25 .5/1.5022 22 Orangish brown SILT; moist 23 525.0 30 End of Boring = 30 Feet Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-1CCR Location: Springfield, Illinois Northing: 1127389.92 Well No: B-1CCR County: Sangamon Easting: 2456246.00 Surf Elev.: 568.03 Site No.: **Depth Information:** AEI No.: 220408 Weather: Sunny 64 F Total: 19.5' Auger: 19.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/17/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/17/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Run No. Description/Comments Type Elev. 568.0 **Ground Surface** Black bottom ash and CINDERS; moist; loose 1 2 0.5/1.5552 565.0 3 5-0.3/1.5123 4 Black fly ASH; moist to wet 5 6 D.8/1.5133 1.0 560.0 Black bottom ASH; moist to wet; moderately loose 7 10 .0/1.5111 8 9 10 .2/1.5101 555.0-11 Black fly ASH; moist to wet; moderately firm 15-12 .5/1.5001 <0.25 Black bottom ASH; wet; loose 13 14 .9/1.5267 550.0 15 End of Boring = 19.5 Feet 20 Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-1LL Location: Springfield, Illinois Northing: 1127355.19 Well No: B-1LL County: Sangamon Easting: 2456023.58 Surf Elev.: 542.84 Site No.: **Depth Information:** Weather: Sunny 65 F AEI No.: 220408 Total: 19.5' Auger: 19.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/10/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/10/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Run No. Description/Comments Type Elev. 542.8 **Ground Surface** Brown clayey SILT; with sand; moist; loose 1 2 0.2/1.5688 540.0-3 5-0.2/1.5655 4 5 Gray silty CLAY; with cinders; dark yellowish brown mottling; moist; stiff 0.6/1.5445 6 535.0 2.25 7 Gray SAND; medium to coarse grained; wet; loose 10 b.6/1.57 9 10 8 1111111 111111 9 Gray silty CLAY; with black organic varved material; few ash fragments 10 0.7/1.5355 530.0 2.75 11 16 mm VST@ 14.5' = 8.5, 3.6, 4.2 15-2.0/2 12 Very soft 0.5 13 14 .4/1.5122 525.0 0.75 15 End of Boring = 19.5 Feet 20 Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-1 Location: Springfield, Illinois Northing: 1127375.6 Well No: B-1 Surf Elev.: 557.77 County: Sangamon Easting: 2456111.7 Site No.: **Depth Information:** Weather: Sunny 62 F AEI No.: 220408 Total: 29.5' Auger: 29.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: R. Carson Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/09/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/09/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Š Description/Comments Type Elev. Run 557.8 **Ground Surface** CINDER and GRAVEL (fill) 1 .3/1.5342 555.0 2 3 CINDER (fill); dry; loose 5-4 b.2/1.5121 Gray silty CLAY; with cinders; dry; medium stiff 5 550.0 0.5/1.5132 6 7 Gray silty CLAY; with gravel and sand; moist; stiff; 20 mm VST@ 9.5' = 6.0, 10-8 0.9/1.5128 3.2, 4.3 1.0 9 Gray sandy CLAY; moist; medium stiff 545.0 0.8/1.5013 10 1.0 11 1111111 **Gray SANDY LOAM** 15 12 0.9/1.54 18 9 Black CINDER (fill); with gravel and silty clay; wet; loose 13 540.0 b.2/1.5111 14 15 Gray SANDY LOAM; wet; slightly stiff 20-16 .1/1.5113 0.3 17 Gray SILTY LOAM; wet; soft; 20 mm VST@ 51.5' = 6.7, 2.3, 2.5 .1/1.5003 535.0 18 19 Gray SANDY LOAM; moist 25-20 .8/2.0 0.7 21 Gray silty CLAY; moist; stiff 22 .2/1.5235 530.0 1.5 23

Notes:

End of Boring = 29.5 Feet

Page 1 of 1

30

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-2CCR Location: Springfield, Illinois Northing: 1128059.37 Well No: B-2CCR County: Sangamon Easting: 2456087.51 Surf Elev.: 566.77 Site No.: **Depth Information:** Weather: Sunny 64 F AEI No.: 220408 Total: 26.0' Auger: 26.0' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/17/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/17/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Run No. Description/Comments Type Elev. 566.8 **Ground Surface** Mix of lime sludge, and fly and bottom ASH; some dark yellow brown mottling; moist; soft 1 565.0 0.25 2 .3/1.5 1 1 1 3 5-.6/1.5101 More bottom ash 4 5 Lime SLUDGE; wet; soft 560.0-<0.25 0.9/1.5153 6 7 10 <0.25 Black fly ASH; moist; soft; some organic fragments .5/1.5000 8 9 555.0 10 .5/1.5000 Some bottom ash 11 15-<0.25 .5/1.5000 12 13 550.0 Black bottom ASH; wet; loose 14 .4/1.5101 15 End of Boring = 19.5 Feet 20 Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-3 Location: Springfield, Illinois Northing: 1128663.99 Well No: B-3 County: Sangamon Easting: 2456486.97 Surf Elev.: 554.19 Site No.: **Depth Information:** Weather: Sunny 69 F AEI No.: 220408 Total: 29.5' Auger: 29.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/18/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/18/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Š Description/Comments Type Elev. Run 554.2 **Ground Surface** Dark yellowish brown silty CLAY; organic staining; moist; stiff 1 2 .5/1.5112 1.0 3 550.0 Brown/gray SAND; coarse grained; moist to wet; loose 5-4 0.9/1.5222 5 111111 Dark yellowish brown silty CLAY; organic staining; moist; stiff 0.8/1.5123 6 2.57 7 545.0 16 mm VST@ 9.5' = 9.3, 5.3, 5.4 10-.5/2.0 8 1.5 9 Black/gray 10 .0/1.5133 1.5 11 540.0 15 12 .3/1.5234 1.5 13 With dark yellow brown mottling .2/1.5125 14 1.25 15 535.0 16 mm VST@ 19.5' = 11.8, 5.0, 5.1 20 .6/2.0 16 1.75 17 Manganese oxide concretions 18 .5/1.5 1 2 4 Dark yellowish brown silty CLAY; more silty; organic staining; moist; stiff 19 530.0 Yellow brownclayey SILT; some dark yellow brown mottling; laminated; some 25magnesium oxide concretions; moist; soft; 16 mm VST@ 24.5' = 9.1, 6.0, 5.9 20 .1/1.5022 1.25 21 0.5 22 .2/1.5024 Yellow brown silty CLAY; some dark yellow brown mottling; few manganese 2.75 oxide concretions; moist; stiff 23 525.0 30 End of Boring = 29.5 Feet Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-3U Location: Springfield, Illinois Northing: 1128634.05 Well No: B-3U County: Sangamon Easting: 2456502.96 Surf Elev.: 562.94 Site No.: **Depth Information:** Weather: Sunny 64 F AEI No.: 220408 Total: 19.5' Auger: 19.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/17/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/17/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Š Description/Comments Type Run | Elev. 562.9 **Ground Surface** Dark yellowish brown silty CLAY; some iron concretions; moist; stiff; trace gravel 1 2 0.8/1.5247 GYPSUM; moist; loose 560.0 3.25 3 5-0.5/1.5222 4 5 Olive gray silty CLAY; few dark yellow brown mottling; laminated; some bottom ash; moist; stiff; trace gravel 0.7/1.5246 6 555.0-1.5 7 16 mm VST@ 9.5' = 0.8, 3.9, 4.2 10-.3/2.0 8 Bottom ASH; moist to wet; loose 9 Fly ASH; wet; soft 10).5/1.5 1 0 1 550.0 11 15-12 .5/1.5010 Little bottom ASH 0.5 13 0.5 14 .5/1.5001 545.0-<0.25 15 End of Boring = 19.5 Feet 20 Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-3CCR Location: Springfield, Illinois Northing: 1128336.73 Well No: B-3CCR County: Sangamon Easting: 2456638.09 Surf Elev.: 564.05 Site No.: **Depth Information:** Weather: Sunny 65 F AEI No.: 220408 Total: 19.5' Auger: 19.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/20/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/20/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Run No. Description/Comments Type Elev. 564.0 **Ground Surface** Fly ash with bottom ASH; moist; moderately firm 1 2 0.7/1.5134 1.0 3 560.0 5-Light gray lime SLUDGE; with rootlets; some organics; moist; soft .5/1.5 1 0 0 4 < 0.25 5 6 þ.9/1.50 1 1 <0.25 7 555.0 Fly ASH; moist to wet; soft; strong petroleum odor 10 .1/1.5000 8 <0.25 9 Some organic matter; strong petroleum odor 10 .5/1.5000 < 0.25 550.0 11 15-4/1.5000 12 Faint odor 13 14 .5/1.5000 15 545.0 End of Boring = 19.5 Feet 20 Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-4 Location: Springfield, Illinois Well No: B-4 Northing: 1127789.13 County: Sangamon Easting: 2456023.78 Surf Elev.: 555.18 Site No.: **Depth Information:** Weather: Sunny 62 F AEI No.: 220408 Total: 34.5' Auger: 34.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: R. Carson Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/09/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/09/2023 - Continuous Barrel (CB) - Shelby Tube - Core - Blind Drill - Split Spoon (SS) Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Š Description/Comments Type Elev. Run 555.2 **Ground Surface** Gray silty CLAY; with cinders; dry; stiff 1 .8/1.5366 2 Brown silty CLAY; dry; stiff 3.3 3 5-550.0 4 0.2/1.5465 4.0 Gray silty CLAY; with cinders 5 Brown/gray silty CLAY; moist; moderately stiff; trace cinders 1.0 6 0.7/1.5234 7 Gray silty CLAY; moist; moderately stiff; 16 mm VST@ 9.5' = 4.4, 2.5, 2.7 10-545.0 0.6/1.5134 8 1.0 9 Gray silty CLAY; moist; soft 10 0.8/1.5012 0.5 11 Brown/gray silty CLAY; mottling; moist; soft 15-1.0 540.0 0.9/1.5123 12 13 14 0.6/1.5022 1.1 15 Brown silty CLAY; oxidation staining; moist; moderately stiff; 16 mm VST@ 20-535.0 .3/2.0 16 19.5' = 2.6, 1.7, 1.72.1 17 18 0.8/1.5001 0.5 19 25 Soft 530.0 20 0.9/1.5001 0.2-0.5 21 Brown/gray silty LOAM; wet; soft; trace sand 22 .5/1.5012 0.1 23 Brown sandy LOAM; wet; very soft

Notes:

Brown/gray silty CLAY; wet; soft

End of Boring = 34.5 Feet

525.0

520.0-

Page 1 of 1

30-

35

24

25

26

27

0.1

0.5

111111

.5/1.5000

.5/1.5000

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-4U Location: Springfield, Illinois Northing: 1127802.23 Well No: B-4U County: Sangamon Easting: 2456057.41 Surf Elev.: 563.01 Site No.: **Depth Information:** Weather: Sunny 78 F AEI No.: 220408 Total: 29.0' Auger: 29.0' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/12/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/12/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) 8 Description/Comments Type Run | Elev. 563.0 **Ground Surface** Black CINDERS: moist: loose 1 * * * * 2 .4/1.5361 560.0 3 Black silty CLAY; with fly ash; moist; stiff; some organic fragments 5-.7/1.5101 4 2.75 5 Olive gray silty CLAY; some dark yellow brown mottling; moist; stiff 1.75 6 0.7/1.5122 Black CINDERS; wet; loose 555.0 7 10-Black fly ASH; wet; soft 8 0.8/1.5100 <0.25 9 10 .0/1.5243 550.0 11 15-12 .9/1.5022 13 14 .1/1.5136 545.0-15 Black CINDERS; wet; loose 20 0.7/1.5234 16 17 Light gray/black fly ASH 18 .2/1.5 00 540.0 19 Olive gray silty CLAY; some dark yellow brown mottling; moist; moderately 25 1.25 stiff; trace organics .4/1.5001 20 21 .9/2.0 535.0 22 1.25 End of Boring = 29 Feet Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-4L Location: Springfield, Illinois Northing: 1127732.94 Well No: B-4L Surf Elev.: 533.51 County: Sangamon Easting: 2455960.98 Site No.: **Depth Information:** Weather: Sunny 65 F AEI No.: 220408 Total: 21.5' Auger: 21.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/10/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/10/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Š Description/Comments Type Elev. Run 533.5 **Ground Surface** Dark gray silty CLAY; some dark yellow brown mottling; some organic fragments; moist; soft; some gravel; trace coal fragments 1 0.25 0.4/1.5321 2 530.0 3 5 <0.25 b.7/1.5111 4 Grading to light gray 5 Light gray silty CLAY; some dark yellow brown mottling; few iron concretions; 0.25 moist; soft 6 4/1.5122 525.0 7 10 0.75 .5/1.5112 8 9 16 mm VST@ 12.0' = 5.6, 2.6, 2.4 10 .2/2.0 520.0 1.75 11 Gray clayey SILT; some dark yellow brown mottling; trace iron concretions; laminated; moist to wet; soft 15-12 .4/1.5012 0.5 13 <0.25 14 .5/1.5000 Light gray silty CLAY; some dark yellow brown mottling; moist; soft 515.0-15 Shelby tube attempted but no recovery; 20 mm VST@ 19.5' = 4.2, 1.4, 1.6 20 16 0.0/2.0End of Boring = 21.5 Feet Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-4CCR Location: Springfield, Illinois Northing: 1127834.10 Well No: B-4CCR County: Sangamon Easting: 2456152.87 Surf Elev.: 567.59 Site No.: **Depth Information:** Weather: Sunny 64 F AEI No.: 220408 Total: 21.0' Auger: 21.0' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/17/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/17/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Run No. Description/Comments Type Elev. 567.6 **Ground Surface** Dark yellow brown silty CLAY; moist; stiff; some bottom ash 1 565.0-2 .8/1.5133 1.75 3 Dark gray fly ash with bottom ASH; moist; moderately loose 5-0.4/1.5222 4 5 Gray lime SLUDGE; with layers of fly ash; wet; soft; few organic fragments 560.0 6 .2/1.5233 <0.25 7 10-<0.25 .4/1.5000 Black fly ASH; moist; soft; trace to some organic fragments 8 9 <0.25 555.0 .5/1.5 1 0 0 10 11 15 < 0.25 .5/1.50 0 1 12 Black bottom ash with fly ASH; wet; moderately loose; some organic fragments Black fly ash with bottom ASH; wet; moderately soft; some organic fragments < 0.25 13 550.0 14 .2/1.50 1 1 15 20 Black bottom ASH: wet: loose b.9/1.50 1 3 16 End of Boring = 21 Feet Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-5 Location: Springfield, Illinois Northing: 1129302.48 Well No: B-5 County: Sangamon Easting: 2455281.11 Surf Elev.: 553.62 Site No.: **Depth Information:** Weather: Cloudy, 62 F AEI No.: 220408 Total: 39.5' Auger: 39.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: S. Van Hook Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/06/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/06/2023 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Š Description/Comments Type Elev. Run 553.6 **Ground Surface** Greenish brown SILT; dry 1 4.5 2 0.9/1.5377 550.0 3 5-3.5 Greenish brown silty CLAY 4 0.7/1.5348 5 2.5 Brown mottling 0.5/1.5224 6 545.0 7 10-1.5 .9/1.5245 8 9 3.5 10 0.9/1.5256 540.0 11 15 0.8/1.5347 12 16 mm VST@15.0' = 1.3, 3.3, 3.2 3.0 13 3.5 0.7/1.5256 14 535.0 15 20 4.5 0.9/1.5158 16 Dark gray clayey SILT; moist; wood chucks 17 2.0 0.9/1.5255 18 530.0 19 16 mm VST@ 24.0' = 3.7-3.8 25 20 1.9/2.0 21 0.5 Brown silty CLAY; moist .3/1.5012 22 525.0 23 30-<0.25 Saturated .2/1.5001 24 25 0.5 Brown silty CLAY; trace greenish gray and dark brown mottling 26 .2/1.5012 520.0 27 35-0.25 .5/1.5022 28

BroVery little silt

End of Boring = 39.5 Feet

Notes:

.5/1.5002

29 30

31

40-

515.0

3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 Location: **Boring Information: Site Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-5L Location: Springfield, Illinois Northing: 1129295.29 Well No: B-5L County: Sangamon Easting: 2455215.62 Surf Elev.: 534.00 Site No.: **Depth Information:** AEI No.: 220408 Weather: Sunny, 87 F Total: 19.5' Auger: 19.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: R. Carson Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/03/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/03/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Depth (ft) Lithology Run No. Description/Comments Type Elev. 534.0 **Ground Surface** Dark brown silty CLAY; dry; stiff 1 2 0.5/1.5465 >4.5 530.0 3 5-.0/1.5557 4 2.7 5 0.2/1.5222 6 Soft 7 525.0-Gray silty CLAY; soft; 20 mm VST@ 9.5' = 5.8, 2.5, 2.9 10-.6/2.0 8 0.5 9 0.2-0.7 Gray CLAY; very soft 10 .5/1.5021 520.0-11 15-.5/1.5012 12 0.2-0.5 13 Gray sandy CLAY; very soft 14 .5/1.5000 111111 0.1 515.0 15 Gray SAND; 20 mm VST@19.0' = 7.2, 3.2, 3.2 End of Boring = 19.5 Feet 20 Notes: Page 1 of 1

Andrews Engineering, Inc.

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-5CCR Location: Springfield, Illinois Northing: 1129333.75 Well No: B-5CCR County: Sangamon Easting: 2455341.56 Surf Elev.: 552.59 Site No.: **Depth Information:** Weather: Sunny, 87 F AEI No.: 220408 Total: 19.5' Auger: 19.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: R. Carson Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/03/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/03/2023 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Run No. Description/Comments Type Elev. 552.6 **Ground Surface** Bottom ASH 1 550.0-2 p.9/1.5 14 12 Dark gray sandy LOAM; stiff 4.5 3 Dark gray SAND; bottom ash; wet 5-.4/1.5323 4 1.0 5 Dark gray sandy LOAM; bottom ash 1.0 545.0 .5/1.5 1 1 1 6 7 Black SAND; bottom ash; wet 10 0.6/1.5146 8 111111 9 540.0 .4/1.5594 10 11 Black SAND; coarse grained; bottom ash; wet 15-).2/1.5011 12 111111 13 535.0 14 0.2/1.5323 15 End of Boring = 19.5 Feet 20 Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711

FIELD BORING LOG

Site Information: Name: CWLP Ash Pond Location: Springfield, Illinois

County: Sangamon

Site No.:

Depth (ft)

8

Run

1

2

3 5-

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

21

22

23

24

25

10-

15-

20-

25-

30-20

35

40

AEI No.: 220408

Personnel:

Location:

Coord. System: Northing: 1130094.72 Easting: 2455316.59

Weather: Mostly Cloudy, 71 F

Surf Elev.: 553.93 **Depth Information:**

Boring Information:

Boring No: B-6

Well No: B-6

Total: 40.0' Auger: 40.0' Core: -

Dates:

- Core

Start: 10/05/2023 Finish: 10/05/2023

- Blind Drill

(MSL)

Elev.

553.9

550.0

545.0

540.0

535.0

530.0

525.0

520.0

515.0

Drilling Contractor:

Contractor Name: Geotechnics Soil & Material Testing

City: Hannibal, Missouri

Sample

Type

Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon

dn/sn (tst)

+4.5

2.25

2

4.0

4.0

3.0

3.0

2.0

1.0

0.25

< 0.25

< 0.25

1.0

111111

Lithology

Continuous Barrel (CB)

Blow Count

5 15

37 33

5 5

67

235

137

587

3 4 6

25

6 10

5 10

11 12 24

68

15

66

11

22

0 0

0 2

0 0

02

00

0 0

02

23

.2/1.5246

.3/2.0

0.8/2.0

0.7/1.5

D.8/1.5

0.8/1.5

.9/1.5

2.0/2.

.4/2.0

.5/2.0

.3/2.0

.6/2.0

2.0/2.0

.9/2.0

2.0/2.0

2.0/2.0

.8/2.0

- Split Spoon (SS)

- Shelby Tube

Geologist: S. Van Hook

Driller: A. Kargel

Helper(s): M. Sick

Description/Comments

Ground Surface

Dark brown SILTY (fill)

8.2 mm VST@ 9.5' = 1.3-1.4

Dark brown silty CLAY; moist

13 mm VST@ 15.0' = 4.7-4.6

2.7 Dark greenish gray silty CLAY; moist 4.2

Gray silty CLAY; 6.1 mm VST@ 25.5' = 4.0-3.9

Gray CLAY and SAND; with coal; brown mottling

Gray clayey SILT

Gray silty CLAY; yellow brown mottling

Brown CLAY; mottling light brown; trace sand

Light gray clayey sandy SILT; mottling yellow brown

End of Boring = 40 Feet Notes:

Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-6CCR Location: Springfield, Illinois Northing: 1130067.17 Well No: B-6CCR County: Sangamon Easting: 2455388.17 Surf Elev.: 553.32 Site No.: **Depth Information:** Weather: Sunny, 65 F AEI No.: 220408 Total: 24.5' Auger: 24.5' **Drilling Contractor:** Personnel: Core: -Geologist: M. Hewitt Contractor Name: Geotechnics Soil & Material Testing Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/20/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/20/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) 8 Description/Comments Type Run | Elev. 553.3 **Ground Surface** Gray fly ASH; moist; friable; some gypsum; trace bottom ash 1 2 .0/1.5 13 12 550.0-3 Bottom ASH; moist; loose 5-4 0.9/1.5532 5 6 .1/1.5222 Fly ASH; moist to wet; soft <0.25 545.0 7 10 8 .5/1.5 1 0 0 < 0.25 Fly ASH; wet; soft 9 10 0.6/1.5000 <0.25 540.0-11 15 12 .5/1.5000 <0.25 13 14 .5/1.5000 <0.25 535.0 15 20 16 .5/1.5000 <0.25 17 18 .5/1.5000 < 0.25 530.0 19 25 End of Boring = 24.5 Feet Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-7 Location: Springfield, Illinois Northing: 1130413.91 Well No: B-7 County: Sangamon Easting: 2455917.71 Surf Elev.: 552.56 Site No.: **Depth Information:** Weather: Haze, 79 F AEI No.: 220408 Total: 39.5' Auger: 39.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: R. Carson Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/04/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/04/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Š Description/Comments Type Elev. Run 552.6 **Ground Surface** Brown/gray sandy CLAY; mottling; dry; very stiff 1 >4.5 550.0 2 0.6/1.5356 Brown silty CLAY; slightly moist; very stiff 3 5 2.5 4 .5/1.5347 5 BrowGray silty LOAM; slightly moist; stiff 545.0 0.7/1.5345 6 2.5 10-Gray silty CLAY; 16 mm VST@ 9.5' = 13+, 5.2, 5.2 0.7/1.52 3 6 8 2.4 9 Gray silty LOAM 2.2 540.0 10 0.8/1.5247 11 Gray silty LOAMSlightly moist; fractured 15 12 .9/1.5247 2.3 13 Brown sandy LOAM; moist; stiff 535.0 14 0.5/1.5245 2.5 111111 15 Brown/gray silty LOAM; mottling; moist; stiff; 16 mm VST@ 19.5' = 11.4, 6.1, 20 2.0/2.0 16 17 2.1 Brown/gray silty CLAY; mottling; moist; stiff 530.0 .2/1.5235 18 1.6 19 25-.4/1.5235 20 1.7 Red brown SAND; moist; loose 21 111111 Brown sandy LOAM; wet; soft 525.0 22 .5/1.5012 0.2 Brown/gray silty LOAM; with sand; moist; soft 23 30-24 .5/1.5022 0.5 1.2 25 520.0 26 .5/1.5011 0.2 27

Gray SILT; very moist; soft

End of Boring = 39.5 Feet

Notes:

28

29

30

31

.5/1.5002

.5/1.5111

0.5

0.8

35-

40

515.0

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-7CCR Location: Springfield, Illinois Northing: 1130310.33 Well No: B-7CCR County: Sangamon Easting: 2455947.06 Surf Elev.: 552.18 Site No.: **Depth Information:** Weather: Cloudy, 58 F AEI No.: 220408 Total: 19.5' Auger: 19.5' **Drilling Contractor:** Personnel: Core: -Geologist: M. Hewitt Contractor Name: Geotechnics Soil & Material Testing Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/19/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/19/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Depth (ft) Lithology Run No. Description/Comments Type Elev. 552.2 **Ground Surface** Fly ash, bottom ASH and cinder (fill); moist to wet; soft 1 550.0 2 .0/1.5322 0.25 3 5-Bottom ASH; moist; loose .0/1.50 1 1 4 < 0.25 5 Fly ASH; wet; soft 545.0-0.6/1.5000 6 <0.25 7 10 .1/1.5000 8 <0.25 9 540.0 10 .5/1.5000 <0.25 11 15-12 .3/1.5000 < 0.25 13 535.0 14 .5/1.5000 <0.25 15 End of Boring = 19.5 Feet 20 Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive Springfield, IL 62711

FIELD BORING LOG

Site Information:Location:Name: CWLP Ash PondCoord. System:Location: Springfield, IllinoisNorthing: 1130083.21County: SangamonEasting: 2456391.16

Site No.: AEI No.: 220408

Notes:

Drilling Contractor: Personnel:

Contractor Name: Geotechnics Soil & Material Testing City: Hannibal, Missouri

Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon

tion: Boring Information:

ord. System: Boring No: B-8U

Weather: Cloudy, 58 F

Geologist: M. Hewitt

Helper(s): B. Hummel

Driller: M. Sick

Well No: B-8U Surf Elev.: 551.74

Depth Information:

Total: 33.5' Auger: 33.5' Core: -

> Start: 10/19/2023 Finish: 10/19/2023

> > Page 1 of 1

	- Continuous Barrel (CB)				I (CB)	- Split Spoon (SS) - Shelby Tube - Core - E			- Blind	Drill	
Depth (ft)	Run No. Type & S Recov. ald Blow Count qu/su (tsf)			qu/su (tsf)	Lithology	Description/Comments				Elev. (MSL)	
0-						Ground Surface			551.7		
-	1 2		.8/1.51	122	1.0	M.	Dark gray to brown si fragments; some bott	lty CLAY; moist; moderaty om ash	ely firm; some organic		550.0 —
5- 5-	3		.9/1.53		4.0	M					-
- -	5 6 7	1.	.0/1.53	3 5 6	4.5						545.0 — - -
10-	8	1	.8/2.0		0.75		16 mm VST@ 9.5' =	10.0, 3.8, 3.9 prown; more clayey; some	dark vellow brown mot	tling:	540.0
-	10	1.	.1/1.52	2 2 5	1.5		some iron oxide modu	ules		9,	
15— - -	12		.8/1.52		1.5	M	Black/dark brown silty	CLAY; moist; stiff; trace of	coal fragments		535.0-
20-	15		.9/1.52	247	3.0	\mathbb{A}	16 mm VST@ 19.5' =	11.2, 4.0, 3.8			-
- - -	16 17 18		.7/2.0 .0/1.53	3 6 7	2.25		Trace organic fragme	nts			530.0
25- -	19	1	.3/1.51	1 1 3	0.5		16 mm VST@ 24.5' = More silty; some orga				-
- -	21 22 23	1	.5/1.51	1 1 2	0.5		Dark gray clayey SIL	Γ; moist to wet; moderately	soft; some organics		525.0 — - -
30-	24 25 26		.3/1.5 1		0.75						520.0 —
-					0.0			End of Boring = 33.5	Feet		1 -
								J , , , ,			

3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-7L Location: Springfield, Illinois Northing: 1130467.06 Well No: B-7L County: Sangamon Easting: 2455885.37 Surf Elev.: 533.19 Site No.: **Depth Information:** Weather: Sunny, 85 F AEI No.: 220408 Total: 20.0' Auger: 20.0' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: K. Finke Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/02/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): A. Kargel Finish: 10/02/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Run No. Description/Comments Type Elev. 533.2 **Ground Surface** Gray silty CLAY; dry; very firm; trace sand 1 3.5 530.0 2 0.5/1.5357 3 1.5 5-Reddish brown clayey SILT; moist; trace sand 4 b.5/1.53 4 7 1.0 6 3 3 3 1111111 Brownish red SAND; wet 525.0 7).6/1.5W 3 2 8 10-20 mm VST@ 10.0' = 3.8, 1.2 1111111 Brownish red SAND with dark black SILT; ash 0.25 9 .5/1.5212 ASH 10 520.0 Gray silty CLAY; wet; soft 0.25 11 15-Gray clayey SILT; moist; soft 12 .9/1.5V W V 0.25 13 .1/1.5V W V 14 0 515.0-15 20 mm VST@ 20.0' = 6.7, 3.0, 3.1 20 End of Boring = 20 Feet Notes: Page 1 of 1

Andrews Engineering, Inc.

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-8L Location: Springfield, Illinois Northing: 1130109.51 Well No: B-8L County: Sangamon Easting: 2456566.64 Surf Elev.: 530.62 Site No.: **Depth Information:** Weather: Haze, 79 F AEI No.: 220408 Total: 24.5' Auger: 24.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: R. Carson Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/04/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/04/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Run No. Description/Comments Type Elev. 530.6 **Ground Surface** Brown silty LOAM; dry; hard 1 2 0.8/1.5467 >4.5 3 Brown silty CLAY; moist; stiff 5-4 0.2/1.5434 525.0 5 6 .1/1.5111 0.1 Wet; soft 7 20 mm VST@9.5' = 5.4, 3.4, 3.8 10 .5/1.5 1 1 1 8 Wet; very soft 520.0 0.0-0.1 9 10 .6/2.0 Some mottling; wet; soft 0.5 11 15-12 .4/1.5 1 1 1 Brown sandy LOAM; wet; soft 0.5 515.0-Gray sandy LOAM; wet; soft 13 Gray SAND; loose; trace clay 14 .1/1.5013 15 20 16 .4/1.5001 510.0 Gray SILT; wet; soft 0.2 17 20 mm VST@ 22.0' = 6.8, 3.4, 3.8 .5/1.5000 18 Gray sandy LOAM; wet; soft 111111 0.1 19 111111 25 End of Boring = 24.5 Feet Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-9U Location: Springfield, Illinois Well No: B-9U Northing: 1129690.26 County: Sangamon Easting: 2456402.29 Surf Elev.: 552.15 Site No.: **Depth Information:** Weather: Cloudy, 58 F AEI No.: 220408 Total: 40.0' Auger: 40.0' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/19/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/19/2023 Continuous Barrel (CB) - Shelby Tube - Blind Drill - Split Spoon (SS) - Core Sample (MSL) Blow Count qu/su (tsf) Lithology Depth (ft) Š **Description/Comments** Type Elev. Run 552.2 **Ground Surface** Dark brown/gray silty CLAY; moist; stiff 1 550.0 2 0.7/1.5377 4.0 3 5-.0/1.5 4 346 3.75 5 545.0 6 0.5/1.5336 2.25 More clayey; trace bottom ash fragments 10-Yellow brown silty CLAY; moist; stiff; laminated; trace iron nodules; 16 mm 8 .7/2. VST@ 9.5' = 7.5, 4.1, 3.5 1.0 540.0 0.8/1.5245 10 2.75 Black silty CLAY; few cinders (bottom ash); moist; stiff 11 15 12 0.8/1.5358 3.0 13 535.0 14 b.7/1.5 246 2.5 15 20-16 mm VST@ 19.5' = 11.3, 6.0, 5.6 .9/2. 16 3.25 17 530.0 Trace organic fragments; trace coal fragments 0.8/1.5257 18 2.25 19 25 16 mm VST@ 24.5' = 7.0, 3.8, 3.5 20 .9/1. 145 2.25 Light brown silty clay to CLAY; moist; stiff; some iron oxidized nodules; trace 25 21 .1/2.0 organic fragments; rootlets; more clayey at 26.5' 525.0 8.75 67 3 4 Gray CLAY 0.75 .2/2.0 22 56 30 12 23 .5/2.0 1.0 Some dark yellow brown mottling; some iron oxidized nodules 4 5 Black to dark gray clayey SILT; moist; soft; trace organic fragments 520.0 0 1 24 .6/2.0 0.5 23 02 35-25 .7/2.0 0.5 3 4 0 1 Dark gray clayey SILT; moist; moderately stiff; with organic fragments; some 26 2.0/2. 1.0 515.0 33 coal; glauconite the last 0.3' 0 1 0.75 Dark gray clayey SAND; moist; moderately stiff; trace coal fragments 27 .0/2.0 1111111

Dark gray sandy CLAY; moist; moderately stiff; trace coal fragments

End of Boring = 40 Feet

Notes:

40

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 Location: **Site Information: Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-9CCR Location: Springfield, Illinois Northing: 1129680.19 Well No: B-9CCR County: Sangamon Easting: 2456242.16 Surf Elev.: 553.97 Site No.: **Depth Information:** AEI No.: 220408 Weather: Sunny, 69 F Total: 19.5' Auger: 19.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/18/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/18/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Depth (ft) Lithology Run No. Description/Comments Type Elev. 554.0 **Ground Surface** Bottom ASH; moist 1 2 0.3/1.5164 550.0-3 5-Fly ASH; wet; soft .5/1.5010 4 <0.25 5 .5/1.5000 6 <0.25 7 545.0 10 8 .5/1.5000 <0.25 9 10 .5/1.5001 <0.25 540.0-11 <0.25 15-.5/1.5000 12 13 14 .5/1.5000 <0.25 535.0 15 End of Boring = 19.5 Feet 20 Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Boring Information: Site Information:** Location: Name: CWLP Ash Pond Coord. System: Boring No: B-9L Location: Springfield, Illinois Northing: 1129778.29 Well No: B-9L County: Sangamon Easting: 2456635.89 Surf Elev.: 524.07 Site No.: **Depth Information:** Weather: Haze, 79 F AEI No.: 220408 Total: 19.5' Auger: 19.5' **Drilling Contractor:** Personnel: Core: -Geologist: R. Carson Contractor Name: Geotechnics Soil & Material Testing Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/04/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/04/2023 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Depth (ft) Lithology Run No. Description/Comments Type Elev. 524.1 **Ground Surface** Brown silty LOAM; moist; soft 1 1.0 2 .4/1.5 1 2 2 0.5 3 520.0 5-1.0 .5/1.5111 4 0.1 5 Brown SAND; medium grained; moist; soft 2.0/2.0 6 515.0 7 Brown sandy CLAY; wet; soft; gray at 10.5' 10-0.1 .0/1.5001 8 9 Gray silty CLAY; wet; soft 10 0.9/1.5012 0.5 11 510.0 15-0.5 .5/1.5001 12 0.2 13 14 .5/1.5000 0.3 15 505.0 16 mm VST@19.5' = 5.4, 2.9, 3.1 End of Boring = 19.5 Feet 20 Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-10CCR Location: Springfield, Illinois Northing: 1129518.55 Well No: B-10CCR County: Sangamon Easting: 2455869.56 Surf Elev.: 555.35 Site No.: **Depth Information:** Weather: Sunny, 65 F AEI No.: 220408 Total: 24.5' Auger: 24.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/20/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/20/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) 8 Description/Comments Type Run | Elev. 555.4 **Ground Surface** Bottom ASH; moist to wet; loose 1 2 0.8/1.5453 3 5-4).8/1.52 7 12 Moist; loose 550.0 5 Fly ASH; moist to wet; soft; some bottom ash 6 .3/1.5 1 2 1 <0.25 7 10-8 .4/1.5 1 0 1 Trace bottom ash 545.0 <0.25 9 10 .3/1.5000 <0.25 Wet; soft 11 Bottom ASH; wet; loose 15 12 .1/1.5412 540.0 13 Fly ASH; wet; soft 14 0.9/1.5000 <0.25 15 20 16 .5/1.5000 535.0 <0.25 17 18 .5/1.5000 < 0.25 19 25 End of Boring = 24.5 Feet

Page 1 of 1

Notes:

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-11U Location: Springfield, Illinois Northing: 1128891.26 Well No: B-11U Surf Elev.: 552.27 County: Sangamon Easting: 2456234.99 Site No.: **Depth Information:** Weather: Sunny, 69 F AEI No.: 220408 Total: 29.5' Auger: 29.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/18/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/18/2023 Continuous Barrel (CB) - Shelby Tube - Core - Blind Drill - Split Spoon (SS) Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Š Description/Comments Type Elev. Run 552.3 **Ground Surface** Black silty CLAY; with sand and gravel; moist; moderately stiff 1 550.0 13 2 .3/1.5 10/3" 3 1.25 5-4 .4/1.5112 Yellow brown silty CLAY; some dark yellow mottling; some iron oxide nodules; moist; moderately stiff 5 545.0 .8/1.5 1 2 3 6 2.5 7 16 mm VST@ 9.5' = 9.2, 2.8, 2.8 10-2.0/2.0 8 2.0 9 540.0 10 .2/1.5245 3.5 Gray 11 15 12 D.9/1.5477 Organic fragments 2.25 13 Dark gray clayey SILT; moist; moderately firm; some organic fragments 535.0 .3/1.5 1 4 6 14 2.0 15 Dark gray brown silty CLAY; moist; stiff; 16 mm VST@19.5' = 13+, 7.4, 7.6 20 .8/2.0 16 2.5 17 530.0 Yellow brown silty CLAY; some dark yellow brown mottling; iron oxide and 18 .5/1.5034 1.25 manganese oxide concretions; moist; moderately stiff 19 16 mm VST@ 24.5' = 4.9, 3.1, 3.1 25-Yellow brown clayey silt to SILT; wet; soft .5/1.5000 20 <0.25 21 525.0 22 .5/1.5000 23 30 End of Boring = 29.5 Feet Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Boring Information: Site Information:** Location: Name: CWLP Ash Pond Coord. System: Boring No: B-12U Location: Springfield, Illinois Northing: 1128504.92 Well No: B-12U County: Sangamon Easting: 2455639.11 Surf Elev.: 553.41 Site No.: **Depth Information:** AEI No.: 220408 Weather: Sunny, 74 F Total: 8.5' Auger: 8.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/23/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/23/2023 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) **Blow Count** dn/sn (tst) Depth (ft) Lithology Run No. Description/Comments Type Elev. 553.4 **Ground Surface** Dark yellow brown silty CLAY; some bottom ash; moist; stiff; trace iron oxide nodules 1 2 .1/1.5567 3.75 550.0-3 5-3.25 .0/1.5556 4 5 6 .5/1.5355 2.75 545.0-End of Boring = 8.5 Feet 10-540.0-15-535.0 20 Notes: Page 1 of 1

3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-13BN Location: Springfield, Illinois Northing: 0 Well No: B-13BN County: Sangamon Easting: 0 Surf Elev.: 0 Site No.: **Depth Information:** AEI No.: 220408 Weather: Cloudy, 72 F Total: 10.5' Auger: 10.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/24/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/24/2023 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Depth (ft) Lithology Run No. Description/Comments Type Elev. 0.0 **Ground Surface** Light brown clayey silt to silty CLAY; moist; firm; few dark yellow brown mottling; trace iron oxide nodules 1 2 .0/1.5356 4.25 3 5--5.0 0.7/1.5447 4 3.75 5 Brown silty CLAY; moist; very firm; trace iron oxide nodules .0/1.55 8 11 6 4.75+ 16 mm VST@ 8.0' = 13+, 6.7, 6.5 7 .7/2.0 10 -10.0 3.5 End of Boring = 10.5 Feet -15.0-15-20 -20.0 Notes: Page 1 of 1

Andrews Engineering, Inc.

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-13BS Location: Springfield, Illinois Northing: 0 Well No: B-13BS County: Sangamon Easting: 0 Surf Elev.: 0 Site No.: **Depth Information:** AEI No.: 220408 Weather: Cloudy, 72 F Total: 10.5' Auger: 10.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/24/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/24/2023 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Depth (ft) Lithology Run No. Description/Comments Type Elev. 0.0 **Ground Surface** Dark brown clayey silt to silty CLAY; moist; very firm; trace iron oxide nodules; trace rootlets 1 2 .0/1.5445 4.5+ 3 5-**-**5.0-0.5/1.5456 4 4.5 5 Grades to dark gray; trace organics; trace rootlets; 16 mm VST@8.5' = 13+, .1/1.5379 6 4.5+ 6.5, 5.8 7 .5/2.0 10 -10.0-3.5 End of Boring = 10.5 Feet -15.0-15-20 -20.0 Notes: Page 1 of 1

3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-13L Location: Springfield, Illinois Northing: 0 Well No: B-13L County: Sangamon Easting: 0 Surf Elev.: 0 Site No.: **Depth Information:** Weather: Cloudy, 72 F AEI No.: 220408 Total: 16.0' Auger: 16.0' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/24/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/24/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Depth (ft) Lithology Run No. Description/Comments Type Elev. 0.0 **Ground Surface** Dark brown clayey silt to silty CLAY; moist; very firm 1 2 .0/1.5456 4.5+ 3 5--5.0 .0/1.5457 4 4.5 5 .4/1.53 7 10 Some rootlets; some manganese oxide nodules 6 3.75 7 -10.0 10 .5/1.54 6 10 Trace rootlets; some manganese oxide nodules 8 3.5 9 10 .5/1.5368 2.5 Trace rootlets; some iron oxide nodules 11 -15.0 15 Light gray silty CLAY; moist; firm; some organics; some iron staining; few iron 12 .3/1.5447 2.25 oxide nodules End of Boring = 16 Feet 20 -20.0 Notes: Page 1 of 1

Andrews Engineering, Inc.

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-13LF Location: Springfield, Illinois Northing: 0 Well No: B-13LF County: Sangamon Easting: 0 Surf Elev.: 0 Site No.: **Depth Information:** Weather: Sunny, 74 F AEI No.: 220408 Total: 26.0' Auger: 26.0' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/23/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/23/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Depth (ft) Lithology Run No. Description/Comments Type Elev. 0.0 **Ground Surface** Yellow brown clayey SILT; dry; stiff 1 .2/1.5575 2 3 Light gray silty CLAY; moist; stiff 5-3.75 -5.0 4 .8/1.5456 5 5 GYPSUM; dry; loose 6 0.5/1.5 50/4 7 10-27 -10.0 8 0.3/1.5 0/3.5 9 35 10).8/1. 50/5" 11 15 37 -15.0· 0.7/1. 12 50/4' 13 14 .4/1.5 0/4.5 15 -20.0 20-13 34 Dark yellow brown silty CLAY; moist; firm 16 .2/1.5 3.75 50/3" **GYPSUM** 17 0.6/1.550/5" 18 19 -25.0· 25 0.4/1.550/5" 20 End of Boring = 26 Feet Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-12U-Location: Springfield, Illinois Northing: 1128504.92 Well No: B-12U-County: Sangamon Easting: 2455639.11 Surf Elev.: 553.41 Site No.: **Depth Information:** Weather: Sunny, 74 F AEI No.: 220408 Total: 8.5' Auger: 8.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: M. Hewitt Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/23/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): B. Hummel Finish: 10/23/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) 8 Description/Comments Type Elev. Run 553.4 **Ground Surface** Dark yellow brown silty CLAY; some bottom ash; moist; stiff; some organic 1 fragments; trace iron oxide nodules .3/1.5556 2 3.25 550.0 3 5-4.0 4 .0/1.5345 5 0.7/1.5333 6 1.5 545.0 7 16 mm VST@ 9.5' = 10.8, 5.0, 4.3 10-.5/2.0 8 1.5 9 3.5 10 D.8/1.52 5 9 540.0 11 15 Light gray silty cLAY; with bottom ash; moist; stiff 12 D.9/1.52 5 7 3.25 13 .0/1.5148 14 4.0 535.0 15 Yellow brown silty CLAY; moist; moderately stiff; few manganese oxide 20 16 .7/2.0 nodules; 16 mm VST@ 19.5' = 13+, 6.0, 6.0 2.5 17 18 .4/1.5123 1.5 530.0 19 16 mm VST@ 24.5' = 9.5, 4.0, 3.7 25 .5/1.5124 20 0.75 21 22 .5/1.5223 0.75

Notes: Page 1 of 1

End of Boring = 29.5 Feet

23

30

525.0

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Boring Information: Site Information:** Location: Name: CWLP Ash Pond Coord. System: Boring No: B-12L Location: Springfield, Illinois Northing: 1128541.37 Well No: B-12L County: Sangamon Easting: 2455514.61 Surf Elev.: 533.69 Site No.: **Depth Information:** Weather: Sunny, 87 F AEI No.: 220408 Total: 23.0' Auger: 23.0' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: R. Carson Dates: City: Hannibal, Missouri Driller: A. Kargel Start: 10/03/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): M. Sick Finish: 10/03/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Run No. Description/Comments Type Elev. 533.7 **Ground Surface** Brown silty CLAY; dry; very stiff 1 2).4/1.5**4** 8 7 4 530.0-3 5-4 0.6/1.5255 4.0 5 6 .2/1.5223 Brown silty CLAY; moist; soft 0.7 525.0 7 10-.2/1.5 1 2 3 20 mm VST@ 10.0' = 3.8, 3.9 8 1.0 9 Moist; stiff 10 .4/1.5 1 2 3 1.2 520.0 11 15 2.0/2.0 12 Gray/brown silty CLAY; mottling; stiff 4.5 13 14 .5/1.5 1 2 4 0.5 Gray SILT; soft 515.0 15 Brown SAND; saturated; 20 mm VST@ 19.5' = 3.8, 1.5, 1.4 20 16 .0/1.5067 Gray sandy CLAY; moist 1111111 17 Gray SHALE; dry; hard 5 25 18 4/1.5 50/4.5 >4.5 510.0 End of Boring = 23.5 Feet 25 Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: B-6L Location: Springfield, Illinois Northing: 1130126.84 Well No: B-6L County: Sangamon Easting: 2455243.51 Surf Elev.: 531.19 Site No.: **Depth Information:** Weather: Sunny, 85 F AEI No.: 220408 Total: 23.5' Auger: 23.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Geotechnics Soil & Material Testing Geologist: K. Finke Dates: City: Hannibal, Missouri Driller: M. Sick Start: 10/02/2023 Equipment: CME 55 w/ 3 1/4" HSA and 1.5" split spoon Helper(s): A. Kargel Finish: 10/02/2023 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) 8 Description/Comments Type Run | Elev. 531.2 **Ground Surface** Grayish brown silty CLAY; moist; firm; trace sand 530.0-1 1.5 2).5/1.5477 3 5-Reddish brown silty CLAY; moist; firm; trace sand 1.5 0.5/1.5323 4 525.0 6 0.1/2.0 7 10 8 .6/1.5W 1 1 20 mm VST@ 10.0' = 5.2, 2.8, 3.0 Gray clayey SILT; soft; moist 0 520.0 9 10 .5/1.5W 1 1 0.5 Gray/reddish brown clayey SILT; soft; moist 11 15-0.9/1.5122 12 Gray SILT to reddish brown SAND; fine to coarse grained; moist 0-0.5 515.0 13 14 .1/1.5V W V 0.25 Gray silty clay to clayey SILT; moist; soft; some organics, wood, bark, and 15 20 3.9 16 .9/1.5W 1 2 20 mm VST@ 20.0' = 7.2, 3.9 Gray clayey SILT; moist 0.5 510.0 17 .9/1.5V W V 18 0.5 End of Boring = 23.5 Feet Notes: Page 1 of 1

FIELD BORING LOG

CONTRACTOR: Skinner Limited

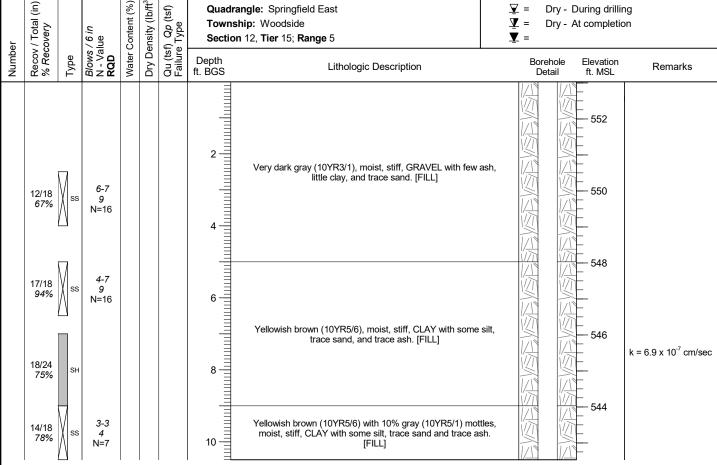
CLIENT: City Water, Light and Power Site: CWLP Ash Pond Dewatering Location: Springfield, IL

TESTING

Rig mfg/model: CME-550 ATV Drill Drilling Method: Hollow Stem Auger **BOREHOLE ID:** BH01 Well ID: n/a Surface Elev: 553.0 ft. MSL

Project: 25E0006.00 **DATES: Start:** 5/19/2025

FIELD STAFF: Driller: T. Skinner Helper: C. Vanburen Eng/Geo: R. Hasenyager


10.5 ft. BGS Completion: **Station:** 1,128,975.90N

2,455,612.61E

Finish: 5/19/2025 WEATHER: 75°F, overcast

SAMPLE

TOPOGRAPHIC MAP INFORMATION: WATER LEVEL INFORMATION: Quadrangle: Springfield East Dry - During drilling Township: Woodside **V** =

FIELD BORING LOG

CLIENT: City Water, Light and Power **Site:** CWLP Ash Pond Dewatering

Location: Springfield, IL Project: 25E0006.00 DATES: Start: 5/19/2025

Finish: 5/19/2025 **WEATHER:** 75°F, overcast

NOTE(S):

CONTRACTOR: Skinner Limited
Rig mfg/model: CME-550 ATV Drill
Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner Helper: C. Vanburen

Eng/Geo: R. Hasenyager

BOREHOLE ID: BH02

Well ID: n/a

 Surface Elev:
 552.5 ft. MSL

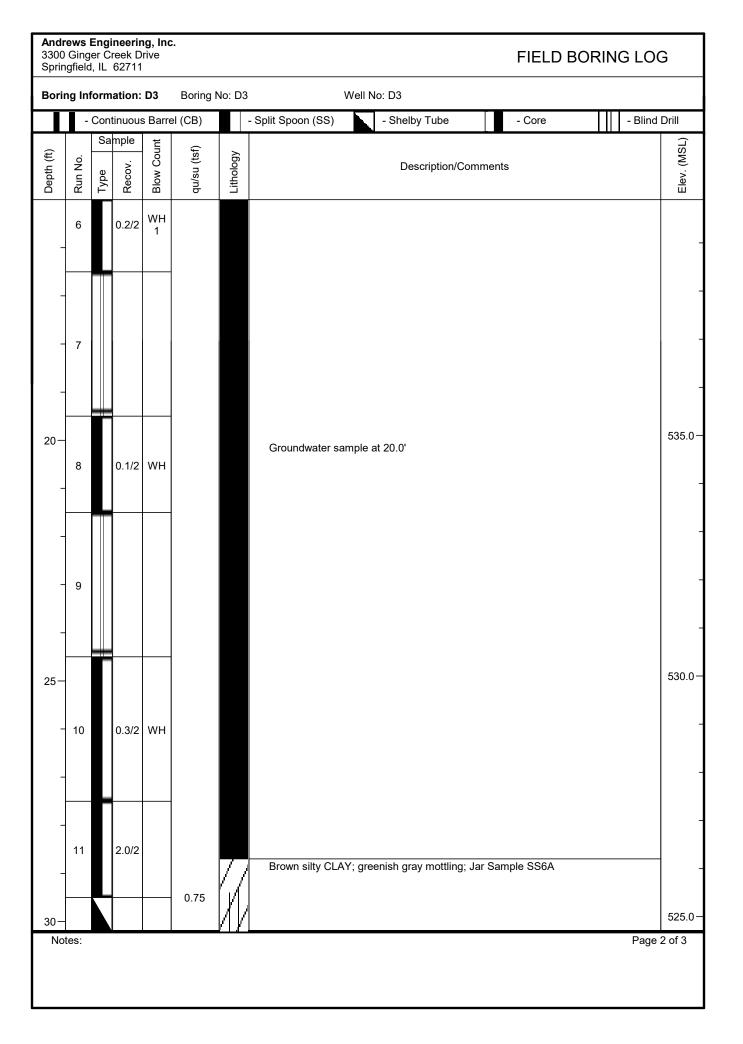
 Completion:
 20.0 ft. BGS

 Station:
 1,128,919.96N

2,456,031.83E

Page 1 of 1

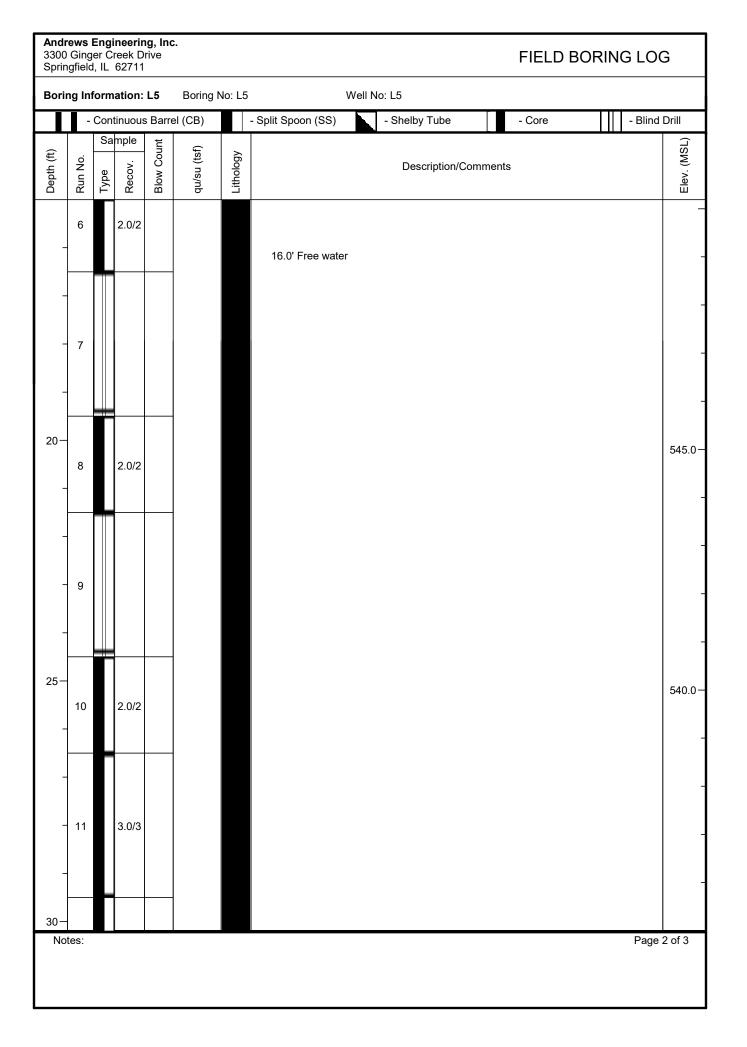
SAMPLE		TESTING				TOPOGRAPHIC MAP INFORMATION:		WATER LEVEL INFORMATION:				
er	Recov / Total (in) % Recovery		<i>Blows / 6 in</i> N - Value RQD	Water Content (%)	Dry Density (lb/ft³)	Qu (tsf) Qp (tsf) Failure Type	Quadrangle: Springfield East Township: Woodside Section 12, Tier 15; Range 5		▼ = Dry - During drilling ▼ = Dry - At completion ▼ =			
Number	Reco % Re	Type	Blows N - Vs RQD	Water	Dry D	Qu (ts Failur	Depth ft. BGS	Lithologic Description	Borehole Elevation Remarks Detail ft. MSL			
							2-	Very dark gray (10YR3/1), moist, stiff, GRAVEL with few little clay, and trace sand. [FILL]	ash, 552			
	15/18 83%	ss	3-7 10 N=17				4-	Dark brown (10YR3/3), moiste, stiff, CLAY with some silt sand, trace gravel, and trace ash. [FILL]				
	15/18 83%	ss	3-7 9 N=16				6		546			
	9/18 50%	ss	3-4 4 N=8				8	Yellowish brown (10YR5/4) with 10% gray (10YR5/1) mot moist, stiff, CLAY with some silt and trace sand. [FILL				
	18/18 100%	ss	3-4 5 N=9				10	Gray (10YR5/1), moist, medium, CLAY with some silt at trace sand. [FILL]				
	15/18 83%	ss	<i>3-4</i> 5 N=9				14	Gray (10YR5/1) with 10% yellowish brown (10YR5/6) mot moist, medium, CLAY with some silt and trace sand. [FII	ttles, LL] 538			
	16/18	\bigvee	3-4					Gray (10YR5/1), moist, medium, CLAY with some silt a trace sand. [FILL]	nd /			
	20/24	ss	7 N=11				16	Yellowish brown (10YR5/6), moist, medium, CLAY with so silt and trace sand. [FILL]	ome 536 k = 6.9 x 10 ⁻⁷ cm/se			
	18/18 100%	SH	6-7 9 N=16				16 18 18 20	Black (10YR2/1), moist, medium, CLAY with some silt a trace sand. [FILL]	534			


APPENDIX A5:IMPOUNDMENT CCR WELL LOGS

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: D1 Location: Springfield, Illinois Northing: 1129934.00 Well No: D1 County: Sangamon Easting: 2455460.00 Surf Elev.: 564.0 Site No.: **Depth Information:** AEI No.: 240227 Weather: Cloudy 59F Total: 40.5' Auger: 40.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Skinner Limited Geologist: S. Van Hook Dates: City: Hindsboro, Illinois Driller: T. Skinner Start: 04/29/2024 Equipment: 4 1/4" HSA 5' CSD 3" Helper(s): NA Finish: 04/29/2024 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) **Blow Count** qu/su (tsf) Lithology Depth (ft) Run No. Description/Comments Elev. (Type 564.0 **Ground Surface** Dark gray ASH (fill) 1 560.0-5-2 2.0/2 WH 3 555.0-10-3 21 23 1.5/2 4 24 5 550.0-15-W Notes: Page 1 of 3

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: D2 Location: Springfield, Illinois Northing: 1130169.00 Well No: D2 County: Sangamon Easting: 2456076.00 Surf Elev.: 558.0 Site No.: **Depth Information:** AEI No.: 240227 Weather: Cloudy 59F Total: 37.5' Auger: 37.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Skinner Limited Geologist: S. Van Hook Dates: City: Hindsboro, Illinois Driller: T. Skinner Start: 04/29/2024 Equipment: 4 1/4" HSA 5' CSD 3" Helper(s): NA Finish: 04/29/2024 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) **Blow Count** qu/su (tsf) Lithology Depth (ft) Run No. Description/Comments Elev. (Type 558.0 **Ground Surface** Dark gray ASH (fill) 1 555.0 5-2 0.0/2 WOH 3 550.0-10-2.0/2 WOH 4 545.0-5 15-Notes: Page 1 of 3

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: D3 Location: Springfield, Illinois Northing: 1129640.00 Well No: D3 County: Sangamon Easting: 2455918.00 Surf Elev.: 554.9 Site No.: **Depth Information:** AEI No.: 240227 Weather: Sunny 66F Total: 31.5' Auger: 31.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Skinner Limited Geologist: S. Van Hook Dates: City: Hindsboro, Illinois Driller: T. Skinner Start: 04/30/2024 Equipment: 4 1/4" HSA 5' CSD 3" Helper(s): NA Finish: 04/30/2024 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) **Blow Count** qu/su (tsf) Depth (ft) Lithology Run No. Description/Comments Elev. (Type 554.9 **Ground Surface** Dark gray ASH (fill); wet 1 550.0-5-2 2 2.0/2 2 3 545.0-10-2.0/2 WH 4 Free water at 12.0' 5 540.0 15-Notes: Page 1 of 3


Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: D4 Location: Springfield, Illinois Northing: 1129248.00 Well No: D4 County: Sangamon Easting: 2455777.00 Surf Elev.: 561.00 Site No.: **Depth Information:** AEI No.: 240227 Weather: Sunny 66F Total: 36.5' Auger: 36.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Skinner Limited Geologist: S. Van Hook Dates: City: Hindsboro, Illinois Driller: T. Skinner Start: 04/30/2024 Equipment: 4 1/4" HSA 5' CSD 3" Helper(s): NA Finish: 04/30/2024 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) **Blow Count** qu/su (tsf) Depth (ft) Lithology Run No. Description/Comments Type Elev. 561.0 **Ground Surface** Dark gray ASH (fill); dry 560.0-1 5-W 1 2 1.2/2 2 555.0-3 10-Moist 0.5/2 WOH 4 550.0-5 15-Notes: Page 1 of 3

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: L1 Location: Springfield, Illinois Northing: 1127471.67 Well No: L1 County: Sangamon Easting: 2456542.99 Surf Elev.: 568.96 Site No.: **Depth Information:** AEI No.: 240227 Weather: Sunny 72 F Total: 38.0' Auger: 38.0' **Drilling Contractor:** Personnel: Core: -Contractor Name: Skinner Limited Geologist: S. Van Hook Dates: City: Hindsboro, Illinois Driller: T. Skinner Start: 05/02/2024 Equipment: 4 1/4" HSA 5' CSD 3" Helper(s): NA Finish: 05/02/2024 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample **Blow Count** Elev. (MSL) qu/su (tsf) Lithology Depth (ft) Run No. Description/Comments Type 569.0 **Ground Surface** Light gray SLUDGE (fill) 1 565.0-3 3 5-2 0.8/2 3 3 560.0-10-1.4/2 WOH 4 5 555.0-15-Notes: Page 1 of 3

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: L3 Location: Springfield, Illinois Northing: 1128216.45 Well No: L3 County: Sangamon Easting: 2456765.72 Surf Elev.: 563.02 Site No.: **Depth Information:** AEI No.: 240227 Weather: Sunny 72 F Total: 36.5' Auger: 36.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Skinner Limited Geologist: S. Van Hook Dates: City: Hindsboro, Illinois Driller: T. Skinner Start: 05/02/2024 Equipment: 4 1/4" HSA 5' CSD 3" Helper(s): NA Finish: 05/02/2024 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) **Blow Count** qu/su (tsf) Depth (ft) Lithology Run No. Description/Comments Elev. (Type 563.0 **Ground Surface** Dark gray ASH (fill) 1 560.0-5-WH WH 2 0.22 1 3 555.0-9.5' Free water 10-2.0/2 WH 4 550.0-5 15-Notes: Page 1 of 3

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: L4 Location: Springfield, Illinois Northing: 1127968.18 Well No: L4 County: Sangamon Easting: 2457141.08 Surf Elev.: 568.58 Site No.: **Depth Information:** AEI No.: 240227 Weather: Sunny 72 F Total: 21.0' Auger: 21.0' **Drilling Contractor:** Personnel: Core: -Contractor Name: Skinner Limited Geologist: S. Van Hook Dates: City: Hindsboro, Illinois Driller: T. Skinner Start: 05/02/2024 Equipment: 4 1/4" HSA 5' CSD 3" Helper(s): NA Finish: 05/02/2024 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample **Blow Count** Elev. (MSL) qu/su (tsf) Lithology Depth (ft) Run No. Description/Comments Type 568.6 **Ground Surface** Gray ASH (fill) 1 565.0-5-2 3 560.0-10-4 5 555.0-15-Notes: Page 1 of 2

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: CWLP Ash Pond Coord. System: Boring No: L5 Location: Springfield, Illinois Northing: 1128308.56 Well No: L5 County: Sangamon Easting: 2456118.23 Surf Elev.: 565.19 Site No.: **Depth Information:** AEI No.: 240227 Weather: Cloudy 61 F Total: 39.5' Auger: 39.5' **Drilling Contractor:** Personnel: Core: -Contractor Name: Skinner Limited Geologist: S. Van Hook Dates: City: Hindsboro, Illinois Driller: T. Skinner Start: 05/03/2024 Equipment: 4 1/4" HSA 5' CSD 3" Helper(s): NA Finish: 05/03/2024 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample Elev. (MSL) **Blow Count** qu/su (tsf) Depth (ft) Lithology Run No. Description/Comments Type 565.2 **Ground Surface** Gray silty CLAY (fill) 1 5-Light gray LIME SLUDGE (fill) 560.0-2 1.5/2 3 Dark gray to black COAL ASH (fill) 10-555.0-2.0/2 4 5 15-Notes: Page 1 of 3

CLIENT: City Water, Light and Power Site: CWLP Ash Pond Dewatering

Location: Springfield, IL **Project:** 25E0006.00 **DATES: Start:** 8/13/2024

Finish: 8/13/2024

CONTRACTOR: Skinner Limited

Rig mfg/model: CME-550 ATV Drill Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner Helper: C. Vanburen BOREHOLE ID: DB-01

Well ID: n/a

Surface Elev: 563.8 ft. MSL Completion: 39.0 ft. BGS **Station:** 1,129,829.03N

WEATHER: 80F and Sunny							Eng/Geo: G. Tabacchi 2,455,470.48E					
	SAMPLE TESTING						TOPOGRAPHIC MAP INFORMATION:	WATER LEVEL INFORMATION:				
er	Recov / Total (in) % Recovery		Blows / 6 in N - Value RQD	Water Content (%)	Dry Density (lb/ft³)	Qu (tsf) Q <i>p</i> (tsf) Failure Type	f) Qp (tsf) a Type	f) Qp (tsf) Type	f) Qp (tsf) Type	f) <i>Qp</i> (tsf) Type	Quadrangle: Springfield East Township: Woodside Section 12, Tier 15; Range 5	▼ = 18.00 - During Drilling ▼ = ▼ =
Number	Recov % Re(Type	Blows N - Ve RQD	Water	Dry D	Qu (ts Failur	Depth Lithologic Description	Borehole Elevation Remarks Detail ft. MSL				
1	12/18 67%	SPT	1-1 1 N=2	32.0			2 ————————————————————————————————————					
2	14/18 78%	SPT	1-WH WH	37.0			4 — Ash, (Silt like), Very Soft, Dark Gray (10Y 3/1), I	Moist				
3	18/18 100%	SPT	2-4 4 N=8	36.0			8-	556				
4	12/18 67%	SPT	8-11 10 N=21	25.0			10	554				
5	12/18 67%	SPT	3-6 6 N=12	27.0			12 — Ash, (Silt like), Medium Stiff, Dark Gray (10Y 3/1), inch wet seam at 12.4	Moist, 1				
6	12/18 67%	SPT	4-4 4 N=8	37.0			14 ————————————————————————————————————	548				
7	18/18 100%	SPT	WR-WR WR				Ash, (Silt like), Very Soft, Dark Gray (10Y 3/1),	Wet				
NO	TE(S):	X		52.0			20	Page 1 of 2				

CLIENT: City Water, Light and Power Site: CWLP Ash Pond Dewatering

Location: Springfield, IL Project: 25E0006.00

DATES: Start: 8/13/2024 Finish: 8/13/2024

WEATHER: 80F and Sunny

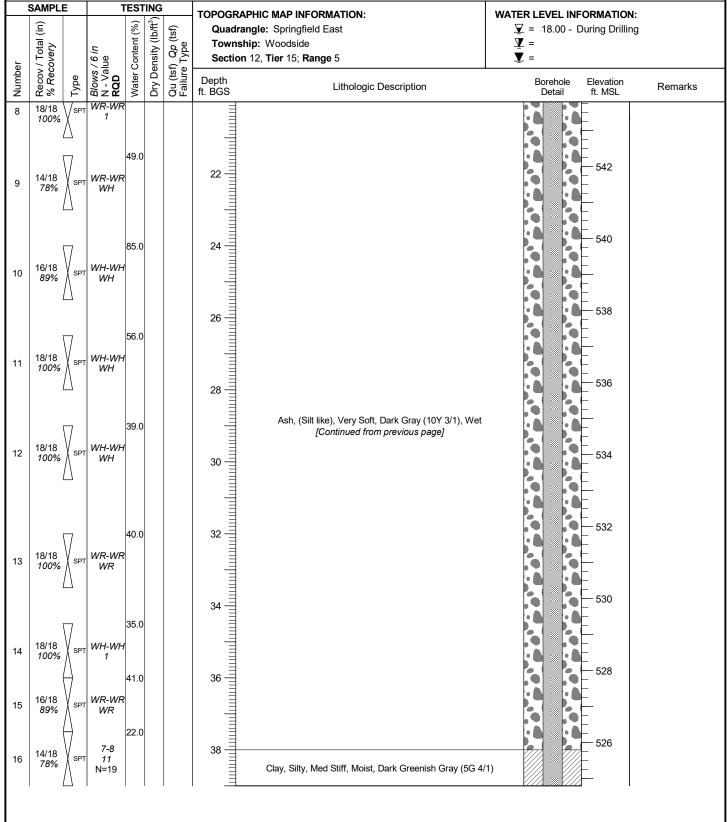
NOTE(S):

CONTRACTOR: Skinner Limited

Rig mfg/model: CME-550 ATV Drill Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner Helper: C. Vanburen

Eng/Geo: G. Tabacchi


BOREHOLE ID: DB-01

Well ID: n/a

Surface Elev: 563.8 ft. MSL 39.0 ft. BGS Completion: **Station:** 1,129,829.03N

Page 2 of 2

2,455,470.48E

CLIENT: City Water, Light and Power **Site:** CWLP Ash Pond Dewatering

Location: Springfield, IL Project: 25E0006.00 DATES: Start: 8/13/2024

Finish: 8/13/2024

WEATHER: 80F and Sunny

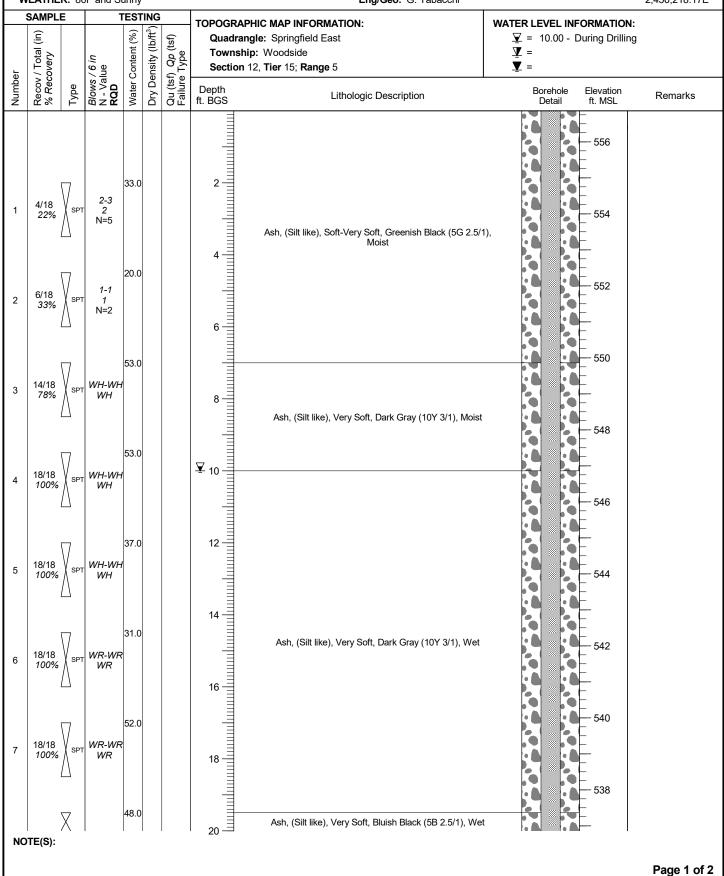
CONTRACTOR: Skinner Limited

Rig mfg/model: CME-550 ATV Drill Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner
Helper: C. Vanburen

Eng/Geo: G. Tabacchi

BOREHOLE ID: DB-02


Well ID: n/a

 Surface Elev:
 556.9 ft. MSL

 Completion:
 35.5 ft. BGS

 Station:
 1,130,338.40N

2,456,218.17E

CLIENT: City Water, Light and Power **Site:** CWLP Ash Pond Dewatering

Location: Springfield, IL Project: 25E0006.00 DATES: Start: 8/13/2024

Finish: 8/13/2024 WEATHER: 80F and Sunny

CONTRACTOR: Skinner Limited Rig mfg/model: CME-550 ATV Drill Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner
Helper: C. Vanburen

Eng/Geo: G. Tabacchi

BOREHOLE ID: DB-02

Well ID: n/a

 Surface Elev:
 556.9 ft. MSL

 Completion:
 35.5 ft. BGS

 Station:
 1,130,338.40N

2,456,218.17E

SAMPLE TESTING TOPOGRAPHIC MAP INFORMATION: WATER LEVEL INFORMATION: Dry Density (lb/ft³ Ē Water Content (%) Qu (tsf) Qp (tsf) Failure Type \mathbf{Y} = 10.00 - During Drilling Quadrangle: Springfield East Recov / Total (% Recovery Township: Woodside ▼ = ▼ = Section 12, Tier 15; Range 5 Number Depth Borehole Elevation Lithologic Description Remarks 18/18 100% 536 49.0 18/18 WH-WH 9 534 100% WH 50.0 532 18/18 WH-WH 10 WH 26 Ash, (Silt like), Very Soft, Bluish Black (5B 2.5/1), Wet 53.0 [Continued from previous page] 18/18 WR-WR 11 100% WR 528 60.0 18/18 WR-WR 12 100% WR 526 14/18 WR-WR 13 78% 35.0 18/18 WR-WR 14 100% 27.0 18/18 Clay, Silty, Soft, Light Greenish Gray (5G 7/1) w/ brown 15 100% mottling, High Plasticity, Moist

NOTE(S):

FIELD BORING LOG **CLIENT:** City Water, Light and Power **CONTRACTOR:** Skinner Limited BOREHOLE ID: DB-03 Site: CWLP Ash Pond Dewatering Rig mfg/model: CME-550 ATV Drill Location: Springfield, IL Drilling Method: Hollow Stem Auger Well ID: n/a Project: 25E0006.00 Surface Elev: 554.7 ft. MSL **DATES: Start:** 8/14/2024 FIELD STAFF: Driller: T. Skinner 31.0 ft. BGS Completion: Finish: 8/14/2024 Helper: C. Vanburen **Station:** 1,129,517.42N WEATHER: 80F and Sunny Eng/Geo: G. Tabacchi 2,455,963.38E SAMPLE TESTING TOPOGRAPHIC MAP INFORMATION: Ξ Water Content (%) Dry Density (lb/ft³ Qu (tsf) Qp (tsf) Failure Type Quadrangle: Springfield East Recov / Total (% Recovery Township: Woodside *Blows / 6 in* N - Value **RQD** Section 12, Tier 15; Range 5 Elevation Borehole Lithologic Description Remarks 554 13.0 4/18 1-WH 1 Ash (Sand Like), Med Grained, Poorly Graded, Light Greenish Gray (5G 7/1), Moist 26.0 550 2 N=2 34.0 WH-WH 3 546 48.0 WH-1 16/18 4 52.0 WH-WH 5 Ash (Silt Like), Very Soft, Greenish Black (10GY 2.5/1), Wet, Trace Coarse Grains 540 18/18 WH-WH 6 100% 538 50.0 7 536 Ash (Sand Like), Fine Grained w/ trace coarse, Very Loose, Light Greenish Gray (5G 7/1), Wet NOTE(S):

CONTRACTOR: Skinner Limited

HANSON

CLIENT: City Water, Light and Power Site: CWLP Ash Pond Dewatering Location: Springfield, IL

Finish: 8/14/2024

Rig mfg/model: CME-550 ATV Drill **Drilling Method:** Hollow Stem Auger

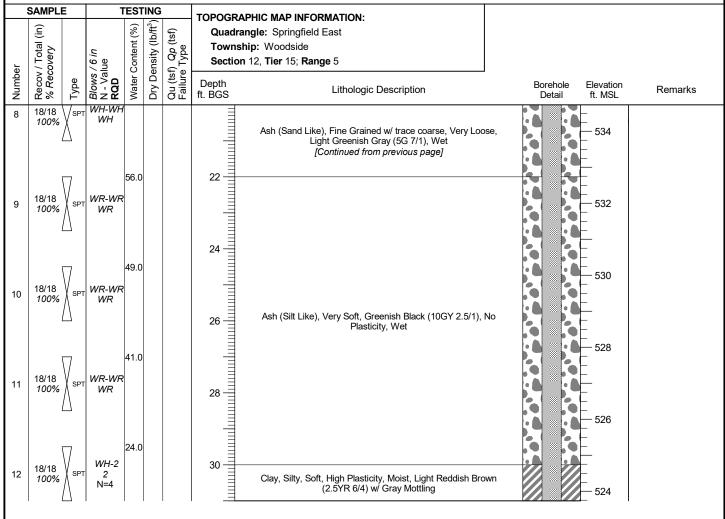
BOREHOLE ID: DB-03 **Well ID:** n/a

Project: 25E0006.00

DATES: Start: 8/14/2024

FIELD STAFF: Driller: T. Skinner
Helper: C. Vanburen

 Surface Elev:
 554.7 ft. MSL


 Completion:
 31.0 ft. BGS

 Station:
 1 129 517 42N

WEATHER: 80F and Sunny

Eng/Geo: G. Tabacchi

Station: 31.0 π. BGS **Station:** 1,129,517.42N 2,455,963.38E

CLIENT: City Water, Light and Power **Site:** CWLP Ash Pond Dewatering

Location: Springfield, IL Project: 25E0006.00 DATES: Start: 8/19/2024

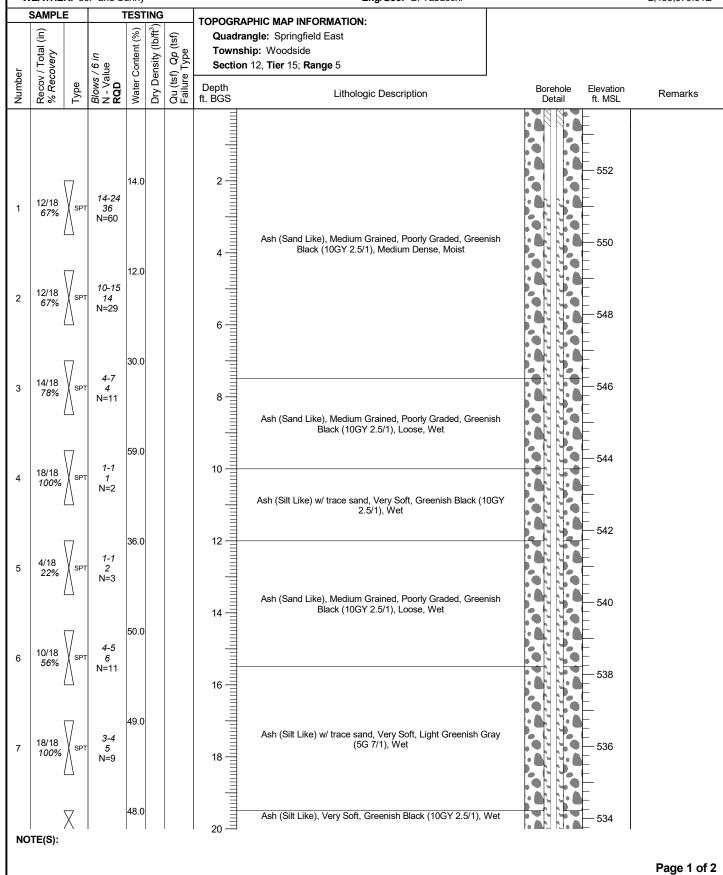
Finish: 8/19/2024 WEATHER: 80F and Sunny

CONTRACTOR: Skinner Limited
Rig mfg/model: CME-550 ATV Drill

Rig mfg/model: CME-550 ATV Drill **Drilling Method:** Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner
Helper: C. Vanburen

Eng/Geo: G. Tabacchi


BOREHOLE ID: DB-04
Well ID: DB04D

 Surface Elev:
 553.71 ft. MSL

 Completion:
 31.00 ft. BGS

 Station:
 1,129,163.19N

2,455,379.61E

CLIENT: City Water, Light and Power Site: CWLP Ash Pond Dewatering Location: Springfield, IL

CONTRACTOR: Skinner Limited Rig mfg/model: CME-550 ATV Drill Drilling Method: Hollow Stem Auger

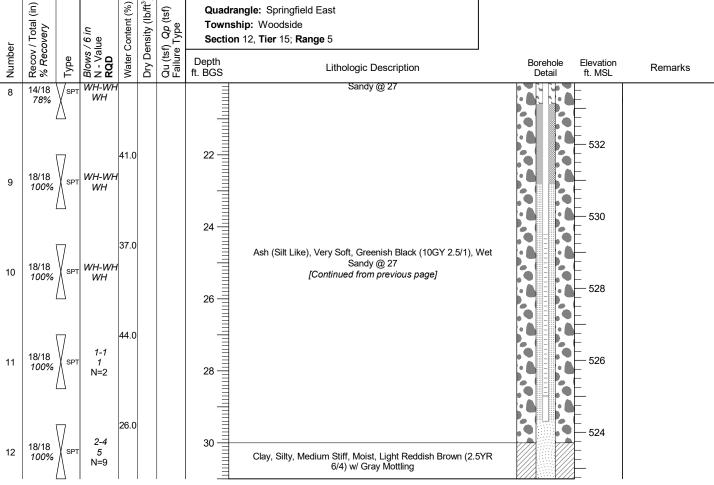
Project: 25E0006.00 **DATES: Start:** 8/19/2024

SAMPLE

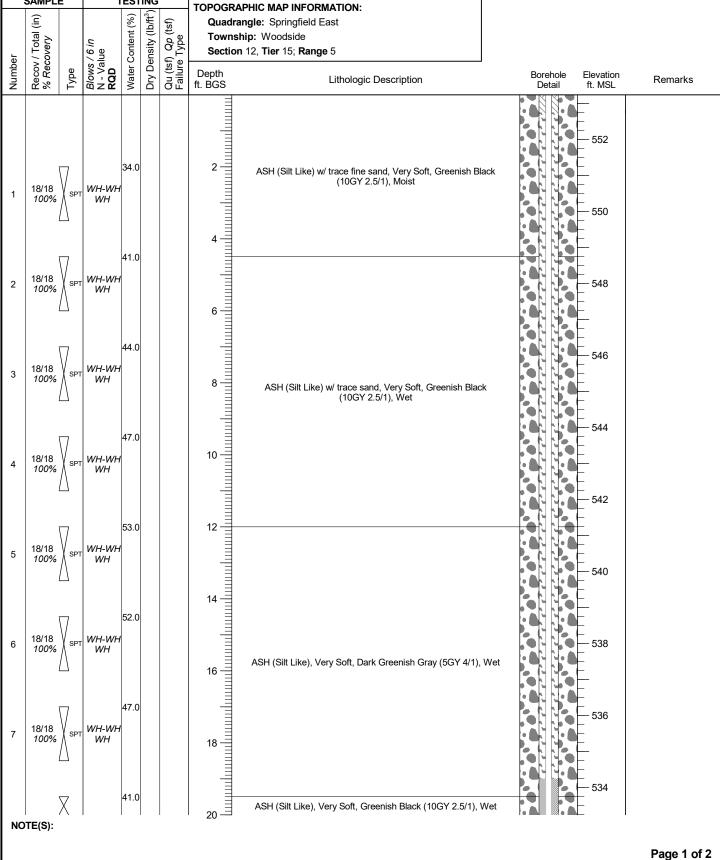
FIELD STAFF: Driller: T. Skinner Helper: C. Vanburen

Eng/Geo: G. Tabacchi

Surface Elev: 553.71 ft. MSL Completion: 31.00 ft. BGS **Station:** 1,129,163.19N


Well ID: DB04D

BOREHOLE ID: DB-04


2,455,379.61E

Finish: 8/19/2024 WEATHER: 80F and Sunny TESTING

TOPOGRAPHIC MAP INFORMATION: Quadrangle: Springfield East Township: Woodside Section 12, Tier 15; Range 5

FIELD BORING LOG **CLIENT:** City Water, Light and Power **CONTRACTOR:** Skinner Limited **BOREHOLE ID:** DB-05 Site: CWLP Ash Pond Dewatering Rig mfg/model: CME-550 ATV Drill Location: Springfield, IL Drilling Method: Hollow Stem Auger Well ID: DB05D Project: 25E0006.00 Surface Elev: 553.24 ft. MSL **DATES: Start:** 8/15/2024 FIELD STAFF: Driller: T. Skinner 28.50 ft. BGS Completion: Finish: 8/15/2024 Helper: C. Vanburen **Station:** 1,129,181.97N WEATHER: 85F and Rainy Eng/Geo: G. Tabacchi 2,456,241.37E SAMPLE TESTING TOPOGRAPHIC MAP INFORMATION: Ξ Quadrangle: Springfield East Township: Woodside Section 12, Tier 15; Range 5

HANSON

CLIENT: City Water, Light and Power Site: CWLP Ash Pond Dewatering Location: Springfield, IL CONTRACTOR: Skinner Limited
Rig mfg/model: CME-550 ATV Drill
Drilling Method: Hollow Stem Auger

BOREHOLE ID: DB-05 Well ID: DB05D

Project: 25E0006.00

DATES: Start: 8/15/2024

FIELD STAFF: Driller: T. Skinner
Helper: C. Vanburen

 Surface Elev:
 553.24 ft. MSL

 Completion:
 28.50 ft. BGS

 Station:
 1,129,181.97N

2,456,241.37E

Finish: 8/15/2024 **WEATHER:** 85F and Rainy

Eng/Geo: G. Tabacchi

	SAMPLE	TESTING				TOPOGRAF	PHIC MAP INFORMATION:				
_	Recov / Total (in) % Recovery		/ 6 <i>in</i> ue	Water Content (%)	Density (lb/ft³)) <i>Qp</i> (tsf) Type	Quadran Townshi	ingle: Springfield East ip: Woodside 12, Tier 15; Range 5			
Number	Recov % Rec	Type	Blows / 6 in N - Value RQD	Water (Dry De	Qu (tsf) Failure	Depth ft. BGS	Lithologic Description	Borehole Detail	Elevation ft. MSL	Remarks
8	18/18 100%	SPT	WH	43.0			22				
9	18/18 100%	SPT					24	ASH (Silt Like), Very Soft, Greenish Black (10GY 2.5/1), We	t		
10	18/18 100%	SPT	WH-WH WH	55.0			26 —			- - - - - - - - - - - - - - - - - - -	
11	18/18 100%	SPT	WH-2 4 N=6	24.0			28	Clay, Silty, Medium Stiff, Moist, Light Reddish Brown (2.5YR 6/4) w/ Gray Mottling, High Plasticity		526 526 	

CLIENT: City Water, Light and Power **Site:** CWLP Ash Pond Dewatering

Location: Springfield, IL Project: 25E0006.00 DATES: Start: 8/20/2024

Finish: 8/20/2024

WEATHER: 75F and Sunny

CONTRACTOR: Skinner Limited

Rig mfg/model: CME-550 ATV Drill Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner
Helper: C. Vanburen

Eng/Geo: G. Tabacchi

Well ID: n/a

Surface Elev: 568.9 ft. MSL Completion: 35.5 ft. BGS

Station: 1,127,471.50N 2,456,543.15E

SAMPLE TESTING TOPOGRAPHIC MAP INFORMATION: WATER LEVEL INFORMATION: Ξ Water Content (%) Dry Density (lb/ft³ Qu (tsf) Qp (tsf) Failure Type Quadrangle: Springfield East \mathbf{Y} = 19.50 - During Drilling Recov / Total (% Recovery ▼ = Township: Woodside *Blows / 6 in* N - Value **RQD** Section 12, Tier 15; Range 5 ▼ = Number Borehole Elevation Lithologic Description Remarks 568 24.0 Ash (Sand Like), Medium Coarse, Poorly Graded, Medium Dense, Greenish Black (10GY 2.5/1), Moist 5-15 10/18 1 20 566 30.0 564 2 N=8 562 70.0 Lime Sludge (Silt Like), Soft, Light Greenish Gray (5G 7/1), No Plasticity, Moist WH-WH 3 100% WH 560 18/18 4 100% 558 63.0 Ash (Silt Like), Very Soft, Greenish Black (10GY 2.5/1), Moist WH-WH 13 - 2 inch sandy wet seam 5 556 41.0 554 18/18 6 100% N=6 552 38.0 Ash (Sand Like), Medium Coarse, Poorly Graded, Loose-Medium Dense, Greenish Black (10GY 2.5/1), Moist 7 15 Wet @ 19.5 100% N=25 550 $\overline{\mathbf{A}}$ 36.0 NOTE(S): Page 1 of 2

CLIENT: City Water, Light and Power **Site:** CWLP Ash Pond Dewatering

Location: Springfield, IL Project: 25E0006.00 DATES: Start: 8/20/2024

Finish: 8/20/2024
WEATHER: 75F and Sunny

CONTRACTOR: Skinner Limited
Rig mfg/model: CME-550 ATV Drill
Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner Helper: C. Vanburen

Eng/Geo: G. Tabacchi

BOREHOLE ID: LB-01 Well ID: n/a

 Surface Elev:
 568.9 ft. MSL

 Completion:
 35.5 ft. BGS

 Station:
 1,127,471.50N

2,456,543.15E

NOTE(S):

CLIENT: City Water, Light and Power Site: CWLP Ash Pond Dewatering

Location: Springfield, IL Project: 25E0006.00 **DATES: Start: 8/20/2024** Finish: 8/20/2024

WEATHER: 75F and Sunny

CONTRACTOR: Skinner Limited

Rig mfg/model: CME-550 ATV Drill Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner Helper: C. Vanburen

Eng/Geo: G. Tabacchi

BOREHOLE ID: LB-02 Well ID: LB02D

Surface Elev: 568.06 ft. MSL Completion: 35.00 ft. BGS **Station:** 1,127,826.17N

Page 1 of 2

2,456,727.26E SAMPLE TESTING TOPOGRAPHIC MAP INFORMATION: WATER LEVEL INFORMATION: Ξ Dry Density (lb/ft³ Water Content (%) Quadrangle: Springfield East \mathbf{Y} = 15.00 - During Drilling) Qp (tsf) Type Recov / Total (% Recovery ▼ = Township: Woodside *Blows / 6 in* N - Value **RQD** Section 12, Tier 15; Range 5 ▼ = Qu (tsf) Failure T Number Borehole Elevation Lithologic Description Remarks 16.0 566 9-16 Ash (Sand Like), Fine Grained w/ fines, Med Dense, Greenish 1 16 Black (10GY 2.5/1), Moist N=32 564 14.0 2 N=7 Ash (Silt Like) w/ trace sand, Soft, Light Greenish Gray (5G 7/1), Moist, High Plasticity 15.0 3 N=10 560 Lime Sludge (Silt Like), Med Stiff, Light Greenish Gray (5G 18.0 7/1) w/ Brown Mottling, Moist, No Plasticity 558 9/18 4 15.0 556 5 N=2 - 554 Ash (Sand Like), Fine Grained w/ fines, Loose, Greenish Black (10GY 2.5/1), Moist 21.0 Wet at 15 \mathbf{Y} 6 N=9 552 82.0 7 - 550 Ash (Silt Like), w/ trace sand, Very Soft, Greenish Black (10GY 2.5/1), Wet 99.0 NOTE(S):

CLIENT: City Water, Light and Power **Site:** CWLP Ash Pond Dewatering

Location: Springfield, IL Project: 25E0006.00 DATES: Start: 8/20/2024

Finish: 8/20/2024 WEATHER: 75F and Sunny

CONTRACTOR: Skinner Limited
Rig mfg/model: CME-550 ATV Drill
Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner Helper: C. Vanburen

Eng/Geo: G. Tabacchi

BOREHOLE ID: LB-02

Well ID: LB02D
Surface Elev: 568.06 ft. MSL
Completion: 35.00 ft. BGS
Station: 1,127,826.17N

2,456,727.26E

SAMPLE		Ε	TESTING				TOPOGRAPHIC MAP INFORMATION:		WATER LEVEL INFORMATION:		
Number	Recov / Total (in) % Recovery	o.	Blows / 6 in N - Value RQD	Water Content (%)	Dry Density (lb/ft³)	Qu (tsf) Qp (tsf) Failure Type	Quadran Townshi Section	gle: Springfield East o: Woodside 2, Tier 15; Range 5	$\underline{\underline{Y}}$ = 15.00 - During Drilling $\underline{\underline{Y}}$ = $\underline{\underline{Y}}$ =		
Nun	Rec % R	Туре	Blov N-\		Dry	Qu (Failt	Depth ft. BGS	Lithologic Description	Borehole Elevation Remarks Detail ft. MSL		
9	11/18 61% 18/18 100% 18/18 100%	SPT	WH-WH WH-WH WH-WH 1	101.4 / 91.0			22	Ash (Silt Like), w/ trace sand, Very Soft, Greenish Blac (10GY 2.5/1), Wet [Continued from previous page]			
11	18/18 100%	SPT	1-1 1 N=2	139.8 111.1			26 28 28 28 30 30 30		540		
12	6/18 33%	SPT		142.9					538		
13	18/18 100% 9/18 50%	SPT	2-3 6 N=9	30.0			32	Clay, Silty, Medium Stiff, Moist, Light Reddish Brown (2:6/4) w/ Gray Mottling	5YR 534		

NOTE(S):

CLIENT: City Water, Light and Power Site: CWLP Ash Pond Dewatering

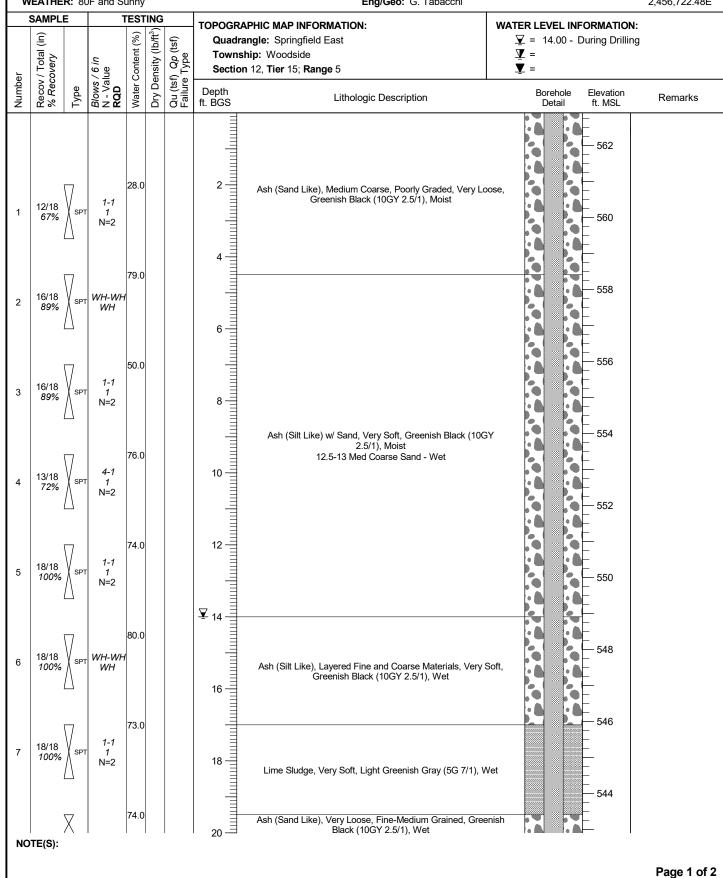
Location: Springfield, IL Project: 25E0006.00 **DATES: Start:** 8/19/2024

Finish: 8/19/2024 WEATHER: 80F and Sunny

CONTRACTOR: Skinner Limited

Rig mfg/model: CME-550 ATV Drill Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner Helper: C. Vanburen


Eng/Geo: G. Tabacchi

BOREHOLE ID: LB-03

Well ID: n/a

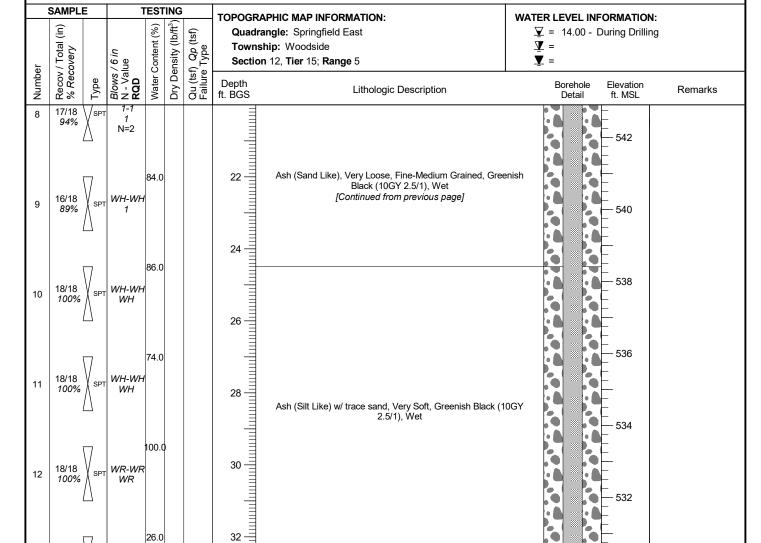
Surface Elev: 562.9 ft. MSL 33.5 ft. BGS Completion: **Station:** 1,128,249.84N

2,456,722.48E

CLIENT: City Water, Light and Power Site: CWLP Ash Pond Dewatering

Location: Springfield, IL Project: 25E0006.00

Finish: 8/19/2024


DATES: Start: 8/19/2024

WEATHER: 80F and Sunny Eng/Geo: G. Tabacchi

CONTRACTOR: Skinner Limited Rig mfg/model: CME-550 ATV Drill Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner Helper: C. Vanburen **BOREHOLE ID:** LB-03 Well ID: n/a

Surface Elev: 562.9 ft. MSL 33.5 ft. BGS Completion: **Station:** 1,128,249.84N 2,456,722.48E

Clay, Silty, Medium Stiff, Moist, Light Reddish Brown (2.5YR 6/4) w/ Gray Mottling

13

5

N=8

530

CLIENT: City Water, Light and Power Site: CWLP Ash Pond Dewatering

Location: Springfield, IL Project: 25E0006.00 **DATES: Start:** 8/21/2024

Finish: 8/21/2024 WEATHER: 75F and Sunny

CONTRACTOR: Skinner Limited Rig mfg/model: CME-550 ATV Drill Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner Helper: C. Vanburen

Eng/Geo: G. Tabacchi

BOREHOLE ID: LB-04 Well ID: n/a

Surface Elev: 566.3 ft. MSL 22.0 ft. BGS Completion: **Station:** 1,127,977.32N 2,457,073.44E

Page 1 of 2

SAMPLE TESTING TOPOGRAPHIC MAP INFORMATION: WATER LEVEL INFORMATION: Ξ Water Content (%) Dry Density (lb/ft³) Qp (tsf) Type Quadrangle: Springfield East \mathbf{Y} = 9.50 - During Drilling Recov / Total (% Recovery **V** = Township: Woodside *Blows / 6 in* N - Value **RQD** Section 12, Tier 15; Range 5 ▼ = Qu (tsf) Failure T Borehole Elevation Lithologic Description Remarks 566 19.0 Clay, Silty, Soft, High Plasticity, Light Reddish Brown (2.5YR 564 WH-1 6/4), Moist 1 562 18.0 2 N=2 560 Ash, (Silt Like), Very Soft, Greenish Black (10GY 2.5/1), Moist WH-WH 3 78% WH 558 ¥ 72.0 18/18 WR-WR 4 100% WR 43.0 554 WR-WR 5 Ash, (Silt Like), Very Soft, Greenish Black (10GY 2.5/1), Wet 552 61.0 18/18 WH-WH 6 100% WH 550 6/18 WR-WR 7 33% Lime Sludge, Very Soft, Light Greenish Gray (5G 7/1), Wet 14/18 WR-WR 8 SPT 548 60.0 WR-WR 18/18 WR NOTE(S):

HANSON

CLIENT: City Water, Light and Power Site: CWLP Ash Pond Dewatering Location: Springfield, IL

Finish: 8/21/2024

Rig mfg/model: CME-550 ATV Drill **Drilling Method:** Hollow Stem Auger

CONTRACTOR: Skinner Limited

Well ID: n/a

Project: 25E0006.00

DATES: Start: 8/21/2024

FIELD STAFF: Driller: T. Skinner
Helper: C. Vanburen

 Surface Elev:
 566.3 ft. MSL

 Completion:
 22.0 ft. BGS

 Station:
 1 127 977 32N

WEATHER: 75F and Sunny

Eng/Geo: G. Tabacchi

Station: 1,127,977.32N 2,457,073.44E

CLIENT: City Water, Light and Power Site: CWLP Ash Pond Dewatering

Location: Springfield, IL Project: 25E0006.00 **DATES: Start: 8/16/2024**

Finish: 8/16/2024

WEATHER: 85F and Overcast

CONTRACTOR: Skinner Limited

Rig mfg/model: CME-550 ATV Drill Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner

Helper: C. Vanburen Eng/Geo: G. Tabacchi

BOREHOLE ID: LB-05

Well ID: n/a Surface Elev: 565.4 ft. MSL

37.5 ft. BGS Completion: **Station:** 1,128,266.90N

Page 1 of 2

2,456,131.15E SAMPLE TESTING TOPOGRAPHIC MAP INFORMATION: WATER LEVEL INFORMATION: Ξ Water Content (%) Dry Density (lb/ft³) Qp (tsf) Type Quadrangle: Springfield East \mathbf{Y} = 12.00 - During Drilling Recov / Total (% Recovery ▼ = Township: Woodside *Blows / 6 in* N - Value **RQD** Section 12, Tier 15; Range 5 ▼ = Qu (tsf) Failure T Borehole Elevation Lithologic Description Remarks Ash (Sand Like), Medium Grained, Poorly Graded, Very 10/18 1-WH Loose, Greenish Black (10GY 2.5/1), Moist 1 WH 562 18/18 WH-WH 2 560 WH 47.0 558 WH-WH 3 78% WH Lime Sludge (Silt Like), Very Soft, Light Greenish Gray (5G 7/1) w/ Brown Mottling, Moist, Medium Plasticity 556 92.0 11/18 WH-WH 4 WH 554 <u>¥</u> 12 74.0 WH-WH 5 552 62.0 18/18 WH-WH 6 100% 550 WH Ash (Silt Like) w/ trace sand, Very Soft, Greenish Black (10GY 2.5/1), Wet, High Plasticity 74.0 7 100% 74.0 Ash (Sand Like), Medium Grained, Poorly Graded, Very Loose, Greenish Black (10GY 2.5/1), Wet NOTE(S):

CLIENT: City Water, Light and Power **Site:** CWLP Ash Pond Dewatering

Location: Springfield, IL Project: 25E0006.00 DATES: Start: 8/16/2024

Finish: 8/16/2024
WEATHER: 85F and Overcast

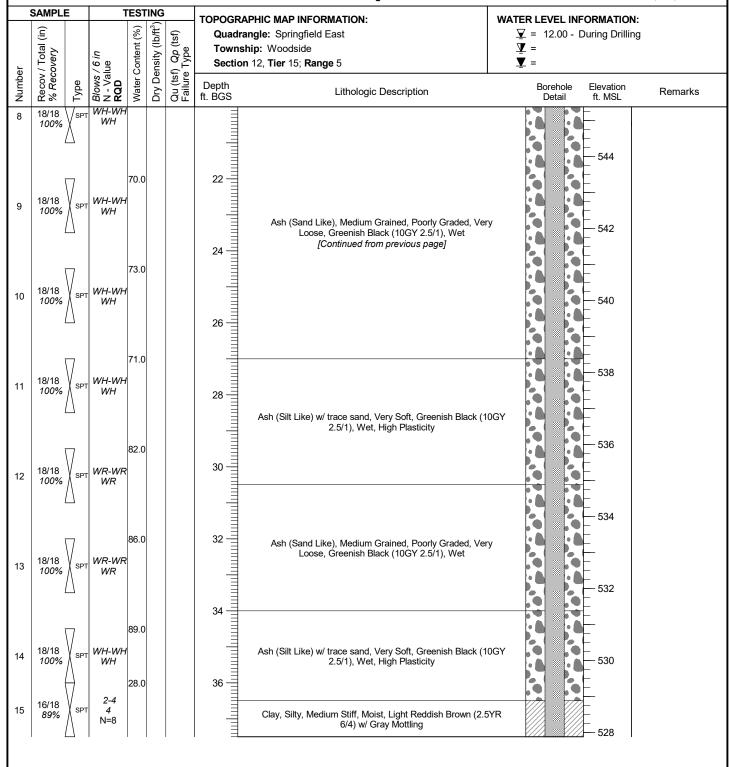
CONTRACTOR: Skinner Limited

Rig mfg/model: CME-550 ATV Drill Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner
Helper: C. Vanburen

Eng/Geo: G. Tabacchi

BOREHOLE ID: LB-05


Well ID: n/a

 Surface Elev:
 565.4 ft. MSL

 Completion:
 37.5 ft. BGS

 Station:
 1,128,266.90N

2,456,131.15E

CLIENT: City Water, Light and Power **Site:** CWLP Ash Pond Dewatering

Location: Springfield, IL **Project:** 25E0006.00

WEATHER: 85°F, sunny

DATES: Start: 6/19/2025 **Finish:** 6/20/2025

CONTRACTOR: Skinner Limited Rig mfg/model: Bucket Auger Rig Drilling Method: Bucket Auger

FIELD STAFF: Driller: T. Skinner
Helper: C. Vanburen

Eng/Geo: R. Hasenyager

HANSON

BOREHOLE ID: DO06 Well ID: DO06

 Surface Elev:
 552.77 ft. MSL

 Completion:
 30.30 ft. BGS

 Station:
 1,129,174.10N

2,456,191.27E

Page 1 of 2

SAMPLE		TESTING				TOPOGRAI	TOPOGRAPHIC MAP INFORMATION: W.		WATER LEVEL INFORMATION:		
ber	Recov / Total (in) % Recovery		Blows / 6 in N - Value RQD	Water Content (%)	Dry Density (lb/ft³)	Qu (tsf) Qp (tsf) Failure Type	Quadrai Townsh Section	ip: Woodside 12, Tier 15; Range 5	▼ = 2.00	$\underline{\underline{Y}}$ = 2.00 - During Drilling $\underline{\underline{Y}}$ = 4.76 - 6/23/25	
Number	Reco' % Re	Туре	Blows N - V	Water	Dry D	Qu (ts Failur	Depth ft. BGS	Lithologic Description	Borehole Detail	Elevation ft. MSL	Remarks
NG	DTE(S):						₹ 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Very dark grayish brown (10YR3/2), wet, soft, SILT with travery fine-grained sand. (Fly Ash)	ace	548 -548 -546 -544 -544 -542 -5538 -538 -536 -536	

CLIENT: City Water, Light and Power Site: CWLP Ash Pond Dewatering Location: Springfield, IL

Finish: 6/20/2025

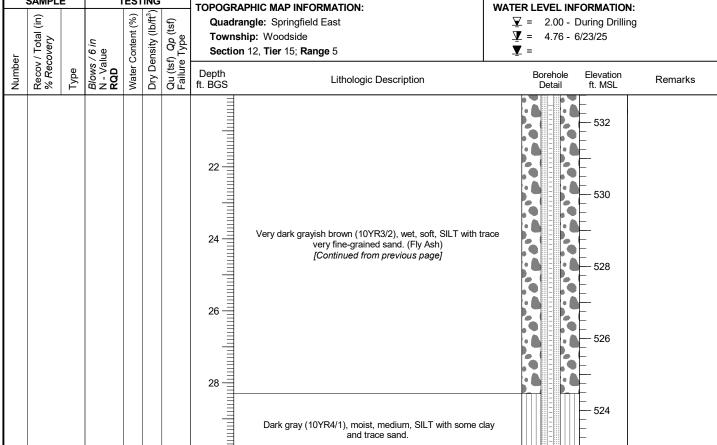
TESTING

CONTRACTOR: Skinner Limited Rig mfg/model: Bucket Auger Rig Drilling Method: Bucket Auger

BOREHOLE ID: DO06 Well ID: DO06

Project: 25E0006.00 **DATES: Start:** 6/19/2025

FIELD STAFF: Driller: T. Skinner Helper: C. Vanburen Surface Elev: 552.77 ft. MSL Completion: 30.30 ft. BGS **Station:** 1,129,174.10N


2,456,191.27E

WEATHER: 85°F, sunny

SAMPLE

Eng/Geo: R. Hasenyager

WATER LEVEL INFORMATION:							
<u>▼</u> =	2.00 - During Drilling						
<u> </u>	4.76 - 6/23/25						

CLIENT: City Water, Light and Power **Site:** CWLP Ash Pond Dewatering

Location: Springfield, IL **Project:** 25E0006.00

DATES: Start: 6/19/2025 **Finish:** 6/19/2025

WEATHER: 85°F, sunny

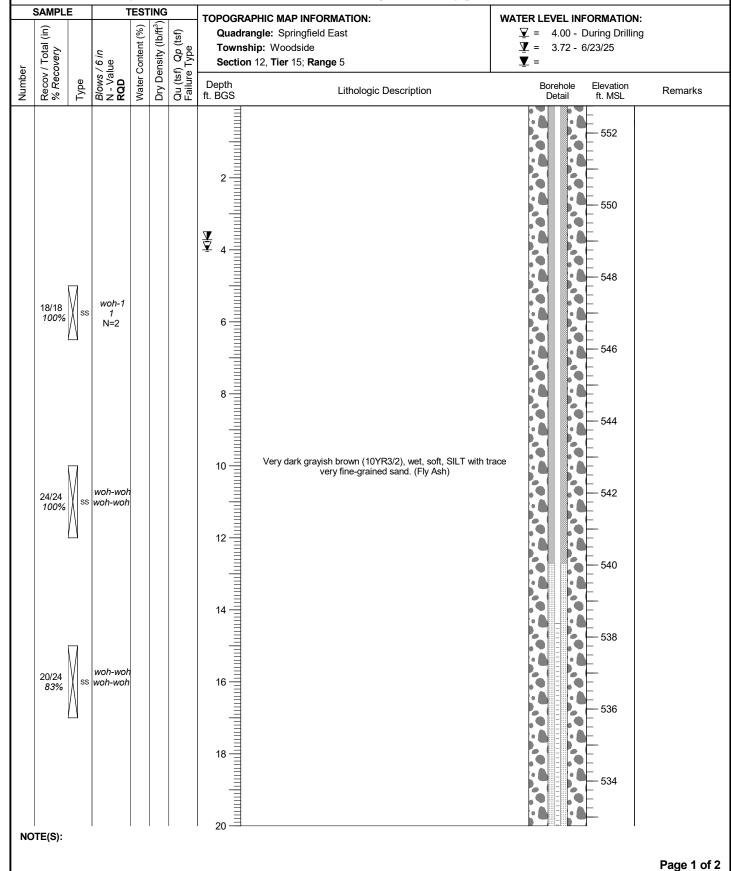
. . . .

CONTRACTOR: Skinner Limited Rig mfg/model: CME-850 Track Drill Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner

Helper: C. Vanburen

Eng/Geo: R. Hasenyager


BOREHOLE ID: DO07

Well ID: DO07

Surface Elev: 552.75 ft. MSL Completion: 27.00 ft. BGS

Station: 1,129,197.21N

2,456,094.95E

Location: Springfield, IL

Project: 25E0006.00

CLIENT: City Water, Light and Power

Site: CWLP Ash Pond Dewatering

CONTRACTOR: Skinner Limited

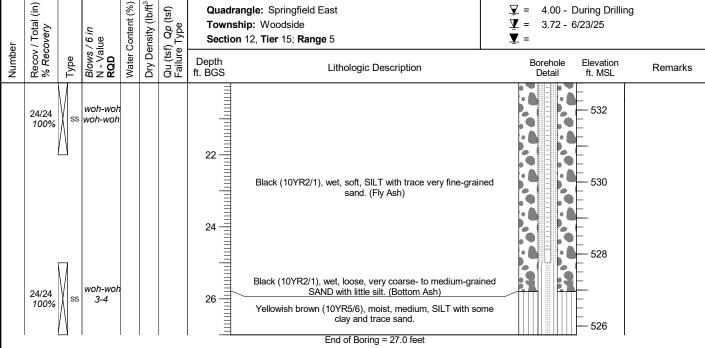
Rig mfg/model: CME-850 Track Drill Drilling Method: Hollow Stem Auger

FIELD STAFF: Driller: T. Skinner

Helper: C. Vanburen

BOREHOLE ID: DO07

Surface Elev: 552.75 ft. MSL 27.00 ft. BGS Completion: **Station:** 1,129,197.21N


Well ID: DO07

2,456,094.95E

DATES: Start: 6/19/2025 Finish: 6/19/2025 WEATHER: 85°F, sunny Eng/Geo: R. Hasenyager SAMPLE TESTING

Ξ) Qp (tsf) Type Quadrangle: Springfield East Township: Woodside

TOPOGRAPHIC MAP INFORMATION: WATER LEVEL INFORMATION: ∇ = 4.00 - During Drilling Ψ = 3.72 - 6/23/25

CLIENT: City Water, Light and Power **Site:** CWLP Ash Pond Dewatering

Location: Springfield, IL Project: 25E0006.00

DATES: Start: 6/19/2025 **Finish:** 6/19/2025

WEATHER: 85°F, sunny

CONTRACTOR: Skinner Limited

Rig mfg/model: CME-850 Track Drill Drilling Method: Hollow Stem Auger

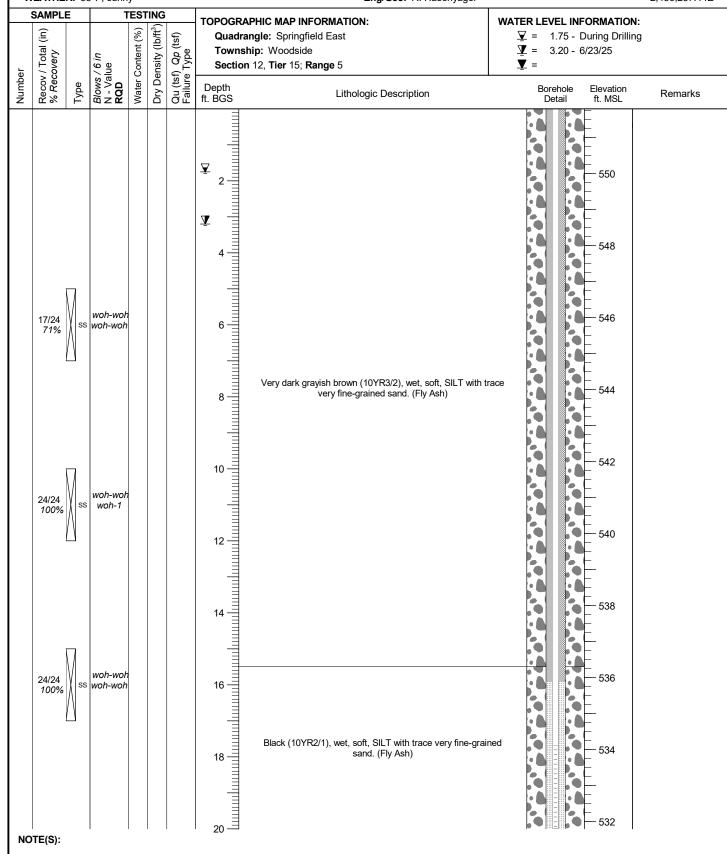
FIELD STAFF: Driller: T. Skinner

Helper: C. Vanburen

Eng/Geo: R. Hasenyager

BOREHOLE ID: DO08

Well ID: DO08


 Surface Elev:
 551.80 ft. MSL

 Completion:
 28.27 ft. BGS

 Station:
 1,129,401.38N

2,456,257.44E

Page 1 of 2

CLIENT: City Water, Light and Power Site: CWLP Ash Pond Dewatering Location: Springfield, IL

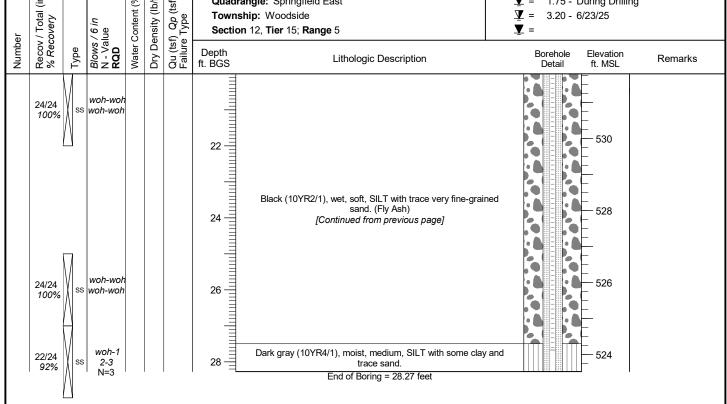
Finish: 6/19/2025

Rig mfg/model: CME-850 Track Drill Drilling Method: Hollow Stem Auger

CONTRACTOR: Skinner Limited

BOREHOLE ID: DO08 Well ID: DO08

Project: 25E0006.00 **DATES: Start:** 6/19/2025


FIELD STAFF: Driller: T. Skinner Helper: C. Vanburen Surface Elev: 551.80 ft. MSL Completion: 28.27 ft. BGS **Station:** 1,129,401.38N

2,456,257.44E

WEATHER: 85°F, sunny

Eng/Geo: R. Hasenyager

SAMPLE TESTING		TOPOGRAPHIC MAP INFORMATION:	WATER LEVEL INFORMATION:		
	(£)		_		
등	t (%)	Quadrangle: Springfield East	\underline{Y} = 1.75 - During Drilling		
Z	in itent itent (III (III (III (III (III (III (III (I	Township: Woodside	▼ = 3.20 - 6/23/25		
. P 9		Section 12, Tier 15; Range 5	▼ =		

CLIENT: City Water, Light and Power **Site:** CWLP Ash Pond Dewatering

Location: Springfield, IL Project: 25E0006.00

DATES: Start: 6/19/2025 **Finish:** 6/20/2025

WEATHER: 85°F, sunny

CONTRACTOR: Skinner Limited
Rig mfg/model: Bucket Auger Rig
Drilling Method: Bucket Auger

FIELD STAFF: Driller: T. Skinner

Helper: C. Vanburen Eng/Geo: R. Hasenyager

BOREHOLE ID: DW01
Well ID: DW01

 Surface Elev:
 553.01 ft. MSL

 Completion:
 30.30 ft. BGS

 Station:
 1,129,174.10N

2,456,191.27E

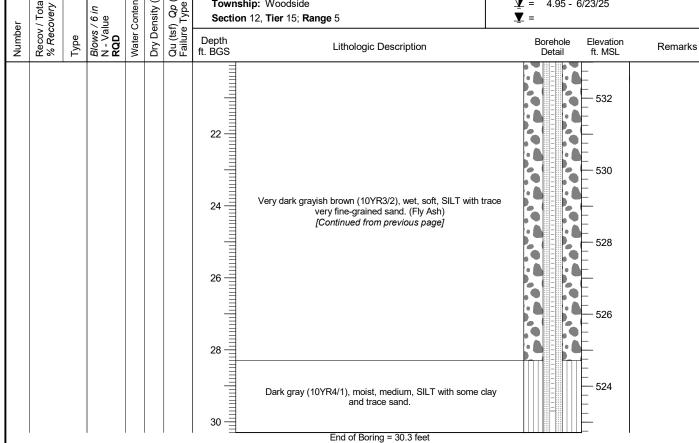
			°F, sunn					Eng/Geo: R. Hasenyager				2,456,191.271
	Recov / Total (in) 88			Water Content (%)	Dry Density (lb/ft³)	Qu (tsf) Qp (tsf) Failure Type	TOPOGRAF Quadrar Townsh Section	TOPOGRAPHIC MAP INFORMATION:WATER LEVEL INFORMATQuadrangle: Springfield East▼ = 2.00 - During DTownship: Woodside▼ = 4.95 - 6/23/25Section 12, Tier 15; Range 5▼ =		During Drilling		
Number	Recov / % Reco	Type	Blows / 6 in N - Value RQD	Water Co	Dry Den	Qu (tsf) Failure ⁻	Depth ft. BGS	Lithologic Description	В	orehole Detail	Elevation ft. MSL	Remarks
	TE(S):							Very dark grayish brown (10YR3/2), wet, soft, SILT with trivery fine-grained sand. (Fly Ash)	ace		552 	

CLIENT: City Water, Light and Power Site: CWLP Ash Pond Dewatering Location: Springfield, IL

Rig mfg/model: Bucket Auger Rig Drilling Method: Bucket Auger

CONTRACTOR: Skinner Limited

BOREHOLE ID: DW01 Well ID: DW01


Project: 25E0006.00 **DATES: Start:** 6/19/2025

FIELD STAFF: Driller: T. Skinner Helper: C. Vanburen Surface Elev: 553.01 ft. MSL Completion: 30.30 ft. BGS **Station:** 1,129,174.10N 2,456,191.27E

Finish: 6/20/2025 WEATHER: 85°F, sunny

Eng/Geo: R. Hasenyager

SAMPLE		TESTING			TOPOGRAPHIC MAP INFORMATION:	WATER LEVEL INFORMATION:		
	Ĺ.		(%)	(ft³)	f)	Quadrangle: Springfield East		2.00 - During Drilling
	otal (ir	_	Ιt	g)	ts) (ts)	Township: Woodside	<u> </u>	4.95 - 6/23/25
١	Tot	6 <i>ji</i>	onte	ısity	& Ř	Section 12, Tier 15; Range 5	<u>_</u> =	

APPENDIX A6: FLOW PATH INVESTIGATION WELL LOGS

3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: Springfield City Water, Light, and Power Coord. System: Site Grid Boring No: AP-6SA Location: Springfield, IL Northing: 39.7704029 Well No: AP-6S County: Sangamon Easting: -89.59912433 Surf Elev.: 534 Site No.: 1678250020 **Depth Information:** Weather: Sunny, 80F AEI No.: 240338|0011 Total: 14.0 Auger: 14.0 **Drilling Contractor:** Personnel: Core: 0.0 Contractor Name: Skinner LTD Geologist: N. Beck Dates: City: Hindsburo, IL Driller: T. Skinner Start: 5/13/2025 Equipment: 4.25" HSA with 5' CB Helper(s): C. Vonbrehens, T. Buckler Finish: 5/13/2025 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Run No. Description/Comments Type Elev. 534.0 **Ground Surface** 4.1 1 530.0 Grey (5/1 10YR) silty CLAY, grading to olive (6/2 5GY) with yellow (7/8 10YR) mottles 5 2 4.2 525.0 Grey (5/1 10YR) clayey SAND, with olive (6/2 5GY) and some yellow (7/8 10 111111 2.5Y) mottles 111111 3.8 3 Dark grey (4/1 10YR) SAND, with clay, with black (2/1 10YR) mottles, organics 520.0 End of Boring = 14 Feet 15-515.0 20 Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: Springfield City Water, Light, and Power Coord. System: Latitude & Longitude Boring No: AP-8SA Location: Springfield, IL Northing: 39.76959656 Well No: AP-8S County: Sangamon Easting: -89.60064954 Surf Elev.: 535.9 Site No.: 1678250020 **Depth Information:** Weather: Sunny, 80F AEI No.: 240338|0011 Total: 15.0 Auger: 15.0 **Drilling Contractor:** Personnel: Core: 0.0 Contractor Name: Skinner LTD Geologist: B. Hunsberger Dates: City: Hindsburo, IL Driller: T. Skinner Start: 5/14/2025 Equipment: 4.25" HSA with 5' CB Helper(s): C. Vonbrehens, T. Buckler Finish: 5/14/2025 - Continuous Barrel (CB) - Split Spoon (SS) - Blind Drill - Shelby Tube - Core Sample (MSL) Blow Count du/su (tst) Lithology Depth (ft) 9 **Description/Comments** Type Run I Elev. 535.9 **Ground Surface** Dark grey (4/1 10YR) silty CLAY, with some fine sand and organics 535.0 Dark grey (4/1 10YR) silty CLAY, trace fine sand, moist 5' 1 Brown (4/3 10YR) silty CLAY, little fine sand, moist 5 530.0-Grey (5/1 10YR) clayey SILT to silty CLAY, little fine sand, very moist with brown (5/3 10YR) laminatations, increased stiffness 2 5' Grey (5/1 10YR) clayey SILT to silty CLAY, little fine sand, very moist Grey (5/1 10YR) sandy CLAY, soft 10 Grey (5/1 10YR) clayey SILT to silty CLAY, little fine sand, very moist 525.0 Grey (5/1 01YR) silty CLAY, little fine sand, moist, some brown bands, trace rootlets 5' 3 Grey (5/1 10YR) soft CLAY, with silt Grey (5/1 01YR) silty CLAY, little fine sand, moist, some brown bands, trace 15 Grey (5/1 10YR) soft CLAY, some silt 520.0 Grey (5/1 01YR) silty CLAY, little fine sand, moist, some brown bands, trace End of Boring = 15 Feet 20 Notes: Page 1 of 1

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: Springfield City Water, Light, and Power Coord. System: Latitude & Longitude Boring No: AP-15D Location: Springfield, IL Northing: 39.762762 Well No: AP-15D County: Sangamon Easting: -89.59991904 Surf Elev.: 536.3 Site No.: 1678250020 **Depth Information:** Weather: Sunny, 67F AEI No.: 240338|0011 Total: 30.5 Auger: 30.5 **Drilling Contractor:** Personnel: Core: 0.0 Contractor Name: Skinner LTD Geologist: N. Beck Dates: City: Hindsburo, IL Driller: T. Skinner Start: 5/12/2025 Equipment: 4.25" HSA, 5' CB, 3' & 2' split spoon Helper(s): C. Vonbrehens, T. Buckler Finish: 5/12/2025 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Blind Drill - Core Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) 9 Description/Comments Type Run Elev. 536.3 **Ground Surface** Brown (5/3 10YR) clayey SILT, with organics, spongy texture, very moist 535.0 1 3.92 Grey (5/1 10YR) silty CLAY, moist 5. 530.0 Yellow (7/8 2.5Y) silty CLAY, with black (2/1 10YR) and olive (6/2 10Y) 2 4 mottles, wet 10 Yellow (7/8 10YR) SAND, with trace clay, olive (6/2 10Y) and dark grey (4/1 10YR) mottles, wet 525.0 3.85 3 Yellow (7/8 2.5Y) clayey SAND, very fine to fine grain size 111111 15 520.0 Yellow (7/8 2.5Y) SAND, coarse grain size, with some medium grains, 4 4 1111111 saturated

Notes: Page 1 of 2

1111111

1

20

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: Springfield City Water, Light, and Power Coord. System: Latitude & Longitude Boring No: AP-15S Location: Springfield, IL Northing: 39.76277306 Well No: AP-15S County: Sangamon Easting: -89.59992106 Surf Elev.: 533.6 Site No.: 1678250020 **Depth Information:** Weather: Sunny, 67F AEI No.: 240338|0011 Total: 24.5 Auger: 24.5 **Drilling Contractor:** Personnel: Core: 0.0 Contractor Name: Skinner LTD Geologist: N. Beck Dates: City: Hindsburo, IL Driller: T. Skinner Start: 5/12/2025 Equipment: 4.25" HSA, 5' CB, 3' & 2' Split spoon Helper(s): C. Vonbrehens, T. Buckler Finish: 5/12/2025 - Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) 9 Description/Comments Type Run I Elev. 533.6 **Ground Surface** Dark (3/1 10YR) silty CLAY, with coal fragments and organics, moist 3.9 1 530.0 Dark grey (3/1 10YR) CLAY, moist 5 Yellow (7/8 2.5Y) sandy CLAY, with olive (6/2 10Y) and grey (5/1 10YR) mottles 2 4.8 525.0 Yellow (7/8 2.5 Y) clayey SAND, very moist, with olive (6/2 5GY) and grey (5/1 10YR) mottles 10 Yellow (7/8 2.5Y) CLAY, fine to medium grain size, wet Yellow (7/8 2.5Y) clayey SAND, very moist, with olive (6/2 10Y) 4.9 3 520.0 111111 wg 15-...... wg 4 2.9 4 5 Yellowish brown (5/6 10YR) SAND, fine to medium grain size, trace clay, wet 8 wg 5 1.5 515.0 3 шшш 5 111111 5 20 Notes: Page 1 of 2

3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: Springfield City Water, Light, and Power Coord. System: Latitude & Longitude Boring No: AP-16 Location: Springfield, IL Northing: 39.77159212 Well No: AP-16 County: Sangamon Easting: -89.60008687 Surf Elev.: 533.6 Site No.: 1678250020 **Depth Information:** Weather: Sunny, 70F AEI No.: 240338|0011 Total: 23.0 Auger: 23.0 **Drilling Contractor:** Personnel: Core: 0.0 Contractor Name: Skinner LTD Geologist: N. Beck Dates: City: Hindsburo, IL Driller: T. Skinner Start: 5/20/2025 Equipment: 4.25" HSA with 5' CB Helper(s): C. Vonbrehens, T. Buckler Finish: 5/20/2025 Continuous Barrel (CB) - Split Spoon (SS) - Blind Drill - Shelby Tube - Core Sample (MSL) Blow Count du/su (tst) Lithology Depth (ft) 9 Description/Comments Type Run I Elev. 533.6 **Ground Surface** Light brown (6/3 7.5YR) SILT, organics Grey (4/1 10YR) silty CLAY, moist, trace yellow (7/8 2.5Y) mottles 4.8 1 530.0 Olive (6/4 10Y) CLAY, with some brownish yellow (6/8 10YR) mottles 5 color grades to (8/1 10YR) with olive (6/4 10Y) and brownish yellow (6/8 10YR) mottles, moist 2 4.4 color grades to white (8/1 10YR) clayey SILT, moist, yellowish brown (4/6 525.0 10YR) mottles white (8/1 N) with brown (7/6 10YR) mottles, wet 10 White (8/1 10YR) silty CLAY, moist, with brown (6/8 10YR) mottles 5 3 Light olive (6/3 5Y) clayey SAND, wet 520.0 Light bluish grey (7/1 10B) silty CLAY with yellow (7/6 10YR) mottles, moist 15 Grey (5/1 10YR) SAND, well sorted, medium to coarse grain size, coarsening шш downward, trace gravel, with clay 4 1.8 515.0 20 111111 Page 1 of 2 Notes:

3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: Springfield City Water, Light, and Power Coord. System: Latitude & Longitude Boring No: P03D Location: Springfield, IL Northing: 39.77042692 Well No: P03D County: Sangamon Easting: -89.59572184 Surf Elev.: 530 Site No.: 1678250020 **Depth Information:** Weather: Sunny, 73F AEI No.: 240338|0011 Total: 35.0 Auger: 35.0 **Drilling Contractor:** Personnel: Core: 0.0 Contractor Name: Skinner LTD Geologist: N. Beck Dates: City: Hindsburo, IL Driller: T. Skinner Start: 5/14/2025 Equipment: 4.25" HSA with 5' CB Helper(s): C. Vonbrehens, T. Buckler Finish: 5/14/2025 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Core - Blind Drill Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Run No. Description/Comments Type Elev. 530.0 **Ground Surface** Black (2/1 10YR) SILT, with organics 4.8 1 Light grey (7/1 10YR) clayey SILT, with shale and coal fragments 5 525.0 Grey (4/1 10YR) clayey SILT with shale and coal fragments 2 4.7 Olive (6/2 5GY) clayey SILT trace coal fragments 520.0 10 Dark grey (3/1 10YR) silty SAND, with trace organics, wet, medium to coarse grain size 4.3 3 515.0 15 Light grey (7/1 10YR) silty CLAY, with (6/8 10YR) brown mottles 4 5 Olive (6/2 5GY) silty CLAY, with thin interbedded very fine grained sand, moist 20 510.0 Notes: Page 1 of 2

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: Springfield City Water, Light, and Power Coord. System: Site Grid Boring No: P03S Location: Springfield, IL Northing: 39.77042711 Well No: P03S County: Sangamon Easting: -89.59573599 Surf Elev.: 529.9 Site No.: 1678250020 **Depth Information:** Weather: Sunny, 67F AEI No.: 240338|0011 Total: 14.0 Auger: 14.0 **Drilling Contractor:** Personnel: Core: 0.0 Contractor Name: Skinner LTD Geologist: N. Beck Dates: City: Hindsburo, IL Driller: T. Skinner Start: 5/14/2025 Equipment: 4.25" HSA with 5' CB Helper(s): C. Vonbrehens, T. Buckler Finish: 5/14/2025 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Blind Drill - Core Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) 9 Description/Comments Run N Type Elev. 529.9 **Ground Surface** Dark brown (3/2 10YR) SILT, with organics, trace coal and shale 4.75 1 Light grey (7/1 10YR) clayey SILT, with brown mottles, trace gravel 525.0 5 Dark grey (3/1 10YR) clayey SILT, with coal and shale fragments 2 4.6 Olive (5/3 5Y) silty CLAY, with grey (5/1 10YR) mottles, trace coal 520.0 Dark grey (3/1 10YR) silty SAND, wet, trace organics 10 Dark grey (3/1 10YR) SAND, medium to coarse grain size, with silt, trace 3.8 3 11111111 Olive (6/2 5GY) silty CLAY, moist, trace grey mottles End of Boring = 14 Feet 515.0 15-510.0 20-Page 1 of 1 Notes:

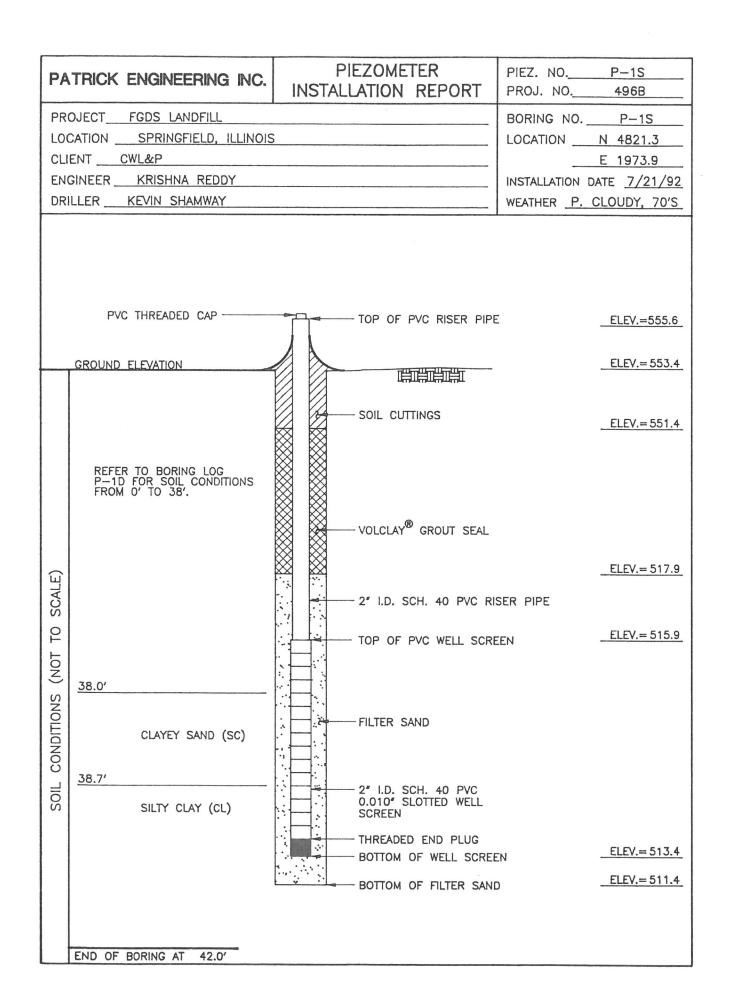
3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: Springfield City Water, Light, and Power Coord. System: Site Grid Boring No: P104S Location: Springfield, IL Northing: 39.77040608 Well No: P104S County: Sangamon Easting: -89.59696106 Surf Elev.: 529.7 Site No.: 1678250020 **Depth Information:** Weather: Sunny, 80F AEI No.: 240338|0011 Total: 36.5 Auger: 36.5 **Drilling Contractor:** Personnel: Core: 0.0 Contractor Name: Skinner LTD Geologist: N. Beck Dates: City: Hindsburo, IL Driller: T. Skinner Start: 5/15/2025 Equipment: 4.25" HSA with 5' CB and 2' Split Spoon Helper(s): C. Vonbrehens, T. Buckler Finish: 5/15/2025 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Blind Drill - Core Sample **Blow Count** (MSL) dn/sn (tst) Lithology Depth (ft) Run No. Description/Comments Type Elev. 529.7 **Ground Surface** Brown (4/6 10YR) clayey SILT, with coal fragments, black and yellow mottles 4.4' 1 grades to black Grey (5/1 10YR) clayey SILT, with coal fragments, black and yellow mottles 525.0 5 Dark grey (3/1 10YR) SILT 2 4.8' Grey (5/1 10YR) silty CLAY, trace sand 520.0 Dark grey (4/1 10YR) CLAY, moist, trace coal fragments 10 5' 3 515.0 15 Dark grey (4/1 10YR) silty CLAY, moist, trace organics and sand 4 4.9' 510.0-20 Notes: Page 1 of 2

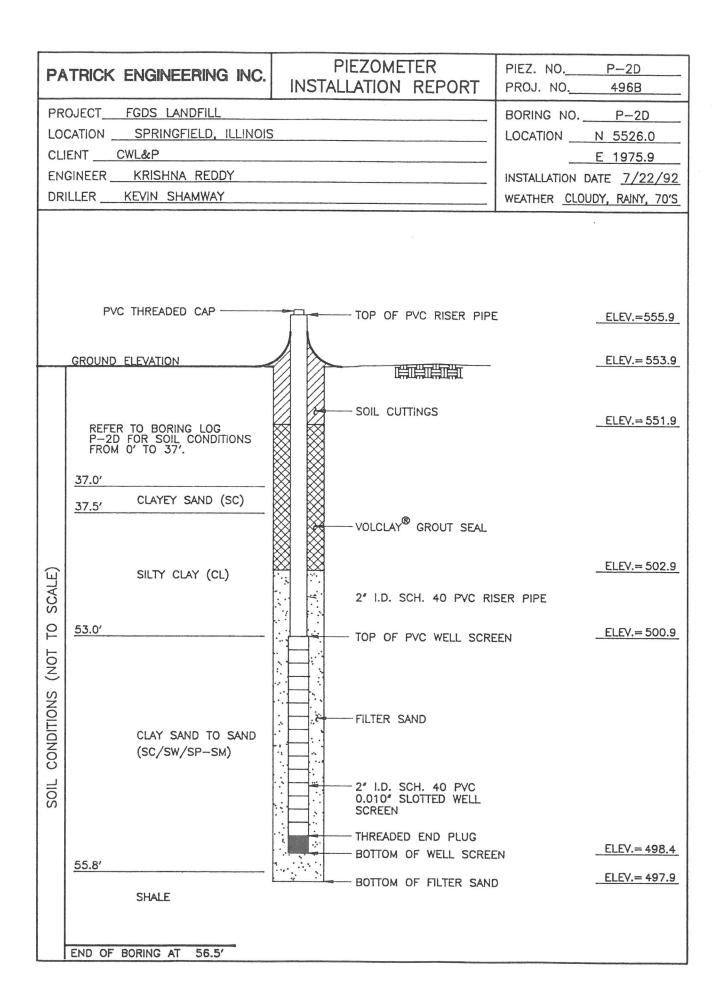
3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: Springfield City Water, Light, and Power Coord. System: Latitude & Longitude Boring No: R103S Location: Springfield, IL Northing: 39.77031764 Well No: R103S County: Sangamon Easting: -89.59489383 Surf Elev.: 535.1 Site No.: 1678250020 **Depth Information:** Weather: Sunny, 78F AEI No.: 240338|0011 Total: 30.0 Auger: 30.0 **Drilling Contractor:** Personnel: Core: 0.0 Contractor Name: Skinner LTD Geologist: N. Beck Dates: City: Hindsburo, IL Driller: T. Skinner Start: 5/19/2025 Equipment: 4.25" HSA with 5' CB Helper(s): C. Vonbrehens, T. Buckler Finish: 5/19/2025 Continuous Barrel (CB) - Split Spoon (SS) - Blind Drill - Shelby Tube - Core Sample (MSL) **Blow Count** dn/sn (tst) Lithology Depth (ft) 9 Description/Comments Type Run Elev. 535.1 **Ground Surface** White (8/1 10YR) SILT, with many brown (6/4 10YR) mottles, organics, with trace sand 4.5 1 Olive (6/2 5GY) silty CLAY, with brown (6/4 10YR) mottles, and trace black 5 530.0 (2/1 10YR) mottles 2 Full Light grey (7/1 10YR) grading to brown (5/4 10YR) CLAY, with silt, with (6/8 10YR) mottles, soft 10 525.0 Full 3 Light grey (7/1 10YR) clayey SILT, moist 15 soft, wet 520.0 Dark grey (4/1 10YR) sandy CLAY, wet, soft, trace, with brown (5/6 10YR) 4 4.4 111111 Dark grey (4/1 10YR) SAND, wet, brown (5/7 10YR) mottles 20 515.0-Page 1 of 2 Notes:

Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: Springfield City Water, Light, and Power Coord. System: Latitude & Longitude Boring No: RW-3S Location: Springfield, IL Northing: 39.77018579 Well No: RW-3S County: Sangamon Easting: -89.59899292 Surf Elev.: 535.9 Site No.: 1678250020 **Depth Information:** Weather: Sunny, 80F AEI No.: 240338|0011 Total: 15.0 Auger: 15.0 **Drilling Contractor:** Personnel: Core: 0.0 Contractor Name: Skinner LTD Geologist: N. Beck Dates: City: Hindsburo, IL Driller: T. Skinner Start: 5/15/2025 Equipment: 4.25" HSA with 5' CB Helper(s): C. Vonbrehens, T. Buckler Finish: 5/15/2025 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Blind Drill - Core Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) 9 Description/Comments Run N Type Elev. 535.9 **Ground Surface** 535.0 Grey (5/1 10YR) clayey SILT, with orgnics and gravel 4.75 1 Greyish brown (5/2 10YR) silty CLAY, with reddish yellow (6/8 7.5YR) mottles and organics 5 530.0 Greenish grey (8/1 5GY) SILT, with clay, brown (5/8 10YR) mottles, trace 2 4.0 sand near bottom 10 Pale brown (6/3 10YR) SAND, wet 525.0 Greenish grey (8/1 5GY) SILT, with clay, brown (5/8 10YR) mottles, trace 111111 sand near bottom 111111 3.75 3 Pale brown (6/3 10YR)to grey (6/1 10YR) silty SAND, wet, with organics Grey (6/1 10YR) clayey SAND, wet, with organics 15 End of Boring = 15 Feet 520.0 20 Notes: Page 1 of 1

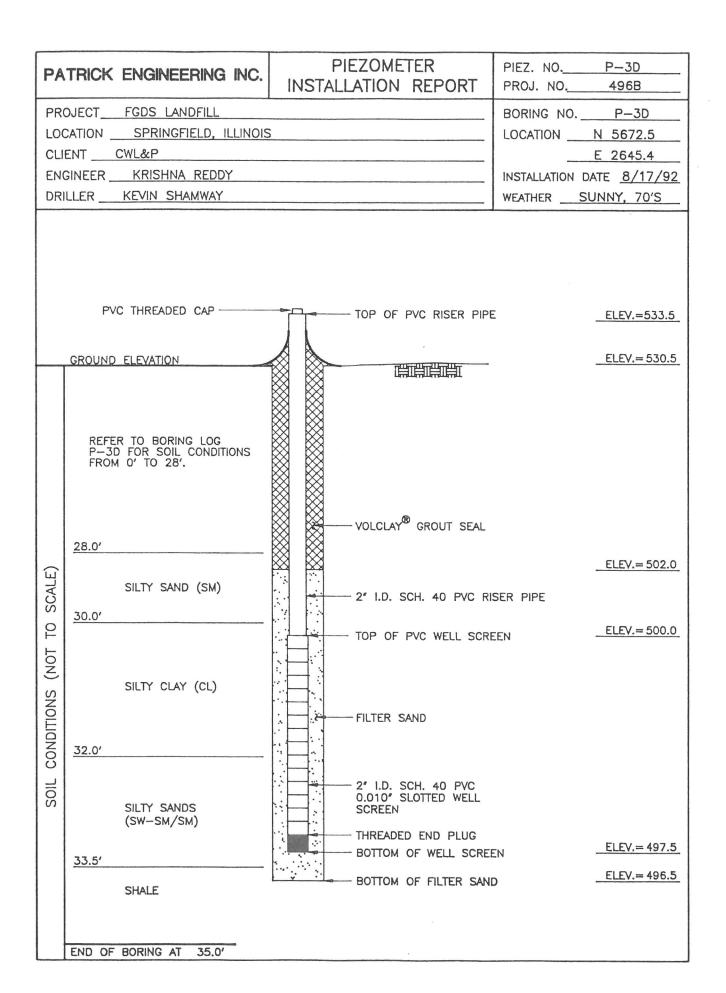
Andrews Engineering, Inc. 3300 Ginger Creek Drive FIELD BORING LOG Springfield, IL 62711 **Site Information:** Location: **Boring Information:** Name: Springfield City Water, Light, and Power Coord. System: Latitude & Longitude Boring No: T4S Location: Springfield, IL Northing: 39.77037607 Well No: T4S County: Sangamon Easting: -89.60084024 Surf Elev.: 546.8 Site No.: 1678250020 **Depth Information:** Weather: Sunny, 70F AEI No.: 240338|0011 Total: 15.0 Auger: 15.0 **Drilling Contractor:** Personnel: Core: 0.0 Contractor Name: Skinner LTD Geologist: N. Beck Dates: City: Hindsburo, IL Driller: T. Skinner Start: 5/20/2025 Equipment: 4.25" HSA with 5' CB Helper(s): C. Vonbrehens, T. Buckler Finish: 5/20/2025 Continuous Barrel (CB) - Split Spoon (SS) - Shelby Tube - Blind Drill - Core Sample (MSL) Blow Count dn/sn (tst) Lithology Depth (ft) Run No. Description/Comments Type Elev. 546.8 **Ground Surface** Dark brown (3/3 10YR) clayey SILT, moist 545.0-4.75 1 Yellowish brown (5/8 10YR) silty CLAY, moist, with organics 5. 2 1.9 Pale brown (8/4 10YR) SILT, with clay, organics, trace sand, dry 540.0 3 3 hard 10 1.5 4 Pale brown (8/4 10YR) sandy SILT, with black mottles 535.0 5 0.5 Pale brown (7/3 10YR), sandy CLAY, with black mottles, organics, moist Light grey (7/2 10YR) clayey SAND, moist, with black mottles, organics, and 6 2.3 trace gravel 15 End of Boring = 15 Feet 530.0 20 Notes: Page 1 of 1

APPENDIX B: WELL CONSTRUCTION REPORTS

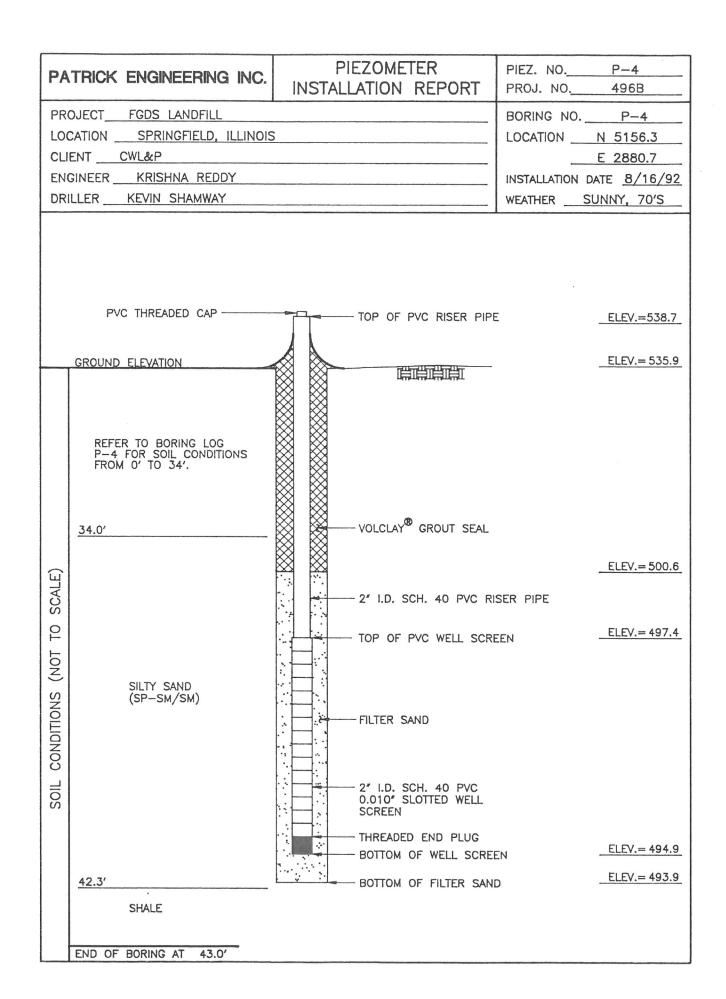



APPENDIX B1:

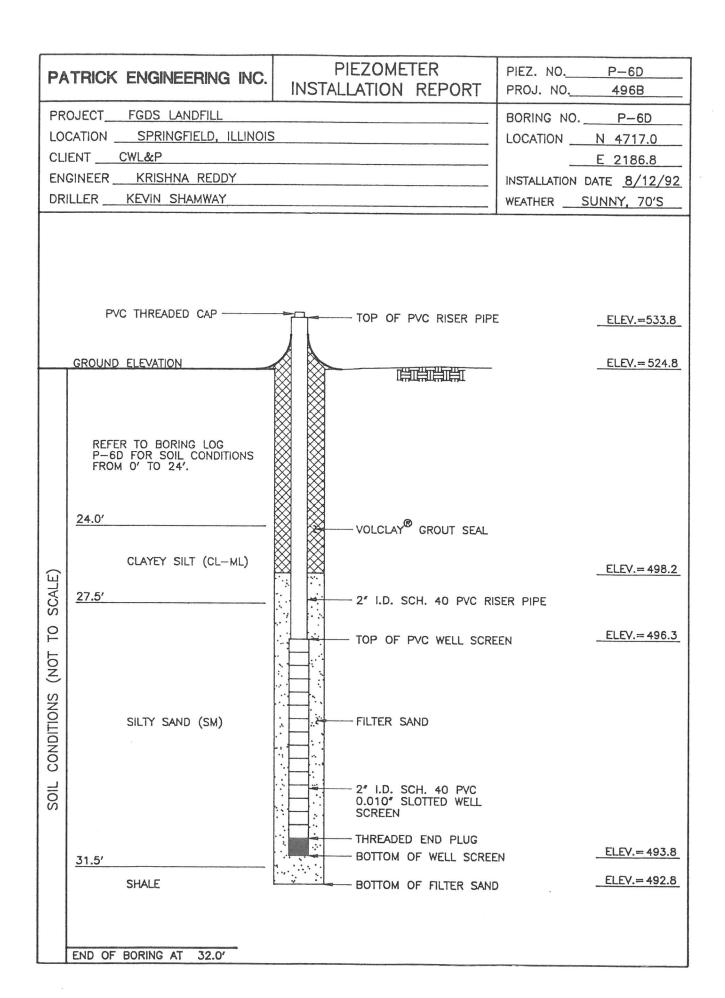
FGDS UNIT 2 LANDFILL WELL/PIEZOMETER CONSTRUCTION REPORTS



PA	TRICK E	ENGINEERING INC.	PIEZOMETER INSTALLATION REPORT	PIEZ. NO. P-1D PROJ. NO. 496B	
CLII	CATION	/L&P	5	BORING NO. P-1D LOCATION N 4806.1 E 1973.1	
		KRISHNA REDDY EVIN SHAMWAY		INSTALLATION DATE 7/21/92 WEATHERCLOUDY, 70'S	
	PVC	THREADED CAP	TOP OF PVC RISER PIPE	ELEV.=555.6	
	GROUND E	LEVATION		_ELEV.= 553.4	
	REFER P-1D F FROM C	TO BORING LOG FOR SOIL CONDITIONS ' TO 38.5'.	SOIL CUTTINGS	_ ELEV.= 551.4	
	38.5′ 39.5′	CLAYEY SAND (SC)	VOLCLAY GROUT SEAL		
SCALE)		SILTY CLAY (CL)	2" I.D. SCH. 40 PVC RIS	ELEV.= 506.4	
CONDITIONS (NOT TO	49.0'	CLAYEY SAND (SC)	TOP OF PVC WELL SCRE	ELEV.= 504.4	
SOIL CO	50.8′	SILTY SAND (SM)	2" I.D. SCH. 40 PVC 0.010" SLOTTED WELL SCREEN THREADED END PLUG		
	51.5' 52.0'	SAND (SP) SHALE (BEDROCK)	BOTTOM OF WELL SCREE	ELD/ - 501 4	
	END OF BO	ORING AT 52.5'			



PA	TRICK ENGINEERING INC.	PIEZOMETER INSTALLATION REPORT	PIEZ. NOP-2S PROJ. NO496B
LO CL	OJECT <u>FGDS LANDFILL</u> CATION <u>SPRINGFIELD, ILLINOIS</u> ENT <u>CWL&P</u>		BORING NO. P-2S LOCATION N 5237.1 E 1976.3
	GINEER KRISHNA REDDY ILLER KEVIN SHAMWAY	· · · · · · · · · · · · · · · · · · ·	INSTALLATION DATE 7/22/92 WEATHER CLOUDY, RAINY, 70'S
	PVC THREADED CAPGROUND ELEVATION	TOP OF PVC RISER FIFE	ELEV.=555.8 ELEV.=553.9
		SOIL CUTTINGS	5107 5540
	REFER TO BORING LOG P-2S FOR SOIL CONDITIONS FROM 0' TO 23.2'.		_ELEV.= 551.9
SCALE)	23.2'	BENTONITE SEAL 2" I.D. SCH. 40 PVC RIS	ELEV.= 528.9 SER PIPE
CONDITIONS (NOT TO	SILTY CLAY (CL)	TOP OF PVC WELL SCRE	EN <u>ELEV.= 526.9</u>
SOIL C		2" I.D. SCH. 40 PVC 0.010" SLOTTED WELL SCREEN THREADED END PLUG BOTTOM OF WELL SCREE	FI D/ _ 507.0


PATRICK ENGINEERING INC.	PIEZOMETER INSTALLATION REPORT	PIEZ. NO. P-3S PROJ. NO. 496B
PROJECT FGDS LANDFILL LOCATION SPRINGFIELD, ILLINOIS CLIENT CWL&P ENGINEER KRISHNA REDDY DRILLER KEVIN SHAMWAY		BORING NO. P-3S LOCATION N 5672.5 E 2651.4 INSTALLATION DATE 8/17/92 WEATHER SUNNY, 70'S
PVC THREADED CAP ———————————————————————————————————	TOP OF PVC RISER PIPE	ELEV.=533.5 ELEV.=530.5
SILTY CLAY (CL)	VOLCLAY® GROUT SEAL	
ORGANIC SILTY CLAY (OL) S.0'	2' I.D. SCH. 40 PVC RIS	ELEV.=524.0 SER PIPE
SOIL CONDITIONS (NOT TO SILL SAND (WS))	TOP OF PVC WELL SCRE FILTER SAND 2" I.D. SCH. 40 PVC 0.010" SLOTTED WELL SCREEN THREADED END PLUG	
12.0' SILTY CLAY (CL) END OF BORING AT 12.0'	BOTTOM OF FILTER SAND	FI D/ E19 E

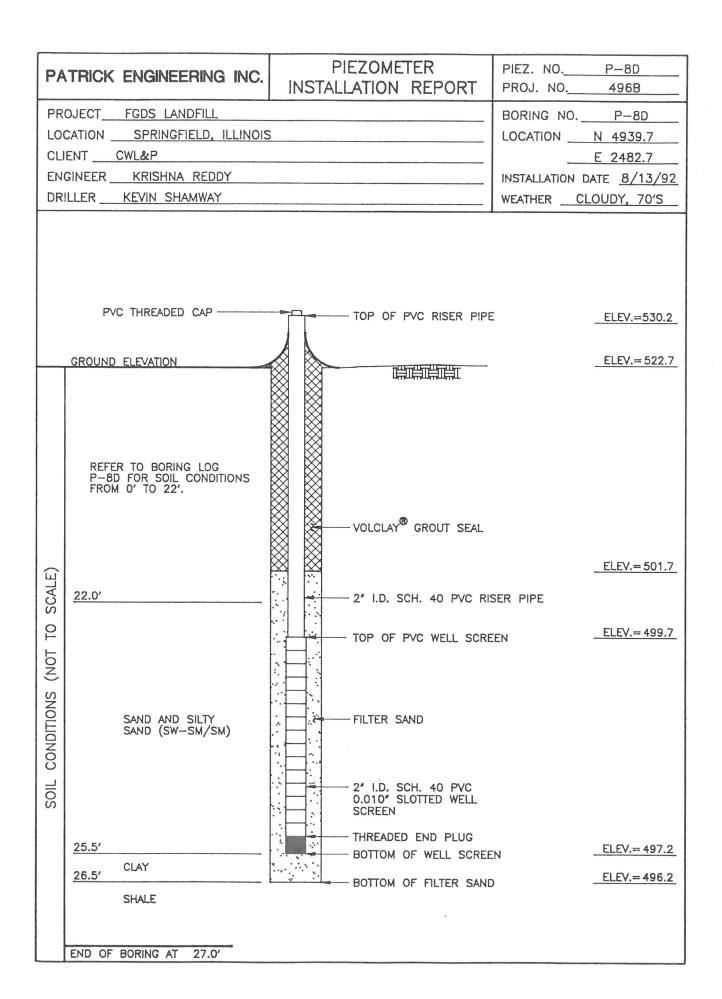
20 IFME / 100 / 1000 000 10 /10 /00

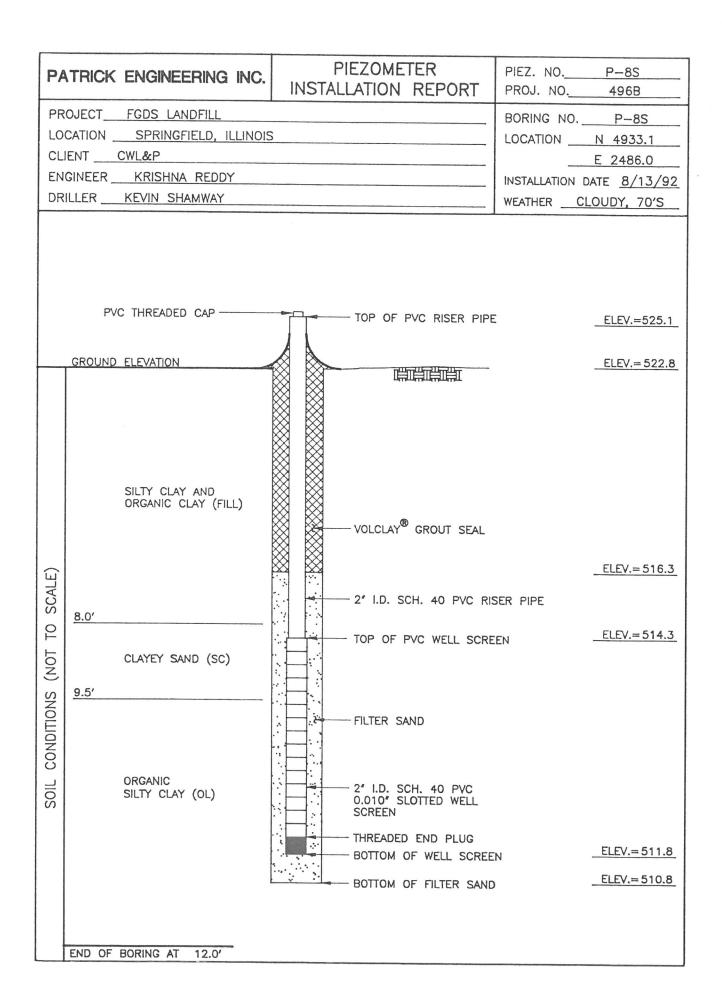
PATRICK ENGINEERING INC.	PIEZOMETER INSTALLATION REPORT	PIEZ. NO. P-5D PROJ. NO. 496B
PROJECTFGDS_LANDFILL LOCATIONSPRINGFIELD, ILLINOI CLIENTCWL&P ENGINEERKRISHNA_REDDY DRILLERKEVIN_SHAMWAY		BORING NO. P-5D LOCATION N 4516.7 E 2885.0 INSTALLATION DATE 8/16/92 WEATHER SUNNY, 70'S
PVC THREADED CAPGROUND ELEVATION	TOP OF PVC RISER PIPE	E <u>ELEV.=537.4</u> <u>ELEV.=534.9</u>
REFER TO BORING LOG P-5D FOR SOIL CONDITIONS FROM 0' TO 22'.	VOLCLAY® GROUT SEAL	
CONDITIONS (NOT TO SCALE) (MSS ATTIES (MSS	2" I.D. SCH. 40 PVC RI TOP OF PVC WELL SCRI	ELEV - 510 4
27.3' SHALE	2º I.D. SCH. 40 PVC 0.010' SLOTTED WELL SCREEN THREADED END PLUG BOTTOM OF WELL SCREEN BOTTOM OF FILTER SAN	FI D/ 504 0
END OF BORING AT 32.0'		

PATRICK ENGINEERING INC.	PIEZOMETER INSTALLATION REPORT	PIEZ. NO. P-5S PROJ. NO. 496B
PROJECTFGDS_LANDFILL		BORING NO. P-5S
LOCATIONSPRINGFIELD, ILLINOIS	LOCATION N 4510.7	
CLIENTCWL&P		E 2887.0
		INSTALLATION DATE 8/16/92
DRILLER KEVIN SHAMWAY		WEATHER SUNNY, 70'S
PVC THREADED CAP GROUND ELEVATION	TOP OF PVC RISER PIPE	ELEV.=537.4 ELEV.=534.9
SILTY CLAY, FILL (CL)		
2.5′		
SOIL CONDITIONS (NOT TO SCALE) OLUMBITIONS (NOT TO SCALE) OLUMBITIONS (NOT TO SCALE)	VOLCLAY GROUT SEAL 2' I.D. SCH. 40 PVC RE TOP OF PVC WELL SCRE 7' I.D. SCH. 40 PVC 0.010' SLOTTED WELL SCREEN THREADED END PLUG BOTTOM OF FILTER SAND BOTTOM OF FILTER SAND	ELEV.= 526.4 ELEV.= 523.9
END OF BORING AT 12.0'		

			T
PA	TRICK ENGINEERING INC.	PIEZOMETER INSTALLATION REPORT	PIEZ. NO. P-6S PROJ. NO. 496B
PR	OJECTFGDS_LANDFILL		BORING NO P-6S
LO	CATION SPRINGFIELD, ILLINOIS	LOCATION N 4725.7	
CL	ENTCWL&P		E 2191.4
1	GINEER KRISHNA REDDY		INSTALLATION DATE 8/12/92
DR	ILLER KEVIN SHAMWAY		WEATHER SUNNY, 70'S
	PVC THREADED CAP GROUND ELEVATION SILTY CLAY (CL)	TOP OF PVC RISER PIPE	ELEV.=527.4 ELEV.=524.9
SCALE)	6.5′	VOLCLAY® GROUT SEAL	_ELEV.=519.6 SER PIPE
7	CLAYEY SAND (SC)	TOP OF PVC WELL SCRE	EENELEV.= 517.9
SOIL CONDITIONS (NOT	SILTY CLAY TO CLAYEY SILT (CL-ML/CL) 9.5' SILTY CLAY (CL)	FILTER SAND 2" I.D. SCH. 40 PVC 0.010" SLOTTED WELL SCREEN THREADED END PLUG BOTTOM OF WELL SCREE	FI D/ 514 0
	END OF BORING AT 10.0'		

PATRICK ENGINEERING INC.	PIEZOMETER INSTALLATION REPORT	PIEZ. NO. P-6R PROJ. NO. 496B
PROJECTFGDS_LANDFILL		BORING NO. P-6R
LOCATION SPRINGFIELD, ILLINOIS	5	LOCATION N 4719.5
CLIENTCWL&P		E 2175.7
ENGINEER KRISHNA REDDY		INSTALLATION DATE 8/6/92
DRILLER KEVIN SHAMWAY		WEATHER SUNNY, 70'S
GROUND ELEVATION REFER TO BORING LOG P-6D FOR SOIL CONDITIONS FROM 0' TO 32.5'. 32.5' SHALE	TOP OF PVC RISER PIPE VOLCLAY® GROUT SEAL 2" I.D. SCH. 40 PVC RISER TOP OF PVC WELL SCREEN FILTER SAND 2" I.D. SCH. 40 PVC 0.010" SLOTTED WELL SCREEN THREADED END PLUG BOTTOM OF WELL SCREE BOTTOM OF FILTER SAND	ELEV.= 524.8 ELEV.= 487.5 ELEV.= 485.3 ELEV.= 482.8
END OF BORING AT 42.5'		

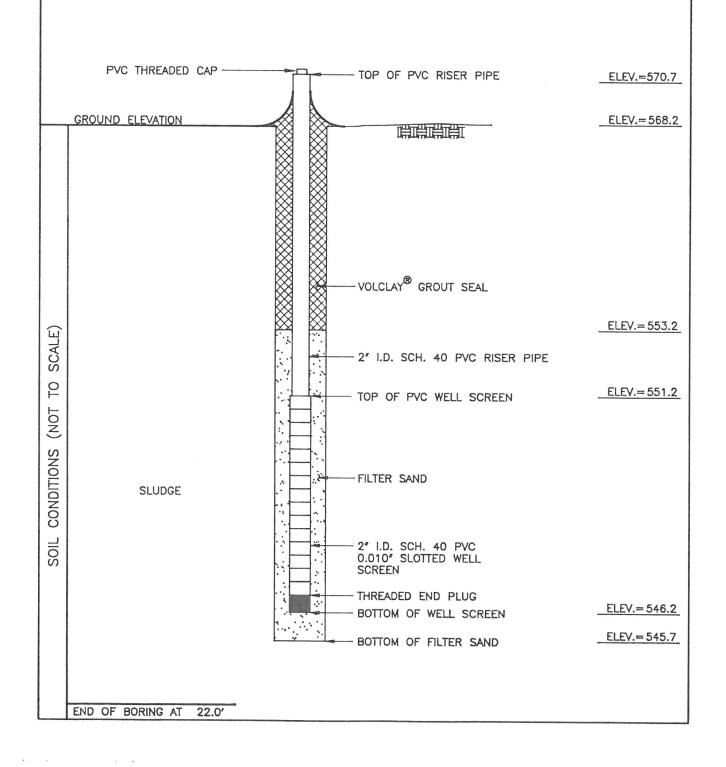

PATRICK	ENGINEERING INC.	PIEZOMETER INSTALLATION REPORT	PIEZ. NOP-7D PROJ. NO496B
LOCATION CLIENTENGINEER	CWL&P KRISHNA REDDY	S	BORING NO. P-7D LOCATION N 5345.8 E 2429.5 INSTALLATION DATE 7/30/92 WEATHER RAIN, WARM, 80'S
Þ.	VC THREADED CAP	TOP OF PVC RISER PIPE	E <u>ELEV.=529.0</u>
GROUN	D ELEVATION		ELEV.= 526.5
P-7	ER TO BORING LOG D FOR SOIL CONDITIONS M O' TO 24'.	SOIL CUTTINGS	_ELEV.= 524.2
24.0′	CLAYEY SILT (CL-ML)	VOLCLAY® GROUT SEAL	ELEV.= 501.0
(NOT TO SCALE)		2" I.D. SCH. 40 PVC R	FI 07 - 400 7
SOIL CONDITIONS	SILTY SAND (SM)	FILTER SAND 2" I.D. SCH. 40 PVC 0.010" SLOTTED WELL SCREEN	
31.0′ 32.5′	SILTY CLAY (CL) SHALE (BEDROCK)	THREADED END PLUG BOTTOM OF WELL SCRE BOTTOM OF FILTER SAN	FI D/ 404 0
END OF	F BORING AT 32.2'		


!--- !--- --- -- !- !-- !--

PA	TRICK ENGINEERING INC.	PIEZOMETER INSTALLATION REPORT	PIEZ. NOP-7S PROJ. NO 496B
LO(CLI EN(OJECTFGDS_LANDFILL CATIONSPRINGFIELD, ILLINOIS ENTCWL&P GINEERKRISHNA_REDDY ILLERKEVIN_SHAMWAY		BORING NO. P-7S LOCATION N 5337.1 E 2426.3 INSTALLATION DATE 7/30/92 WEATHER RAIN, WARM, 80'S
	PVC THREADED CAP ———————————————————————————————————	TOP OF PVC RISER PIPI	E <u>ELEV.=528.8</u> <u>ELEV.=526.3</u>
) SCALE)	SILTY CLAY (CL)	VOLCLAY® GROUT SEAL	
ONS (NOT TO	CLAYEY SAND (SC)	TOP OF PVC WELL SCR	EENELEV.= 515.6
SOIL CONDITIONS	SILTY CLAY (CL)	2" I.D. SCH. 40 PVC 0.010" SLOTTED WELL SCREEN THREADED END PLUG BOTTOM OF WELL SCRE	FI FV - 512 1
	END OF BORING AT 14.0'		

PATRICK ENGINEERING INC.	PIEZOMETER INSTALLATION REPORT	PIEZ. NO. P-7M PROJ. NO. 496B
PROJECTFGDS_LANDFILL LOCATIONSPRINGFIELD, ILLINOIS CLIENTCWL&P ENGINEERKRISHNA_REDDY DRILLERKEVIN_SHAMWAY		BORING NO. P-7M LOCATION N 5337.0 E 2432.8 INSTALLATION DATE 7/30/92 WEATHER RAIN, WARM, 80'S
PVC THREADED CAP	TOP OF PVC RISER PIPE	-
GROUND ELEVATION SILTY CLAY (CL) 11.5' 12.0' CLAYEY SAND (SC)	VOLCLAY® GROUT SEAL	_ELEV.= 525.9
SOIL CONDITIONS (NOT TO SCALE) ATTENTION (NOT TO SCALE) (C)	2" I.D. SCH. 40 PVC RIST	FI D/ - 500 1
END OF BORING AT 20.0'	THREADED END PLUG BOTTOM OF WELL SCREE BOTTOM OF FILTER SAND	ELD/ - 506 1

PATRICK ENGINEERING INC.	PIEZOMETER INSTALLATION REPORT	PIEZ. NOP-7R PROJ. NO496B
PROJECTFGDS_LANDFILL LOCATIONSPRINGFIELD, ILLINOIS CLIENTCWL&P ENGINEERKRISHNA_REDDY DRILLERKEVIN_SHAMWAY		BORING NO. P-7R LOCATION N 5326.9 E 2424.5 INSTALLATION DATE 7/31/92 WEATHER CLOUDY, DRIZZLE, 70'S
PVC THREADED CAP	TOP OF PVC RISER PIPE	ELEV.=527.8
REFER TO BORING LOG P-7D FOR SOIL CONDITIONS FROM 0' TO 34'. 34.0' SHALE	BOREHOLE VOLCLAY® GROUT SEAL COREHOLE 2" I.D. SCH. 40 PVC RIST TOP OF PVC WELL SCREE FILTER SAND 2" I.D. SCH. 40 PVC 0.010" SLOTTED WELL SCREEN THREADED END PLUG BOTTOM OF FILTER SAND	ELEV.= 485.0 ELEV.= 482.5
END OF BORING AT 44.0'		


PROJI LOCAT CLIEN ENGIN	RICK ENGINEERING INC. ECTFGDS_LANDFILL TIONSPRINGFIELD, ILLINOIS ITCWL&P NEER/GEOLOGISTSTEVE_SI LERKEVIN SHAMWAY PVC_VENTED_CAP ROUND_ELEVATION	CHILLING TOP OF PVC RISER PIPE	PROJ. NO. 496B BORING NO. P-9D LOCATION N 4446.3 E 2422.4 INSTALLATION DATE 8/18/92 WEATHER PTLY CLDY, 70'S ELEV.= 556.3
LOCAT CLIEN ENGIN	TIONSPRINGFIELD, ILLINOIS ITCWL&P NEER/GEOLOGISTSTEVE SI LERKEVIN SHAMWAY PVC VENTED CAP	CHILLING	LOCATION N 4446.3 E 2422.4 INSTALLATION DATE 8/18/92 WEATHER PTLY CLDY, 70'S
CLIEN ENGIN	ITCWL&P NEER/GEOLOGISTSTEVE SI ERKEVIN SHAMWAY PVC VENTED CAP	CHILLING	E 2422.4 INSTALLATION DATE <u>8/18/92</u> WEATHER <u>PTLY CLDY, 70'S</u>
ENGIN	NEER/GEOLOGIST <u>STEVE S</u> LER <u>KEVIN SHAMWAY</u> PVC VENTED CAP		INSTALLATION DATE <u>8/18/92</u> WEATHER <u>PTLY CLDY, 70'S</u>
	PVC VENTED CAP		WEATHER PTLY CLDY, 70'S
DRILL	PVC VENTED CAP	TOP OF PVC RISER PIPE	
		TOP OF PVC RISER PIPE	
	ROUND ELEVATION	/	
G			ELEV.= 553.2
	REFER TO BORING LOG P-9D FOR SOIL CONDITIONS FROM 0' TO 26.3'.	SOIL CUTTINGS	_ELEV.= 552.2_
3	SILTY CLAY (CL) 38.6' CLAYEY SILT (ML) 49.8'	VOLCLAY® GOLD	_ELEV.= 500.6
O SCALE)	SILTY SAND (SM)	2" I.D. SCH. 40 PVC RIS	SER PIPE
CONDITIONS (NOT T	SILTY SAND (SP-SM)	FILTER SAND	
SOIL	57.6′	2" I.D. SCH. 40 PVC 0.010" SLOTTED WELL SCREEN THREADED END PLUG BOTTOM OF WELL SCREE	FI FV - 405 2
	SHALE ND OF BORING AT 58.0'	BOTTOM OF FILTER SAND	,

PATRICK ENGIN	IEERING INC.	PIEZOMETER INSTALLATION REPORT	PIEZ. NOP-9S PROJ. NO496B
PROJECTFGDS LOCATIONSPRIN CLIENTCWL&P ENGINEER/GEOLOGI DRILLERKEVIN	NGFIELD, ILLINOIS	HILLING	BORING NO. P-9S LOCATION N 4447.3 E 2415.6 INSTALLATION DATE 8/19/92 WEATHER CLOUDY, 70'S
		TOP OF PVC RISER PIPE	,
REFER TO BOY P-9D FOR SO FROM 0' TO 2	RING LOG DIL CONDITIONS	SOIL CUTTINGS	ELEV.= 553.1 ELEV.= 552.1
26.3' SILTY CL/	4Y (CL)	VOLCLAY® GOLD	_ELEV.= 521.1
TO SCALE)	4Y	2" I.D. SCH. 40 PVC RI	SER PIPE
TR, FINE TR, FINE SAND LET SOULT CONDITIONS	SAND (CL)	FILTER SAND 2" I.D. SCH. 40 PVC 0.010" SLOTTED WELL SCREEN THREADED END PLUG BOTTOM OF WELL SCREEN BOTTOM OF FILTER SANI	EN <u>ELEV.= 516.6</u>
END OF BORING	AT 37.0′		

PATRICK ENGINEERING INC.	PIEZOMETER INSTALLATION REPORT	PIEZ. NO. LP-1 PROJ. NO. 496B
PROJECT FGDS LANDFILL LOCATION SPRINGFIELD, ILLINOIS		BORING NO. LP-1 LOCATION N 4326.5 E 2639.9 INSTALLATION DATE 7/25/92 WEATHER CLOUDY, 70'S
PVC THREADED CAP	TOP OF PVC RISER PIPE	EELEV.=567.6_
GROUND ELEVATION		ELEV.= 564.6
SOIL CONDITIONS (NOT TO SCALE)	VOLCLAY® GROUT SEAL 2" I.D. SCH. 40 PVC RI TOP OF PVC WELL SCRE FILTER SAND 2" I.D. SCH. 40 PVC 0.010" SLOTTED WELL SCREEN THREADED END PLUG BOTTOM OF WELL SCREE BOTTOM OF FILTER SANG	ELEV.= 547.6 ELEV.= 542.6

END OF BORING AT 22.0'

PATRICK ENGINEERING INC.	PIEZOMETER INSTALLATION REPORT	PIEZ. NO. LP-2 PROJ. NO. 496B
PROJECTFGDS_LANDFILL LOCATIONSPRINGFIELD, ILLINOIS	BORING NOLP-2 LOCATION N 4257.5	
CLIENT CWL&P		E 2365.8
GEOLOGIST STEVE VANHOOK DRILLER MANUAL ROSARIO		INSTALLATION DATE 7/25/92 WEATHERCLOUDY, 70'S

APPENDIX B2:

FGDS UNIT 2 LANDFILL MONITORING WELL CONSTRUCTION REPORTS

		ection Agend		naamon			on Report
1678250020		Cou					
lite Name: CWLP - Ash	Disposal F	acility	Grid Coord	dinate: Northing	623.22	ε	asting 1426.13
Orilling Contractor: Profe	ssional Se	rvice Indu	stries, I	nc. Date	Drilled Star	: Janua	ary 15, 1990
Ornller: B. Williams							
Orilling Method: Hollow S	Stem Auger	- 3½" 1.D.		Drilling Flo	iids 'type': _	None	
Annular Space Details					546	ions —	MSL Top of Protectiv
Type of Surface Seal:CC					546	<u>68</u> +2.9	MSL Top of Riser Pip ft. Casing Stickup
Type of Annular Sealant: Ce	ement/Bento	onite Grout		TÝT			it. Casing Stickup
Amount of cement: # of b	Dags3	lbs. per bag 94	<u>i</u>	(2)	543		MSL Ground Surface
Amount of bentonite: # 0					4		ft. Top of annular se
				24	3		
Type of Bentonite Seal (Grant	ular. Pellet):	Sellet	_		<u>g</u>		
	0 0		50	8			
Amount of bentonite: # of Bag					8		
Type of Sand Pack: Silica	Sand (Mar	co-Sandblas	sting)				
Source of Sand: Henry Ne	1ch & Son	Co., Spring	gfield. II				
Amount of Sand: # of bag	33	10s. per ba	š ———				
Well Construction Ma	terials						
	Stainleus Steel Specify Type	Specify Type PVC Specify Type	Other Specify Type				
	Cy T	Ϋ́ Τ Ϋ́ Τ	7.				
	teel peci	Specify 'Specify' Specify'	ther				
D:ling joint	1 N N N E		CS				
Riser coupling joint		2"	-				
	1 1				1		
Riser pipe above w.t.		211	1 1	1 1 1			
Riser pipe below w.L		2"					
Riser pipe below w.t. Screen	r	2"					
Riser pipe below w.t. Screen 1. Coupling joint screen to rise	:r	2"	6"X5"				
Riser pipe below w.t. Screen	 	2"	6"X5" Steel			0.1.0	
Riser pipe below w.t. Screen Coupling joint screen to rise		2"	Steel		<u> </u>	- <u>21.3</u>	ft. Top of Seal
Riser pipe below w.t. Screen Coupling joint screen to rise Protective casing		2"	Steel				
Riser pipe below w.t. Screen Coupling joint screen to rise Protective casing	to .01	2" ft. (where appli	Steel			_2.8	
Riser pipe below w.t. Screen Coupling joint screen to rise Protective casing Measurements	to .01	2" ft. (where appli	Steel			_2.8	ft. Total Seal Inter-
Riser pipe below w.t. Screen Coupling joint screen to rise Protective casing Measurements Riser pipe length Protective casing length Screen length	to .01	2" ft. (where appli	Steel			_2.8 -24.1	ft. Total Seal Interv
Riser pipe below w.t. Screen Coupling joint screen to rise Protective casing Mensurements Riser pipe length Protective casing length Screen length Bottom of screen to end cap	31.	2" ft. (where appli 6! 5' 6' 3'	Steel			_2.8 -24.1	ft. Total Seal Inter- ft. Top of Sand
Riser pipe below w.t. Screen Coupling joint screen to rise Protective casing Measurements Riser pipe length Protective casing length Screen length Bottom of screen to end cap Top of screen to first joint	31.	2" ft. (where appli 6' 5' 6' 3'	Steel	E		2_8 	ft. Total Seal Inter- ft. Top of Sand ft. Top of Screen
Riser pipe below w.t. Screen Coupling joint screen to rise Protective casing Measurements Riser pipe length Protective casing length Screen length Bottom of screen to end cap Top of screen to first joint Total length of casing	31.	2" ft. (where appli 6' 5' 6' 3'	Steel			2_8 	ft. Total Seal Inter- ft. Top of Sand ft. Top of Screen
Riser pipe below w.t. Screen Coupling joint screen to rise Protective casing Mensurements Riser pipe length Protective casing length Screen length Bottom of screen to end cap Top of screen to first joint Total length of casing Screen slot size	31. 31. 0 0. 37. 0.	2" ft. (where appli 6' 5' 6' 3' 6' 010	Steel	E		2_8 	ft. Total Seal Interf ft. Top of Sand ft. Top of Screen
Riser pipe below w.t. Screen Coupling joint screen to rise Protective casing Mensurements Riser pipe length Protective casing length Screen length Bottom of screen to end cap Top of screen to first joint Total length of casing	31.	2" ft. (where appli 6' 5' 6' 3' 6' 010	Steel	E			ft. Total Seal Inter- ft. Top of Sand

Drilling Method: Hollow Stem Auger - 3½" I.D. Drilling Fluids type: Name Annular Space Details Type of Surface Seal: Concrete Type of Annular Sealant: Cement/Bentonite Grout Amount of cement: * of bags 4 this. per bag 94 Amount of bentonite: * of bags 0.1 this. per bag 90 Type of Bentonite Seal (Granular, Pelleu): Pellet Amount of bentonite: * of Bags 0.7 this. per bag 50 Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: Henry Nelch 6 Son Go. Springfield, II. Amount of Sand: * of bags 2.0 this. per bag 100 Well Construction Materials Riser pipe above w.t. 2" Riser coupling joint Riser pipe below w.t. 2" Riser pipe below w.t. 2" Riser pipe below w.t. 2" Riser pipe below w.t. 2" Riser pipe length 34.6' Protective casing 100 th (where applicable) Riser pipe length 34.6' Protective casing length 5! Screen length 6! Bottom of screen to end cap 0.3! Topol Screen to first joint 0.3! Topol screen to first joint 0.3! Topol screen to first joint 0.3! Topol screen to first joint 0.3! Topol screen to first joint 0.3! Topol screen to first joint 0.3! Total length of casing 40.6' Screen side size 0.010 Diameter of borehole lins 6	Site Name: CMLP - Ash Disposal Facility Grid Coordinate. Norming 2294.50 Drilling Contractor: Professional Service Industries. Inc. Date Ordinate State: January 11, 1990 Drilling Contractor: Professional Service Industries. Inc. Date Ordinate State: January 11, 1990 Drilling Contractor: Professional Service Industries. Inc. Date Ordinate State: January 11, 1990 Drilling Method: Hollow Stem Auger - 31" I.D. Drilling Fluids type: None Annular Space Details Type of Surface Seal: Contracte Type of Surface Seal: Contracte Type of Annular Sealant: Cement/Bentonite Grout Amount of bentonite: of bags 4 lbs. per bag 24 Amount of bentonite: of bags 0.1 lbs. per bag 50 Type of Bentonite Seal (Granular, Pellet): Pellet: Amount of Sand: of bags 2.0 lbs. per bag 100 Well Construction Materials Well Construction Materials Riser pupe above wit. Riser pupe above wit. Riser pupe above wit. Riser pupe length 34,6' Protective casing 6'"X51 Steel Measurements to old ft. (where applicable) Riser pupe length 34,6' Protective casing 40,6' Streen length 6: Bottom of screen to first joint 0.3' Tool Streen	Illinois Environ	mental Protec	tion Agency		,	Well Co	mplet	ion Report
Drilling Contractor: Professional Service Industries, Inc. Date Drilled Start: January 11, 1990 Driller: B. Williamson Geologis: —— Date Completed. January 11, 1990 Drilling Method: Hollow Stem Auger — 31" I.D. Drilling Fluids type: None Annular Space Details Type of Surface Seal: Concrete Type of Annular Sealant: Cement/Bentonite Grout Amount of bentonite: = of bags 4 lbs. per bag 94 Amount of bentonite: = of bags 0.1 lbs. per bag 50 Type of Bentonite Seal (Granular, Pelled): Pellet Amount of bentonite: = of bags 0.7 lbs. per bag 50 Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: Henry Nelch 6 Son Co., Springfield, II. Amount of Sand: = of bags 2.0 lbs. per bag 100 Well Construction Materials Riser pipe above w.t. 2" Streen 2" Coupling point screen to inser 2" Coupling point screen to inser 2" Coupling point screen to inser 2" Coupling point screen to inser 2" Coupling point screen to meer 2" Coupling point screen to inser 2" Coupling point screen to doze 0.3! Top of screen length 34.6! Protective casing 34.6! Protective casing 5" Screen length 5" Screen length 5" Screen length 5" Screen length 6"	Drilling Contractor: Professional Service Industries, Inc. Date Drilled State: January 11, 1990 Drilling Method: B. Williamson Geologis: Driller: B. Williamson Geologis: Drilling Method: Hollow Stem Auger - 31" T.D. Drilling Method: Hollow Stem Auger - 31" T.D. Drilling Method: Mollow Stem Auger - 31" T.D. Annular Space Details Type of Surface Seal: Concrets Type of Surface Seal: Concrets Type of Annular Sealant: Cement/Bentonite Grout Amount of bentonite: of Bags	1678250020		County _	Sangamon		Well		R-102
Drilling Method: Hollow Stem Auger - 31" I.D. Drilling Method: Hollow Stem Auger - 31" I.D. Annular Space Details Type of Surface Seal: Concrete Type of Annular Sealant: Cement/Bentonite Grout Amount of bentonite: * of bags 4 lbs. per bag 94 Amount of bentonite: * of bags 0.1 lbs. per bag 94 Amount of bentonite: * of bags 0.1 lbs. per bag 94 Amount of bentonite: * of bags 0.1 lbs. per bag 50 Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: Henry Nelch 6. Son Co Springfield, II. Amount of Sand: * of bags 2.0 lbs. per bag 100 Well Construction Materials Riser pipe above w.t. Screen Riser pipe above w.t. Screen Length Measurements to .01 ft. (where applicable) Riser pipe length Protective casing length 51 Steel Measurements to .01 ft. (where applicable) Riser pipe length 71 72 73 74 75 75 75 76 77 77 77 77 77 78 78 78 78	Drilling Method: B. Hilliamson Geologias: —— Date Completed: January 11, Drilling Method: Hollow Stem Auger — 31 I.D. Drilling Fluids (type): None Annular Space Details Type of Surface Sest: Concrete Type of Surface Sest: Concrete Type of Annular Sealant: Cement/Bentonite Grout Amount of cement: * of bags 4 lbs. per bag 24 Amount of bentonite: * of bags 0.1 lbs. per bag 50 Type of Bentonite Sest (Granular, Pellet): Pellet Amount of bentonite: * of Bags 0.7 lbs. per bag 50 Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: Henry Nelch 6. Son Co. Springfield, IL Amount of Sand: * of bags 2.0 lbs. per bag 100 Well Construction Materials Riser pipe above * t. 2'' Riser pipe below * t. 2'' Riser pipe below * t. 2'' Riser pipe below * t. 2'' Riser pipe length 34.6' Protective casing Annular Sealing Annular	Site Name: CWLP - Ash	Disposal Fac	cility G	nd Coordinate: Nor	rining 22	94.50		Easting 674.54
Drilling Method: Hollow Stem Auger - 31" I.D. Drilling Method: Hollow Stem Auger - 31" I.D. Annular Space Details Type of Surface Seal: Concrete Type of Annular Sealant: Cement/Bentonite Grout Amount of bentonite: * of bags 4 lbs. per bag 94 Amount of bentonite: * of bags 0.1 lbs. per bag 94 Amount of bentonite: * of bags 0.1 lbs. per bag 94 Amount of bentonite: * of bags 0.1 lbs. per bag 50 Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: Henry Nelch 6. Son Co Springfield, II. Amount of Sand: * of bags 2.0 lbs. per bag 100 Well Construction Materials Riser pipe above w.t. Screen Riser pipe above w.t. Screen Length Measurements to .01 ft. (where applicable) Riser pipe length Protective casing length 51 Steel Measurements to .01 ft. (where applicable) Riser pipe length 71 72 73 74 75 75 75 76 77 77 77 77 77 78 78 78 78	Drilling Method: B. Hilliamson Geologias: —— Date Completed: January 11, Drilling Method: Hollow Stem Auger — 31 I.D. Drilling Fluids (type): None Annular Space Details Type of Surface Sest: Concrete Type of Surface Sest: Concrete Type of Annular Sealant: Cement/Bentonite Grout Amount of cement: * of bags 4 lbs. per bag 24 Amount of bentonite: * of bags 0.1 lbs. per bag 50 Type of Bentonite Sest (Granular, Pellet): Pellet Amount of bentonite: * of Bags 0.7 lbs. per bag 50 Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: Henry Nelch 6. Son Co. Springfield, IL Amount of Sand: * of bags 2.0 lbs. per bag 100 Well Construction Materials Riser pipe above * t. 2'' Riser pipe below * t. 2'' Riser pipe below * t. 2'' Riser pipe below * t. 2'' Riser pipe length 34.6' Protective casing Annular Sealing Annular	Drilling Contractor: Profe	ssional Serv	vice Industri	es, Inc.	Date Drill	led Start:	Janua	ary 11, 1990
Drilling Method: Hollow Stem Auger - 31" I.D. Drilling Fluids types: None Annular Space Details Type of Surface Seal: Concrete Type of Surface Seal: Concrete Type of Annular Sealant: Cement/Bentonite Grout Amount of cement: # of bags 4 libs. per bag 94 Amount of bentonite: # of bags 0.1 libs. per bag 94 Amount of bentonite: # of bags 0.7 libs. per bag 50 Type of Bentonite: # of Bags 0.7 libs. per bag 50 Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: Henry Nelch 6 Son Co. Springfield, IL Amount of Sand: # of bags 2.0 libs. per bag 100 Well Construction Materials Riser coupling joint Riser pipe above w.t. 2" Riser pipe above w.t. 2" Riser pipe blow w.t. 2" Screen Measurements to .01 ft. (where applicable) Riser pipe length 34.6! Protective casing length 5! Screen length 6! Bottom of screen to end cap 0.3! Total length of casing 40.6! Screen lot size 0.010 Diameter of borehole lin 6.	Drilling Methods: Hollow Stem Auger - 31" I.D. Drilling Fluids type: Name Annular Space Details Type of Surface Seal: Concrete Type of Annular Sealant: Cement/Bentonite Grout Amount of Sealant: Cement/Bentonite Grout Amount of Sealant: Cement/Bentonite Grout Amount of Sealant: e of bags	•							
Annular Space Details Type of Surface Seal: Concrete Type of Surface Seal: Concrete Type of Annular Sealant: Cement/Bentonite Grout Amount of cement: * of bags 4 bb. per bag 94 Amount of bentonite: * of bags 0.1 lbs. per bag 50 Type of Bantonite Seal (Granular, Pelleu): Pellet Amount of bentonite: * of Bags 0.7 lbs. per bag 50 Type of Sand Pack; Silica Sand (Marco-Sandblasting) Source of Sand: * Henry Nelch 6 Son Co. Springfield, IL Amount of Sand: * of bags 2.0 lbs. per bag 100 Well Construction Materials Riser pipe above w.t. 2" Riser pipe above w.t. 2" Riser pipe below w.t. 2" Screen 2" Coupling joint screen to riser 6"X5' Screen length 6' Bostom of screen to end cap 0.3' Torof Screen to first joint 0.3' Torof Screen to first joint 0.3' Torof Screen to first joint 0.3' Torof Screen to first joint 0.3' Torof Screen to first joint 0.3' Torof Screen to size 0.0101 Diameter of borehole liny 66	Annular Space Details Type of Surface Seal: Concrete Type of Annular Sealant: Cement/Bentonite Grout Amount of Cement: * of Dags								
Type of Surface Seal: Concrete Type of Annular Sealant: Cement/Bentonite Grout Amount of Cement: 9 of bags 4 lbs. per bag 94 Amount of bentonite: 9 of bags 0.1 lbs. per bag 90 Type of Bentonite Seal (Granular, Pellet): Pellet Amount of bentonite: 9 of bags 0.7 lbs. per bag 50 Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: Henry Nelch 8 Son Cp. Springfield, II. Amount of Sand: 9 of bags 2.0 lbs. per bag 100 Well Construction Materials Riser coupling joint Riser pipe above w.t. 2" Riser pipe above w.t. 2" Screen 1 2" Coupling joint screen to riser Protective casing 1 St. Top of Sand Protective casing 1 St. Top of Sand Top of Screen to first joint 0.3" Top of Screen to first joint 0.3" Top of Screen to first joint 0.3" Top of screen to fi	Type of Surface Seal: Concrete Type of Annular Sealant: Cement/Bentonite Grout Amount of cement: = of bags	Drilling Method: HOLLO	w Stem Auger	- 3½" 1.D.	Drillii	ng fluids '	type:	None	
Type of Annular Sealant: Cement/Bentonite Grout Amount of cement: # of bags 4 lbs. per bag 24 Amount of bentonite: # of bags 0.1 lbs. per bag 50 Type of Bentonite: # of bags 0.7 lbs. per bag 50 Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: Henry Nelch 6 Son Co. Springfield, IL Amount of Sand: # of bags 2.0 lbs. per bag 100 Well Construction Materials Riser coupling joint Riser pipe above w.t. 2" Riser pipe above w.t. 2" Screen 1 2" Coupling joint screen to riser 2" Coupling joint screen to riser 2" Coupling joint screen to riser 34.6! Protective casing 1 34.6! Protective casing length 5! Screen length 6! Bottom of screen to end cap 0.3! Top of Screen to first joint 0.3! Total length of casing 40.6! Screen jot size 0.010 Limited Protective Casing Screen to first joint 0.3! Total length of casing 40.6! Screen jot size 0.010 Limited Protective Casing Screen inster 0.3! Top of Screen to first joint 0.3! Top of Screen to first joint 0.3! Total length of casing 40.6! Screen jot size 0.010 Limited Protective Casing Screen inster 0.3! Total length of casing 40.6! Screen jot size 0.010 Limited Protective Casing Screen inster 0.3! Color of Screen 0.3! Total Screen inster 0.3! Color of Screen 0.3! Total Screen 1.5. Color of Screen 0.3! Color of Screen 0	Type of Annular Sealant: Cement/Bentonite Grout Amount of cement: so of bags 4 lbs. per bag 94 Amount of bentonite: so of bags 4 lbs. per bag 94 Amount of bentonite: so of bags 0.1 lbs. per bag 50 Type of Bentonite Seal (Granular, Pelled): Pellet Amount of bentonite: so of bags 0.7 lbs. per bag 50 Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: so of bags 2.0 lbs. per bag 100 Well Construction Materials Riser pipe above w.t. 2" Riser pipe above w.t. 2" Riser pipe above w.t. 2" Riser pipe below w.t. 2" Screen 2" Riser pipe length 34.6! Protective casing 34.6! Protective casing length 5! Screen length 6! Bottom of screen to first joint 0.3! Top of screen to first joint 0.3! Top of screen to first joint 0.3! Top of screen to first joint 0.3! Top of screen to first joint 0.3! Top of screen to first joint 0.3! Coal length of casing 40.6! Screen length 6.0 ft. Total Screen linter of the screen in the screen of t					=	539 539	35 16	MSL Top of Protective Cas MSL Top of Riser Pipe
Amount of cement: = of bags 4 lbs. per bag 94 Amount of bentonite: = of bags 0.1 lbs. per bag 50 Type of Bentonite : = of Bags 0.7 lbs. per bag 50 Type of Bentonite : = of Bags 0.7 lbs. per bag 50 Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: Henry Nelch 6 Son Co. Springfield III Amount of Sand: = of bags 2.0 lbs. per bag 100 Well Construction Materials Riser coupling joint Riser pipe above w.t. 2" Riser pipe below w.t. 2" Screen 2" Coupling joint screen to riser leprotective casing length 5! Screen length 6! Riser pipe length 34.6! Protective casing length 5! Screen length 6! Screen length 6! Screen length 6.1 Screen length 6.1 Screen length 6.1 Screen length 6.1 Screen length 6.1 Screen length 6.1 Screen length 6.1 Screen length 6.1 Screen length 6.1 Screen length 6.1 Screen length 6.1 Screen lof screen to first joint 0.3! Tool of screen to first joint 0.3! Tool of screen is string 0.000 Diameter of borehole lini 6.6	Amount of cement: # of bags 4 lbs. per bag 94 Amount of bentonite: # of bags 0.1 lbs. per bag 50 Type of Bentonite: # of bags 0.7 lbs. per bag 50 Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: # of bags 2.0 lbs. per bag 100 Well Construction Materials Riser pipe above w.t. 2" Riser pipe above w.t. 2" Riser pipe above w.t. 2" Riser pipe above w.t. 2" Riser pipe length 6 consisted 6"X51 Measurements to .01 ft. (where applicable) Riser pipe length 6 consisted 6"1 lbs. per bag 100 Riser pipe length 6 consisted 6"1 lbs. per bag 100 Riser pipe length 6"1 lbs. per bag 100 Riser pipe length 34.6! Protective casing length 51 Coupling joint screen to riser 2.9 lbs. per bag 100 Riser pipe length 6"1 lbs. per bag 100 Riser pipe length 6"1 lbs. per bag 100 Riser pipe length 6"1 lbs. per bag 100 Riser pipe length 6"1 lbs. per bag 100 Riser pipe length 34.6! Dottom of screen to end cap 0.31 Top of screen to first joint 0.31 Top of screen to first joint 0.31 Top of screen to first joint 0.31 Top of screen to first joint 10.31 Doubter of oberhole lin 6	Tune of Appular Seplant. Co	ement/Benton:	ite Grout	一]	3.4	ft. Casing Stickup
Amount of bentonite: = of bags 0.1 lba. per bag 50 Type of Bentonite Seal (Granular, Pellet): Pellet	Amount of bentonite: # of bags 0.1 lbs. per bag 50 Type of Bentonite Seal (Granular, Pellet): Pellet Amount of bentonite: # of Bags 0.7 lbs. per bag 50 Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: # of bags 2.0 lbs. per bag 100 Well Construction Materials Riser coupling joint Riser pipe above w.t.								
Type of Bentonite: = of Bags	Type of Bentonite: # of Bags	· ·			4	187		-3.0	ft. Top of annular sealant
Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: Henry Nelch & Son Co., Springfield, IL Amount of Sand: # of bags 2.0 lbs. per bag 100 Well Construction Materials Pack P	Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: Henry Nelch 6 Son Co., Springfield, IL Amount of Sand: of bags 2.0 lbs. per bag 100 Well Construction Materials Riser coupling joint				P. A.	8.			
Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: Henry Nelch & Son Go., Springfield, IL Amount of Sand: # of bags 2.0 lbs. per bag 100 Well Construction Materials	Type of Sand Pack: Silica Sand (Marco-Sandblasting) Source of Sand: Henry Nelch & Son Co., Springfield, IL Amount of Sand: e of bags 2.0 lbs. per bag 100 Well Construction Materials Riser coupling joint	Type of Bentonite Seal Gran	alar. Pellet):	THE .		C			
Source of Sand: Henry Nelch & Son Co., Springfield, IL Amount of Sand: # of bags 2.0 lbs. per bag 100 Well Construction Materials Riser coupling joint	Source of Sand: Henry Nelch & Son Co Springfield, II. Amount of Sand: # of bags 2.0 lbs. per bag 100 Well Construction Materials Riser coupling Joint 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Amount of bentonite: # of Bag	gs0.7	_ lbs. per bag50		[GE9]			
Amount of Sand: # of bags 2.0 lbs. per bag 100 Well Construction Materials Riser coupling joint	Amount of Sand: # of bags 2.0 lbs. per bag 100 Well Construction Materials Riser coupling joint Riser pipe above w.t. 2" Riser pipe below w.t. 2" Screen 2" Coupling joint screen to riser Protective casing 5' Steel 2.9 ft. Top of Seal Riser pipe length 5' Screen length 6' Bottom of screen to end cap 0.3' Top of screen to end cap 0.3' Total length of casing 40.6' Screen slot size 0.0100 of openings in screen Diameter of borehole lini 6 ID of niser pipe lini 2 (t. Bottom of Screen it. Bottom of Borenoi	Type of Sand Pack: Silica	Sand (Marco	-Sandblasting	_				, 5
Well Construction Materials	Well Construction Materials Riser coupling joint	Source of Sand: Henry Ne	lch & Son Co	Springfiel	d.IL				
Well Construction Materials The state of particular construction Materials The state of particular construction Materials	Well Construction Materials Riser coupling joint				! !				
Riser coupling joint Riser pipe above w.t. Riser pipe below w.t. Coupling joint screen to riser Protective casing Riser pipe length Protective casing Riser pipe length Steel Riser pipe length Steel Riser pipe length Steel Ada b d d d d d d d d d d d d d d d d d d	Riser coupling joint Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing Riser pipe length Ad. 6! Protective casing length Steel Measurements Riser pipe length Steel Measurements Total seal interval Coupling joint screen to end cap O.3! Total seal interval Coupling joint screen to end cap O.3! Total serven to first joint Top of screen to first joint Coupling joint screen to end cap O.3! Total length of casing 40.6! Screen slot size O.010 Of openings in screen Diameter of borehole lin) 6 Diameter of borehole lin) 6 Diameter of borehole lin) Coupling joint screen Coupling joint screen Coupling joint screen to riser Coupling joint screen to ris					-			
Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing Riser pipe length Protective casing length Steel Riser pipe length Protective casing length Steel Riser pipe length Steel A.6' Protective casing length Steel Riser pipe length O.3' Top of screen to end cap O.3' Total length of casing 40.6' Screen slot size O.010 Diameter of borehole lini 6 -37.2 (t. Bottom of Screen	Riser pipe above w.t. Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing Riser pipe length Riser pipe length Protective casing length Steel Riser pipe length Forective casing length Steel Adding the screen to end cap Bottom of screen to end cap Coupling joint screen to end cap Adding the screen to end cap Coupling joint screen to end cap Adding the screen to end cap Coupling joint screen to end cap Adding the screen to end cap Coupling joint screen to end cap Adding the screen to end cap Coupling joint screen to end cap Adding the screen to end cap Coupling joint screen to end cap Adding the screen to end cap Coupling joint screen to end cap Adding the screen to end cap Coupling joint screen to end cap Adding the screen to end cap Coupling joint screen to end cap Adding the screen to end cap Coupling joint screen to end cap Coupling joint screen to end cap Adding the screen to end cap Coupling joint screen to end cap Adding the screen to end cap Coupling joint screen to end cap Coupling join	Well Construction Ma	terials						
Riser pipe above w.t. Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing Steel Measurements to .01 ft. (where applicable) Riser pipe length Protective casing length Steel Riser pipe length Frotective casing length Steel Additional control of the control of	Riser pipe above w.t. Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing Riser pipe length Riser pipe length Fortective casing length Steel Riser pipe length Fortective casing length Steel Adding the screen to end cap Bottom of screen to end cap Top of screen to first joint Constitution of casing Adding the screen length Constitution of casing Adding the screen length Constitution of casing Adding the screen length Constitution of casing Adding the screen length Adding the screen length Adding the screen length Constitution of screen lengt		Steel Specify Type Teffon Specify Type	PVC Specify Type	Specify Type				
Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing Steel Measurements to .01 ft. (where applicable) Riser pipe length Protective casing length 5! Screen length 6' Bottom of screen to end cap Top of screen to first joint Total length of casing Coupling joint screen 40.6' Screen slot size Coupling joint screen	Riser pipe below w.t. 2" Screen 2" Coupling joint screen to riser —— Protective casing 6"X5! Measurements to .01 ft (where applicable) Riser pipe length 34.6! Protective casing length 5! Screen length 6! Bottom of screen to end cap 0.3! Top of screen to first joint 0.3! Total length of casing 40.6! Screen slot size 0.010 Lof openings in screen —— Diameter of borehole lin 6 ID of riser pipe lin 2 Diameter pipe lin 2 Log of the Total Screen Interval 6.0 Log openings in screen —— Diameter of borehole lin 6 Log of riser pipe lin 7 Riser pipe length 6! Log of the Total Screen Interval 6.0 Log openings in screen 6.0 Log openings in screen 6.0 Log openings in screen 7.2 Log of the Bottom of Screen 1.2 Log of the Bottom of Screen 1.2 Log of riser pipe lin 7 Log of riser pipe lin 8 Log of the Bottom of Screen 6.2 Log of the Bottom of Borenoi 8.2 Log of the	Riser coupling joint	1						
Screen 2" Coupling joint screen to riser Protective casing 6"X5" Steel -25.5 ft. Top of Seal Measurements to .01 ft. (where applicable) 2.9 ft. Total Seal Interval -28.4 ft. Top of Sand Protective casing length 5! -28.4 ft. Top of Sand Screen length 6! -31.2 ft. Top of Screen Top of screen to end cap 0.3! -31.2 ft. Top of Screen Screen slot size 0.010 -31.2 ft. Total Screen Interval -31.2 ft. Total Screen Interval -31.2 ft. Total Screen Interval -31.2 ft. Total Screen Interval -31.2 ft. Total Screen Interval -31.2 ft. Total Screen Interval -31.2 ft. Total Screen Interval -31.2 ft. Total Screen Interval -31.2 ft. Total Screen Interval -31.2 ft. Total Screen Interval -31.2 ft. Total Screen Interval -31.2 ft. Total Screen Interval -31.2 ft. Total Screen Interval -31.2 ft. Bottom of Screen -31.2 ft.	Screen 2" Coupling joint screen to riser —— Protective casing 6"X5" Steel —25.5 ft. Top of Seal Riser pipe length 34.6" ——28.4 ft. Top of Sand Protective casing length 5" Screen length 6" Bottom of screen to end cap 0.3" ——31.2 ft. Top of Screen Top of screen to first joint 0.3" ——31.2 ft. Top of Screen Screen slot size 0.010 ——31.2 ft. Total Screen Lof openings in screen —— Diameter of borehole lini 6 ID of riser pipe lini 2 —38.0 ft. Bottom of Screen	Riser pipe above w.t.		211					
Coupling joint screen to riser Protective casing Steel Measurements to .01 ft. (where applicable) Riser pipe length Protective casing length 5' Screen length Bottom of screen to end cap Top of screen to first joint Coupling joint screen length 6' Bottom of screen to first joint Coupling joint screen length 6' Bottom of screen to first joint Coupling joint screen length 6' Bottom of screen to first joint Coupling joint screen length 6' Bottom of screen to first joint Coupling joint screen length 6' Coupling joint length of screen length 6' Coupling joint length 6	Coupling joint screen to riser Protective casing Steel Measurements to .01 ft. (where applicable) Riser pipe length	Riser pipe below w.t.		2"					
Coupling joint screen to riser Protective casing Steel Measurements to .01 ft. (where applicable) Riser pipe length Protective casing length Streen length Bottom of screen to end cap Top of screen to first joint Screen slot size 0.010 Total length of casing 40.6 Diameter of borehole (in) Diameter of borehole (in) 6 ''X5' Steel -25.5 ft. Top of Seal 2.9 ft. Total Seal Interval -28.4 ft. Top of Sand -28.4 ft. Top of Sand 6.0 ft. Total Screen Interval 6.0 ft. Total Screen	Coupling joint screen to riser Protective casing Steel Measurements to .01 ft. (where applicable) Riser pipe length Protective casing length Steel Riser pipe length Steel Coupling joint screen to .01 ft. (where applicable) Riser pipe length Steel Coupling joint screen to .02 ft. Top of Seal Coupling joint screen to .03 ft. Top of Seal Coupling joint screen seal Coupling joint screen to .03 ft. Top of Seal Coupling joint screen seal Coupling joint screen seal Coupling joint screen seal Coupling in screen seal Coupling in screen seal Coupling in screen seal Coupling in screen seal seal Coupling in screen seal Coupling in screen seal Coupling in screen seal Coupling in screen seal seal Coupling in screen seal seal Coupling in screen seal seal Coupling in screen seal seal Coupling in screen seal Coupling in screen seal seal Coupling in screen seal seal Coupling in screen seal seal Coupling in screen seal seal Coupling in screen seal Coupling in screen seal seal seal seal seal seal seal seal	Screen ,		2"					
Steel	Measurements to .01 ft. (where applicable) Riser pipe length 34.6! Protective casing length 5! Screen length Bottom of screen to end cap 0.3! Top of screen to first joint 0.3! Total length of casing 40.6! Screen slot size 0.010 of openings in screen Diameter of borehole!in/ 1D of riser pipe !in/ 2.9 ft. Total Seal Interval -28.4 ft. Top of Sand -31.2 ft. Top of Screen 6.0 ft. Total Screen Inter -37.2 ft. Bottom of Screen 1D of riser pipe !in/ 2 -38.0 ft. Bottom of Borenoi		r						
Measurements to .01 ft. (where applicable) —25.5 ft. Top of Seal 2.9 ft. Total Seal Interval —28.4 ft. Top of Sand Protective casing length 5! Screen length 6' Bottom of screen to end cap 0.3! Top of screen to first joint 0.3' Total length of casing 40.6' Screen slot size 0.010 —01 ft. Total Screen Interval 6 ft. Top of Screen Interval 6 ft. Top of Screen Interval 6 ft. Total Screen Interval 7 ft. Editor of Screen	Measurements to .01 ft. (where applicable) -25.5 ft. Top of Seal 2.9 ft. Total Seal Interval -28.4 ft. Top of Sand Frotective casing length 5! Screen length 6! Bottom of screen to end cap 7.31.2 ft. Top of Screen Top of screen to first joint 7.5 creen slot size 7.5 ft. Top of Seal 7.6 ft. Top of Sand 7.7 ft. Top of Screen 7.7 ft. Top of Screen Interval 8.7 ft. Top of Screen Interval 8.8 ft. Top of Seal 7.9 ft. Total Seal Interval 7.0 ft. Top of Sand 8.0 ft. Top of Screen 8.0 ft. Total Screen Inter 8.1 ft. Top of Screen 9.1 ft. Top of Screen 9.2 ft. Top of Screen 9.3 ft. Top of Screen 9.	Protective casing		6":	751				
Riser pipe length 34.6! Protective casing length 5! Screen length 6! Bottom of screen to end cap 7.31.2 ft. Top of Screen Top of screen to first joint 7.51 Total length of casing 40.6! Screen slot size 7.52 6.0 ft. Total Screen Interval 6.0 ft. Total Screen Interval 7.53 6.0 ft. Total Screen Interval 8.53 8.54 8.55	Riser pipe length 34.6! — 28.4 ft. Top of Sand Protective casing length 5! Screen length 6! — 31.2 ft. Top of Screen Bottom of screen to end cap 0.3! Top of screen to first joint 0.3! Total length of casing 40.6! Screen slot size 0.010 Sof openings in screen — Diameter of borehole lini 6 ID of riser pipe lini 2 ID of riser pipe lini 2	Managements	01 6		eel			25.5	ft. Top of Seal
Riser pipe length 94.6! Protective casing length 5! Screen length 6! Bottom of screen to end cap 70.3! Top of screen to first joint 70.3! Total length of casing 40.6! Screen slot size 70.010 To openings in screen 70.010 Diameter of borehole lini 71. Top of Sand 72.4. (t. Top of Sand 73.2. (t. Bottom of Screen	Riser pipe length 94.6' Protective casing length 5' Screen length 6' Bottom of screen to end cap 0.3' Top of screen to first joint 7 Total length of casing 40.6' Screen slot size 0.010 of openings in screen Diameter of borehole lini 6 ID of riser pipe lini 2 -28.4 ft. Top of Sand -31.2 ft. Top of Screen -31.2 ft. Top of Screen -31.2 ft. Total Screen Inter -37.2 ft. Bottom of Screen -37.2 ft. Bottom of Screen	Measurements		(where applicable)				2 0	
Protective casing length 5! Screen length 6! Bottom of screen to end cap 0.3! Top of screen to first joint 0.3! Total length of casing 40.6! Screen slot size 0.010 i of openings in screen Diameter of borehole lin) 6 -20.4 It. Top of Sand -31.2 It. Top of Screen line -31.2 It. Top of Screen line -31.2 It. Bottom of Screen	Protective casing length 5! Screen length 6! Bottom of screen to end cap 0.3! Top of screen to first joint 0.3! Total length of casing 40.6! Screen slot size 0.010 Tof openings in screen — Diameter of borehole lini 6 ID of riser pipe lini 2 II. Top of Sand -31.2 ft. Top of Screen 6.0 ft. Total Screen Inter -37.2 ft. Bottom of Screen -38.0 ft. Bottom of Borenoi	Riser pipe length	7		─ ┐				
Screen length 6' Bottom of screen to end cap 0.3' Top of screen to first joint 0.3' Total length of casing 40.6' Screen slot size 0.010 To of openings in screen Diameter of borehole lini 6 -37.2 (t. Bottom of Screen	Screen length 6¹ Bottom of screen to end cap 0.3¹ Top of screen to first joint 0.3¹ Total length of casing 40.6¹ Screen slot size 0.010 of openings in screen Diameter of borehole lini 6 ID of riser pipe lini 2 III. Top of Screen -31.2 ft. Top of Screen 6.0 ft. Total Screen Inter 6.0 ft. Total Screen Inter 6.0 ft. Total Screen Inter 6.0 ft. Bottom of Screen 6.0 ft. Botto		7			KG	-	28.4	ft. Top of Sand
Bottom of screen to end cap 0.3' Top of screen to first joint 0.3' Total length of casing 40.6' Screen slot size 0.010 To of openings in screen — Diameter of borehole lini 6 Diameter of borehole lini 6	Bottom of screen to end cap 0.3' Top of screen to first joint 0.3' Total length of casing 40.6' Screen slot size 0.010 Lof openings in screen Diameter of borehole lini 6 ID of riser pipe lini 2 III. Top of Screen -31.2 ft. Top of Screen ft. Total Screen Inter 6.0 ft. Total Sc		the same of the sa						
Top of screen to first joint 0.3' Total length of casing 40.6' Screen slot size 0.010 Total openings in screen —— Diameter of borehole lini 6 Total Screen Interval Scree	Top of screen to first joint 0.3' Total length of casing 40.6' Screen slot size 0.010 of openings in screen — Diameter of borehole lini 6 ID of riser pipe lini 2 III and Screen Inter 6.0 ft. Total Screen Inter 6.0 ft. Total Screen Inter 6.0 ft. Total Screen Inter 6.0 ft. Total Screen Inter 6.0 ft. Total Screen Inter 6.0 ft. Total Screen Inter 6.0 ft. Total Screen Inter 6.0 ft. Total Screen Inter 6.0 ft. Total Screen Inter 6.0 ft. Total Screen Inter 6.0 ft. Total Screen Inter 6.0 ft. Total Screen Inter 6.0 ft. Total Screen Inter 6.0 ft. Total Screen Inter		-		1.7.			31.2	ft. Top of Screen
Total length of casing 40.6 6.0 ft. Total Screen Interest Screen slot size 0.010 Total length of casing 6.0 ft. Total Screen Interest Screen slot size 0.010 Total length of casing 6.0 ft. Total Screen Interest Screen Int	Total length of casing 40.61 Screen slot size 0.010 of openings in screen — Diameter of borehole lini 6 ID of riser pipe lini 2 ID of riser pipe lini 2	Top of screen to first joint			1.	- ',			
Screen slot size 0.010 i of openings in screen — — — — — — — — — — — — — — — — — —	Screen slot size 0.010 Lof openings in screen — Diameter of borehole lini 6 ID of riser pipe lini 2 ID of riser pipe lini 2		-		1 1/2	三二		6.0	ft. Total Screen Interva
Diameter of borehole (in) 6 -37.2 (t. Bottom of Screen	Diameter of borehole lini 6 ID of riser pipe lini 2 ID of riser pipe lini 2 ID of riser pipe lini 2)		三日	,		
Diameter of borehole (in) 6 -37.2 (t. Bottom of Screen	Diameter of borehole lini 6 ID of riser pipe lini 2 ID of riser pipe lini 2 ID of riser pipe lini 2	" of openings in screen				E:1			
- 57.2 It. Solton of Section	ID of riser pipe (in) 2		1 6		1. 1%	三日	-	37 2	(Pottom of Screen
ID of riser pipe (in) 2					:-			38.0	. It. Bottom of Borenois

i

R. J.

الحيط	Illinois Enviror									ion Report
Site #: -	1678250020			Coun	ty	angamon		We	il =	R-103
Site Nan	me: CWLP - Ash	Dispos	al Faci	lity	_ Grid Co	ordinate: Nort	hing	2208.	19	Easting 1504.46
	Contractor: Prof									
										leted: January 13, 1
Drilling	Method: Hollo	ow Prem	Auger -	- 32 1.0	•	Drilling	g Fluids	'type':	None	
Annul	lar Space Detail	S						Eleva	tions —	.01 ft.
Tuna of	Surface Seal:C	oncrete						538	66	MSL Top of Protective C. MSL Top of Riser Pipe
	Annular Sealant: C					1			+2.5	ft. Casing Stickup
						17		536	08	NEL C
	ount of cement: # of					150	10		-3.2	MSL Ground Surface ft. Top of annular seaian
Amo	ount of bentonite: =	of bags(0.1 lbs. ;	per bag 50			13			31 HOLD SOURCE - GOOD SOURCE -
Type of	Bentonite Seal (Gran	ular. Pellet): <u>Pell</u>	et			1			
						P	10			
mount	of bentonite: = of Ba	gs <u>0.8</u>	3	lbs. per bag _	50		9- NE - 1019 No. 3			
	Sand Pack: Silica					1				
										. 8
ource of	f Sand: Henry Ne	1ch & S	on Co	Springf	ield.	[L				
Amo	ount of Sand: # of ba	gs <u>1</u>	. 7	lbs. per bag _	100					
							1			
Well C	Construction Ma	terials			9					
		2			.,]					
		l'yp	Тур	Lyp	Pype					
		nles 1	ir,	ify	ir,					
		Stainlens Steel Specify Type	Teflon Specify Typo	PVC Specify Typa	Other Specify Type					
Riser co	oupling joint	1 32 32 32			<u> </u>					
Riser p	ipe above w.t.	i		2"						
	ripe below w.t.	1 .		2"		.				
Screen	1%	I		2"						
Couplin	ng joint screen to rise	г								
Protect	tive casing				6"X5'					
					Steel				20 5	
Measu	rements	t	o .01 ft (w	here applicab	le)	\boxtimes	X		-20.5	ft. Top of Seal
D.	, -	<i>* %</i>							2.9	ft. Total Seal Interval
	ipe length	1 2	8,8'. 5'						-23.4	ft. Top of Sand
	ive casing length	1	6'				3:			
Screen	length of screen to end cap	1	0.3'						-26.3	ft. Top of Screen
	screen to first joint	i	0.3'		· ·	IV.E	= :1]			
	ength of casing	1 3	4.8			1:1	= :		6.0	ft. Total Screen Interva
	slot size	1	0.010				\equiv			,
	enings in screen				•	li, E	=::1			
: 01 op		1	6			1 12E	= =		າາ າ	ft. Bottom of Screen
-	ter of borenole (in)	1				1.	- 1			

Illinois Environ		_			Well	omple	tion Report
Site #: 1678250020		County _	Sangamo	n	We	ll a	G-104
Site Name: CWLP - Ash	Disposal Fac	ility G	rid Coordinate:	Northing _	2296.9	4	Farring 938.06
Drilling Contractor: Profe	ssional Serv	ice Industri	es. Inc.	D-1- D		Ianu	221. 12 1000
Driller: B. Williams	SOD.	6.		_ Date Di	illed Star	t: Jalia	ary 12, 1990
Drilling Method: Hollow	Stem Auger -	- 3½" I.D.	Dn	iling Fluid	s 'type::.	None	
Annular Space Details					Eleva	tions –	
Type of Surface Seal:CC	ncrete		T		533 532	<u>52</u> 95	MSL Top of Protective MSL Top of Riser Pipe
Type of Annular Sealant: Ce			<u>-</u> -			+2.3	ft. Casing Stickup
Amount of cement: # of b					530	65	MSL Ground Surface
			50	1 2	<u></u>	-2.8	ft. Top of annular seal
Amount of bentonite: # of	bags U. Ibs.	. per bag 30		72.6			
Type of Bentonite Seal (Grand	ılar. Pellet): <u>Pel</u>	let	7	10			
				(A)			
Amount of bentonite: # of Bag	s0.6	lbs. per bag 50	<u>\</u>	000			
Type of Sand Pack: Silica	Sand (Marco-	Sandblasting					
Source of Sand: Henry Nel	ich & Son Co.	. Sprinofiel	d II.				٠,
Amount of Sand: # of bag.	3	lbs. per bag	<u> </u>				
Well Construction Mat	erials						
٢			İ				
	ype ype	ура	/pe	111			
	ICHS ICHS	Y Y	y T,				
	Steinless Steel Specify Type Teffon Specify Type	PVC Specify Type Other	Specify Type				
Riser coupling joint	N N N F N		S				
Riser pipe above w.t.		2"					
Riser pipe below w.L.		2"					
Screen		2"					
Coupling joint screen to riser							
Protective casing		6''X	5'				
		Ste	el				
Measurements	to .01 ft. (v	where applicable)	\boxtimes	X X		21.5	ft. Top of Seal
Pierra lange	F %		, 🛚 🔆		-	2.1	ft. Total Seal Interval
Riser pipe length Protective casing length	27.9! 5!						ft. Top of Sand
Screen length	6'						
Bottom of screen to end cap	0.31					-25.6	ft. Top of Screen
Top of screen to first joint	0.3'			· [. ',			
Total length of casing	33.9			三日		6.0	ft. Total Screen Interv
Screen slot size	0.010		:	三月	***************************************		10.01 00.001 111.01
: of openings in screen	•			;E:f			
Diameter of borehole (in)	6			· E :		-31.6	ft. Bottom of Screen
ID of riser pipe (in)	2			17-34	***************************************	-36.0	ft. Bottom of Borenois
Completed by:		Surveyed by	:				ft. Bottom of Bores

Illinois Environ	mental	Protecti	on Agend	ey .				Well (Comple	tion Report
Site #: 1678250020			Cou	ntyS	Sanga	mon				G-105 / G120
Site Name: CWLP - Ash										
Drilling Contractor: Profe										
Driller: B. William:								(Re-Dri	leted: January 16, 1 1led w/4!" I.D.)
Drilling Method: Hollow	Stem A	uger -	3½" I.D	& 41"	L.D	Drillin	g Fluid	s Ityper:	None	1.0.)
Annular Space Details	3								tions -	.01 ft.
Type of Surface Seal:Co	oncrete			_			=	<u>553</u> 553	<u>49</u> 25	MSL Top of Protective Cas MSL Top of Riser Pipe
Type of Annular Sealant: Co						7	<u> </u>	-		ft. Casing Stickup
Amount of cement: # of 1								553	49	MSL Ground Surface
					. 🚣		3		-2.9	MSL Ground Surface ft. Top of annular sealant
Amount of bentonite: # 0	f bags	· Z lbs.	per bag <u>50</u>	-			70			
Type of Bentonite Seal (Grant	ular. Pellet	: _Pell	et	-		A	0			
	0	c		 50		74.2	F.100 P.4101.4			
Amount of bentonite: = of Bag							13			
Type of Sand Pack: Silica	Sand (1	Marco-S	andblast	ting)						.,
Source of Sand: Henry Ne.	lch & S	on Co.,	Spring	field.	L					
Amount of Sand: # of bag	1.8		lbs. per bag	100						
			,				-			
Well Construction Mat	erials									
	2	9	0	9						
	Stainleus Steel Specify Type	Tyf	Typ	Typ						
•	inle el ccify	lon cify	د د د	er cify						
	Ste Ste Spe	Teflon Specify Typo	PVC Specify Typo	Other Specify Type				•		
Riser coupling joint										
Riser pipe above w.t.			2"							
Riser pipe below w.t.			2"							
Screen ,			2"							
Coupling joint screen to riser										*
Protective casing			<u> </u>	6"X5' Steel					*	
Measurements		01 6 ()	here applica						-40.5	ft. Top of Seal
measurements -	* ·.		nere applica	DIE)		\boxtimes				
Riser pipe length		3.9								ft. Total Seal Interval
Protective casing length		Mount				∞	<u> </u>		-42.5	ft. Top of Sand
Screen length		61								
Bottom of screen to end cap		0.3'				1:2-	4:4		-43.8	ft. Top of Screen
Top of screen to first joint		0.3'				1:1	4:31			
Total length of casing		9.9					$\exists \mathbb{R}$		6.0	ft. Total Screen Interval
Screen slot size		0.010				::- <u> </u>	=:			
% of openings in screen						: "E	=::			
Diameter of borehole (in)		3				1:E	=5.1			ft. Bottom of Screen
ID of riser pipe 'in'		2					34 44.	the same of the sa		ft. Bottom of Borenole
Completed by:			Survey	ed by:					. III. regis	tration =

1678250020			n Agend		anga	mon		Well (ort
Site Name:CWLP Ash	Disposa	l Faci	lity	Grid Co	ordina	e: Nor	thing	1760.4	4	F	983.64
Orilling Contractor: Pro											
Oriller: <u>B. Williams</u>	son	Ge	ologist:		-				ate Com	pleted: Feb	ruary 23
Orilling Method: Hollo	ow stem a	uger-	3½" I.D),		Drilin	g Fluid	sitypei:.	nor	ıe	
Annular Space Details	3							Eleva		01 ft.	
Type of Surface Seal:	Concret	e		-		TF	=	$\frac{525}{525}$	37	MSL Top	of Protective of Riser Pipe
Type of Annular Sealant:	Cement/Be	ntonit	e grout	-		$\overrightarrow{-}$			_1_2	ft. Casing	Stickup
Amount of cement: # of }			_					524	_17	MSL Grou	ınd Surface
					4		100		-3.0	ft. Top of	annular seal
Amount of bentonite: # o	of bags _U.1	lbs. pe	er bag <u>50</u>	-		9	8				
Type of Bentonite Seal (Grant	ular. Pellet): .	Pell	et:	-		A	:00				
mount of bentonite: # of Bag	0.8	11	bs. per bag	50		- V	Viol. 5:01.*				
ype of Sand Pack: Silica)	7					
				_							
ource of Sand: Henry 1	Netch & S	on Co.	Sprii	ngileld	, IL						
Amount of Sand: # of bag	2.0	11	bs. per bag	100_0)						
Vell Construction Mat	terials					!					
1		T									
1	3	be	2	2			1 1				
		2	,=	Ϋ́							
	iless fy Ty	ry Ty	fy T'yı	fy Typ							
	tainless iteel pucify Ty	cflon pecify Ty	VC pecify Ty _I	ther pecify Typ							
Riser coupling joint	Stainless Steel Spucify Type	Teflon Specify Type	PVC Specify Type	Other Specify Type							
Riser coupling joint	Stainless Steel Spucify Ty	Teflon Specify Ty		Other Specify Typ							
Riser pipe above w.t.	Stainless Steel Specify Ty	Teflon Specify Ty	 3"	Other Specify Typ							
Riser pipe above w.t. Riser pipe below w.t.	Stainless Steel Specify Ty	Teffon Specify Ty	3" 3"	Other Specify Typ							
Riser pipe above w.t.		Teflon Specify Ty	 3"	Other Specify Typ							
Riser pipe above w.t. Riser pipe below w.t. Screen		Teflon Specify Ty	3" 3" 3"	Other Specify Typ							
Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing			3" 3" 3" 	6"x5"					-16	5 to Tan of	Sani
Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser)] [t. (wh	3" 3" 3"	6"x5"						5 ft. Top of	
Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing	to .0	DIft (who	3" 3" 3" 	6"x5"					5.	6 ft. Total S	Seal Interval
Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing Measurements	to .0)] [t. (wh	3" 3" 3" 	6"x5"					5.		Seal Interval
Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing Measurements Riser pipe length	to .0	01 ft (who	3" 3" 3" 	6"x5"					5. -22.	ft. Total S	Seal Interval f Sand
Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing Measurements Riser pipe length Protective casing length	to .0	01 ft (who	3" 3" 3" 	6"x5"					5. -22.	6 ft. Total S	Seal Interval f Sand
Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing Measurements Riser pipe length Protective casing length Screen length	to .0	01 ft. (who	3" 3" 3" 	6"x5"					5. -22.	ft. Total S	Seal Interval f Sand
Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing Measurements Riser pipe length Protective casing length Screen length Bottom of screen to end cap	to .0	01 ft. (who	3" 3" 3" 	6"x5"						6 ft. Total S I ft. Top of O ft. Top of	Seal Interval f Sand 'Screen
Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing Measurements Riser pipe length Protective casing length Screen length Bottom of screen to end cap Top of screen to first joint	to .0	01 ft (who 31.3' 5' 8' 0.3' 0.3'	3" 3"	6"x5"						6 ft. Total S I ft. Top of O ft. Top of	Seal Interval f Sand 'Screen
Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing Measurements Riser pipe length Protective casing length Screen length Bottom of screen to end cap Top of screen to first joint Total length of casing	to .0	01 ft (who 31.3' 5' 8' 0.3' 0.3' 39.3'	3" 3"	6"x5"						6 ft. Total S I ft. Top of O ft. Top of	Seal Interval f Sand 'Screen
Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing Measurements Riser pipe length Protective casing length Screen length Bottom of screen to end cap Top of screen to first joint Total length of casing Screen slot size	to .0	01 ft. (who 31.3' 5' 8' 0.3' 0.3' 0.010	3" 3"	6"x5"					5. -22. -27.	6 ft. Total S I ft. Top of Oft. Top of	Seal Interval f Sand 'Screen Screen Inter
Riser pipe above w.t. Riser pipe below w.t. Screen Coupling joint screen to riser Protective casing Measurements Riser pipe length Protective casing length Screen length Bottom of screen to end cap Top of screen to first joint Total length of casing Screen slot size To of openings in screen	to .0	01 ft (who 31.3' 5' 8' 0.3' 0.3' 0.3' 0.010	3" 3"	6"x5"					5. -22. -27.	6 ft. Total S I ft. Top of Oft. Top of	Seal Interval f Sand 'Screen

	onmenta	l Protec	tion Age	ncy				Well	Compl	letion Rep	ort
Site =: 16782500	20			ounty	Sangar	mon		. "	/all ≈	G-110	
City Wat	ndfill/ er, Light	and Pov	ver	Grid	Coordina	te: Nor	thing	372	3.6	Easting	2315.7
Drilling Contractor:	AE Explo	oration C	Corporati	lon			Date	Drilled Sta	art:	07/12/9	3
Driller: M. Moore											
Drilling Method:											
Annular Space Deta		, ,						· · · · · · · · · · · · · · · · · · ·		01 ft.	
Type of Surface Seal:		ete				T		557 557	_20	MSL Top	of Protective Co
Type of Annular Sealant: _			nite							ft. Casing	
Amount of cement: # o		_		E.	. ,	4		554	_50	MSL Grou	ind Surface
Amount of bentonite:	-				20		81		0	_ ft. Top of	annular sealan
				***************************************			0				
Type of Bentonite Seal (Gra	nular, Pelle	:::		_			0				a di
Amount of bentonite: = of B	n rre	1	the ner had	50		The Variable States	2001/2018 (101A			•	
Type of Sand Pack: #10					,		2	ĺ			
											•
Source of Sand: Best Env	ironmen	tal - Cha	ardon, O	H							
Amount of Sand: = of be	gs	10	lbs. per bag	50	٠.						
Vall Construction Ma	terials	,			i				**	•	
					, !						
	Stainless Steel Specify Type	'ſype	y Pe	Туре				٠			
	less fy T	, <u>7</u>	Ty T	5		.			•		
	Lain	Teflon Specify	PVC Specify Type	Other Specify	i						
Riser coupling joint	Flush	F 20	= 0	0.8	1						
Riser pipe above w.t.	304										•
Riser pipe below w.t.	304				i				ř		•
Screen	304										
Coupling joint screen to rise	Flush							٠			
Protective casing				Steel							
deasurements	17	. 01 ft. (w)	iere applica	blet	į			37_	0_	ft. Top of S	ieal
	•		арриса	012	. }	\boxtimes	\bowtie	. 5	0	•	
Riser pipe length		47.11'			l ĝ	\boxtimes	\bowtie	42	0	ft. Total Se	
rotective casing length		5.0'	*******					-	-	ft. Top of S	Sand
ocreen length		10.0'		,	i			44 .	5		
Bottom of screen to end cap		0.21		·			12.	-		ft. Top of S	creen
op of screen to first joint		0.065			1			4.5			
otal length of casing		57.11'						10	0	ft. Total Sc	reen Interval
		.01"									
creen slot size					1.	:	1 .: 1				
of openings in screen		8.0"			.].						

'Illinois Environ	nmental	Protect	ion Agen	сy			Well	Comple	tion Report
1678250020 Site #:			Cov	intv	Sangam	on	w	.11 -	G-111
City Wate	r, Light	& Powe	er	Grid (Coordinate:	Northin	4445.	0	G-111 2249.0 Easting
illing Contractor: A	E Explo	ration C	orporati	on		Date	Drilled Star	t:Ju	aly 20, 1993
Driller: A. Weisenho									
Drilling Method: Hollo	w Sten	Auger			Dr	illing Flo	uids (type):	N/	'A
Annular Space Detail Type of Surface Seal:	Concre	te t/Benton	·		· I		Eleya 555 555	tions - .83 .63	01 ft. MSL Top of Protective Casing MSL Top of Riser Pipe ft. Casing Stickup
Type of Annular Sections:		•		-	T	$\gamma \Pi$	- 553		MSL Ground Surface
Amount of cement: # of					4.			_60	MSL Ground Surface [t. Top of annular sealant
Amount of bentonite: #							**		200
Type of Bentonite Seal Gran	ular. Pelle	e): Bento	nite Gro	ut	Y				
Amount of bentonite: # of Ba	gs1/2		lbs. per bag	50	- - 1/285473		3		
Type of Sand Pack:	Quartz	sand (10	20)		-				•
Source of Sand:	Best Sa	nd			_				
Amount of Sand: # of bag	4 1,	/2	lbs. per bag	50	-				
Well Construction Ma	terials								
		·			7				
error	Stainleus Steel Specify Type	Tefton Specify Type	PVC Specify Type	Other' Specify Type					
Riser coupling joint	304	F 6:	Sch 40	0 %	1				
Riser pipe above w.t.			Sch 40		1				
Riser pipe below w.L.	304				1				
Screen	304				1				
Coupling joint screen to riser	304				7				
Protective casing				Steel					
Measurements .	t	o .01 ft. (wh	nere applicat	ole)	8		48 5	.00	ft. Top of Seal
Riser pipe length		56.55 fe	et] 🔉	$\stackrel{>}{lpha}$	53	.08	ft. Total Seal Interval
Protective casing length		5.0 fee	t				1	-	ft. Top of Sand
Screen length		4.72 fe					54	.61	
Bottom of screen to end cap		0.27 fe	et] :/	出 :	1		ft. Top of Screen
Top of screen to first joint		0.21 fe	et			H.		77	
Total length of casing		61.75 fe				日	4	.72	ft. Total Screen Interval
Screen slot size		0.01 in	ches			H			
" of openings in screen						; □:	7		
Diameter of borehole (in)		8.0 inch	nes].	二二	59	.33	ft. Bottom of Screen
ID of riser pipe (in)		2.0 incl	nes			~ 57 V.	59	.60	ft. Bottom of Borehole
Db11.7	T			/	wep	2.01	1 Dave		ration = 2098
Completed by Rhonald I	1aseyan	ger	Surveye	ed by	u/U	NIC	((YaViS	Ili. regist	ration = CO

-			h.	
- 40	- 37	- 48		
100		-21		k.
				ě,
100				P
-				۳
	468			

	is gavironmental Protection	и Аденсу		Well Com	pienon Keport
Site Numb	er: 1678250020	County:	Sangamon		
Site Name: City	Water Light & Power La				Well #: R111
State E2456708 Plane Coordinate: 3	.31/N1129507.08 KY(or) Latitude:	o ' "	o ongitude;	4 44	Borehole #: R111
Surveyed by:			IL Registration	n #:	
Drilling Contract	or: SKS Engineers, Inc.	PANTA Andrew Speciments	Driller: D.		
Consulting Firm:		-	Geologist:N	I/A	
Drilling Method:	Hollow Stem Auger	***************************************	Drilling Fluid	(Type): Nor	ne
Logged By:D	. Baldwin (SKS Engineer	cs, Inc.)			Date Finished; 5/29/09
Report Form Completed By: _	D. Baldwin		Date: 7/2/	09	
ANNULAR	SPACE DETAILS		Elevations (MSL)*	Depths (BGS)	(.01ft.)
		T	552.69	0.0	Top of Protective Casing
	×		552.39	30	Top of Riser Pipe
Type of Surface Sea	al: Concrete		552.69	0.0	Ground Surface
Type of Annular Se	alant: Bentonite		549.69	3.0	Top of Annular Sealant
Installation Meth	nod: Slurry	4	organism Regional		Static Water Level
Setting Time:	1			-	(After Completion)
	Geal Granular, Pellet, Slurry (Choose One)	88 88	549.69	3.0	Top of Seal
Installation Meth	nod: Tremie	8 8	502.59	50.1	Top of Sand Pack
Setting Time:			501.49	51.2	Top of Screen
Type of Sand Pack:	Quartz Sand		495.89	56.8	Bottom of Screen
Grain Size: 10	(Sieve Size)		495.59	57.1	Bottom of Well
	hod: Free Drop	Tongsophmon accommunication and	495.59 * Referenced	57.1 I to a National Ge	Bottom of Borehole
Type of Backfill Ma	iterial: (if applicable)	CA	SING MEASURN		
Installation Meth	od:		meter of Borehole (incl		8
VELL CONSTRUCT	ION MATERIAL use one type of material for each area)	ID Pro	of Riser Pipe (inches) tective Casing Length (feet)		Flush Mount
otective Casing iser Pipe Above W.T. iser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other SS304, SS316, PTFE, PVC, or Other SS302-SS316, PTFE, PVC, or Other	Bot Scr Tot	tom of Screen to End C een Length (1st slot to la al Length of Casing (fee een Slot Size **	st slot) (feet)	51,2 ,31 4 72 56.8 ,010
reen	SS304) SS316, PTFE, PVC, or Other		and Slotted Well Scree	me are I leases	hla

Illinois Environ	mental	Protection	on Agenc	У .			Well C	omple	tion Report
Site 4: 167825002	20		Cour	S	angamo	n.	Wel	1 =	G-112
City Water,	Light &	Power		C1 C					2560.6
illing Contractor:	E Explor	ation C	orporatio	n one c	oorgmate	tortilling			July 21, 1993
illing Contractor:	for			D Has	CONVIGOR	Date I	Orilled Star	t:	Tuler 22 1002
Driller:	nei o	G	eologist:	N. IIas	senyager		D		July 23, 1993
Holl Drilling Method:	ow Sten	a Auger			Dril	ling Flui	ds (type): _	N/	'A
Diffill State of the state of t									
Annular Space Details							Elevai 555		01 ft. MSL Top of Protective Casing
Type of Surface Seal:	Concret				· I		554	-88	MSL Top of Riser Pipe ft. Casing Stickup
Type of Annular Sealant:	Cement/	Bentoni	te		T	Ϋ́ΤΤ			
Amount of cement: # of	8 Dags	lbs. p	er bag		60	10	552	.10	MSL Ground Surface ft. Top of annular sealant
Amount of bentonite: #-0		172.	50		4	1 3			it. Top of annutar seatant
		Bento	onite Gro	ut	N	8			
Type of Bentonite Seal (Gran	ular. Pellet):			ATTE BENTY	1			
	1/2			50		6. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15			
Amount of bentonite: # of Bag					9	E			
Type of Sand Pack:			(1020)						•
Source of Sand:		Sand							
Amount of Sand: # of bag	,s <u> </u>		lbs. per bag	50		-			
Well Construction Ma	terials								
	u	e	e	6	1				
personal designation of the second se	Typ	Гур	Typ	Typ					
5	nles ify	en iify	ify.	er :ify					
	Stainleas Steel Spacify Type	Teflon Specify Type	PVC Specify Type	Other Specify Type					
Riser coupling joint	304		Sch 40]				
Riser pipe above w.t.			Sch 40						
Riser pipe below w.t.	304				1 1				
Screen	304				4 1				
Coupling joint screen to rise	304			Steel	-				
Protective casing				Steel]				
Measurements	t	o .01 (t. (w)	here applical	ble)	×		46	.10	ft. Top of Seal
					າ 🎖		5		ft. Total Seal Interval
Riser pipe length		54.81 fee			-		51	.17	ft. Top of Sand
Protective casing length		5.0 fee			4 1		52	.78	
Screen length Bottom of screen to end cap		0.29 fe			1 13				ft. Top of Screen
Top of screen to first joint					1 10	. 🖃 : 5			
Total length of casing	-	0.21 fe			┤ │:		4	.73	ft. Total Screen Interval
Screen slot size	,	0.01 in			1 1:			-	a vone verbell litter
to of openings in screen				,	7 18	; 日:	1		
Diameter of borehole (in)		8.0 incl	nes		7. 12	.目.	57	.51	ft. Bottom of Screen
ID of riser pipe (in)		2.0 incl	THE RESERVE THE PERSON NAMED IN COLUMN 2 I			· · · · · · · · · · · · · · · · · · ·	57	.80	ft. Bottom of Borehole
	A		*.=*			\ ;	1		
Completed by: Rhonald	Hasen	yager	Survey	ed by	WP-	Rich	Drus	_ III. regi	stration = 2098

.

Well Completion Report

Site Number: 1678250020	County: Sangamon
Site Name: FGDS Development Landfill	Well #: AW-1
State o Plane Coordinate: X Y (or) Latitude:	Longitude: Borehole #: <u>AW-1</u>
N 4512.2 E 2030.49 Surveyed by: David Mihelsic	
Drilling Contractor: Reynolds Drilling Corp.	IL Registration #: 3762 Driller: Andrew Rachford
Consulting Firm: Rapps Engineering & Applied Science	
Drilling Method: HSA	Geologist, Kell Miller
Logged By: Ken Miller	Drilling Fluid (Type): NA Date Started: 12/29/08 Date Finished: 12/30/08
Report Form Completed By: Ken Miller	Date Started: 12/29/08 Date Finished: 12/30/08 Date: 5/18/09
ANNULAR SPACE DETAILS	Elevations Depths (.01ft.) (MSL)* (BGS)
	Top of Protective Casing
	<u>555.60</u> <u>-2.75</u> Top of Riser Pipe
Type of Surface Seal: Cement	
Type of Annular Sealant: Bentonite Grout	549.85 3.00 Top of Annular Sealant
Installation Method: <u>Tremie</u>	Static Water Level
Setting Time: _>24 hrs	(After Completion)
Type of Bentonite Seal Granular Pellet, Slurry	
Installation Method: Poured	510.90 41.95 Top of Sand Pack
Setting Time: 20 hrs	508.90 43.95 Top of Screen
Type of Sand Pack: Quartz Sand	498.90 _53.95 Bottom of Screen
Grain Size: 50 (Sieve Size)	498.51 54.34 Bottom of Well
Installation Method: Poured	498.51 54.34 Bottom of Borehole
Type of Backfill Material:	* Referenced to a National Geodetic Datum
(if applicable) Installation Method:	CASING MEASURMENTS
WELL CONSTRUCTION MATERIAL	Diameter of Borehole (inches) 8.25 ID of Riser Pipe (inches) 2
(Choose one type of material for each area)	Protective Cosing Length (feet) 5 Riser Pipe Length (feet) 46.70
Protective Casing SS304, SS316, PTEP, PVC, or Other Riser Pine Above W.T. SS304, SS316, PTEP (PVC) or Other	Bottom of Screen to End Cap (feet) 0.4 Screen Length (1st slot to last slot) (feet) 10
Riser Pine Below W.T. SS304, SS316, PTFE PVC or Other	Total Length of Casing (feet) 57.09
Screen SS304, SS316, PTFE PVC or Other	Screen Slot Size ** 0.010 **Hand-Slotted Well Screens are Unacceptable

Well Completion Form (revised 02/06/02)

Well Completion Report

Site Name: FGDS Development Landfill State Plane Coordinate: XY (or) Latitude: Longitude: Borchole #: AW **N 5480.91	7-2
Plane Coordinate: X Y (or) Latitude: Longitude: Borchole #: AW Surveyed by: David Mihelsic Drilling Contractor: Reynolds Drilling Corp. Consulting Firm: Rapps Engineering & Applied Science Drilling Method: HSA Logged By: Ken Miller Date Started: 1/2/09 Date Finished: 1/2 Report Form Completed By: Ken Miller ANNULAR SPACE DETAILS Elevations Depths (MSL)* (BGS) Top of Protective	
Surveyed by: David Mihelsic Drilling Contractor: Reynolds Drilling Corp. Consulting Firm: Rapps Engineering & Applied Science Drilling Method: HSA Logged By: Ken Miller Report Form Completed By: Ken Miller Date Started: 1/2/09 Date Finished: 1/2 ANNULAR SPACE DETAILS Elevations Depths (MSL)* (BGS) Top of Protective	
Drilling Contractor; Reynolds Drilling Corp. Consulting Firm; Rapps Engineering & Applied Science Drilling Method: HSA Logged By; Ken Miller Date Started; 1/2/09 Date Finished: 1/2 Report Form Completed By; Ken Miller ANNULAR SPACE DETAILS Elevations Depths (MSL)* (BGS) Top of Protective	
Consulting Firm; Rapps Engineering & Applied Science Drilling Method: HSA Logged By: Ken Miller Date Started: 1/2/09 Date Finished: 1/2 Report Form Completed By: Ken Miller Date: 5/18/09 Elevations Depths (MSL)* (BGS) Top of Protective	
Drilling Method: HSA Logged By: Ken Miller Date Started: 1/2/09 Date Finished: 1/2 Report Form Completed By: Ken Miller Date: 5/18/09 Elevations Depths (.01ft.) (MSL)* (BGS) Top of Protective	
Logged By: Ken Miller Date Started: 1/2/09 Date Finished: 1/2 Report Form Completed By: Ken Miller Date: 5/18/09 ANNULAR SPACE DETAILS Elevations Depths (.01ft.) (MSL)* (BGS) Top of Protective	/09
Logged By: Ken Miller Date Started: 1/2/09 Date Finished: 1/2 Report Form Completed By: Ken Miller Date: 5/18/09 ANNULAR SPACE DETAILS Elevations (MSL)* (BGS) Top of Protective	/09
Report Form Completed By: Ken Miller Date: 5/18/09 ANNULAR SPACE DETAILS Elevations (MSL)* (BGS) Top of Protective	
(MSL)* (BGS) Top of Protective	
(MSL)* (BGS) Top of Protective	
<u>529.98</u> <u>-3.30</u> Top of Riser Pipe	Casing
1 1- 1 1	
Type of Surface Seal: Cement 526.68 0 Ground Surface	
Type of Annular Sealant: Bentonite Chips 523.68 3.00 Top of Annular Se	alant
Installation Method: Poured Static Water Leve	l
Setting Time: _>24 hrs(After Completion)
Type of Bentonite Seal Granular Pellet, Slurry	
(Choose Une) 509.86 16.82 Top of Seal	
Installation Method: Poured Sand Pack	
Setting Time: >24 hrs 504.8621.82 Top of Screen	
Type of Sand Pack: Quartz Sand 494.86 31.82 Bottom of Screen	
Grain Size: 50 (Sieve Size) 494.46 32.22 Bottom of Well	
Installation Method: Poured 494.46 32.22 Bottom of Borehol * Referenced to a National Geodetic Datum	3
Type of Backfill Material: (If applicable) CASING MEASURMENTS	
Installation Method;	
WBLL CONSTRUCTION MATERIAL District of Borehole (inches) 8.25	
(Choose one type of material for each area) Protective Casing Length (feet) 5 Riser Pipe Length (feet) 25.12	
Protective Casing SS304, SS316, PTFB, PVC, or Other Bottom of Screen to End Cap (feet) 0.4	
Riser Pine Above W.T. SS304. SS316. PTFE(PVC) or Other Riser Pine Below W.T. SS304. SS316. PTFE(PVC) or Other Total Length of Casing (feet) 15.52 Total Length of Casing (feet) 15.52	
Screen SS304, SS316, PTFE PVC or Other Screen SS304, SS316, PTFE PVC or Other Screen Slot Size ** across are Unacceptable **Hand-Slotted Well Screens are Unacceptable	

Well Completion Report

Site Number: 1678250020	County: St	angamon		*
Site Name: FGDS Development Landfill				Well#: AW-3
State O Plane Coordinate: X Y (or) Latitude:	Lone	o gitude:	9 99	Borehole #: AW-3
Finish Containing, A I (0) January		Party of the Principles Section		
Surveyed by: David Mihelsic		IL Registration	#: <u>3762</u>	
Drilling Contractor: Reynolds Drilling Corp.	-	Driller: Andre	w Rachford	
Consulting Firm; Rapps Engineering & Applied Scien	ice	Geologist: Ker	Miller	
Drilling Method: HSA		Drilling Fluid ((Type); NA	
Logged By: Ken Miller	Фрифинация	Date Started: 1	2/30/08	Date Finished: 12/31/08
Report Form		Date: 5/18/09		addition (A)
Completed By: Ken Miller	A CONTRACTOR ASSESSMENT OF THE PARTY OF THE			
ANNULAR SPACE DETAILS		Elevations (MSL)*	Depths (BGS)	(.01ft.)
				Top of Protective Casing
		540.33	2.58_	Top of Riser Pipe
Type of Surface Seal: Cement		- <u>537.75</u>	o .	Ground Surface
To a S. A souther Section Bostonite China		534.75	3.00	Top of Annular Sealant
Type of Annular Sealant: Bentonite Chips				Static Water Level
Installation Method: Poured			-	(After Completion)
Setting Time; >24 hrs		•		
Type of Bentonite Seal Granular Pellet, Slurry (Choose One)		511.32	26.43	Top of Seal
Installation Method: Poured		508.32	29.43	Top of Sand Pack
Setting Time: 16 hrs		506.32	31.43	Top of Screen
Type of Sand Pack: Quartz Sand		496.32	41.43	Bottom of Screen
Grain Size: 50 (Sieve Size)		495.92	41.83	Bottom of Well
Installation Method: Poured		495.92 * Referenced	41.83 to a National Ge	Bottom of Borehole
Type of Backfill Material: (fapplicable)	CAS	SING MEASURM		
Installation Method:	Diam	eter of Borshole (inch	(68)	8.25
WELL CONSTRUCTION MATERIAL (Choose one type of material for each area)	· Prote	Riser Pipe (inches) ctive Casing Length (fbat) .	2 5 34.01
Protective Casing SS304. SS316. PTFB. PVC. on Other	Botto	Pipe Length (fest) om of Screen to End C on Length (1st slot to Is		0.4
Riser Pipe Below W.T. SS304. SS316. PTFBCPVC or Other Riser Pipe Below W.T. SS304. SS316. PTFBCPVC or Other	Total	Longth of Casing (fee		44.41 0.010

Well Completion Form (revised 02/06/02)

Tilliois Ellali	onmental Protection A	gency		Well Completion	on Report
Site #: 1678250020	Well #: G121				
Site Name: City Water, L	ight & Power - FGDS Developmen	nt		Borehole #:_B	96-1
Coordinates: X 2,481.5	Y_5,615.9	(or)	Latitude: ° '	" Longitude:	0 1 11
	avis, City Water, Light & Power				
	Exploration Corp.				
Driller: A. Wiesenhofer					
Orilling Method: Hollow s	tem auger				
	3				
Date Well Started: 05/16			26	orm Completed: 07/12	
			ELEVATION	DEPTH (0.01 ft)	
			(MSL)° 556.04	(BGS)*	
	٦	T		-2.24 Top of Pro	tective Casing
ANNULAR SPA	CE DETAILS		555.67	-1.87 Top of Rise	er Pipe
Type of surface seal:	Concrete	1		00	
			553.80	.00 Ground Sur	face
Type of annular sealant	· High-solids bentonite	-	552.30	1.50 Top of Ann	ular Sealant
Installation method:	Tremi			261 361	
24± b	- Cura		528.55	25.25 Static Wate	r Level
Setting time: 24+ h	lours			(after comp	on 5/24/96 letion)
	<u></u>				
Type of bentonite seal	- Ganular, Pellet, Slurry (circle one)	1 m			
Installation method:			506.60	47.20 Top of Sea	I
Setting time: 70 mir	nutes		504.00	49.80 Top of San	dnack
Type of sand pack: Qua	artz sand				apack
Grain size: 10/20	_ (sieve size)		501.93	51.87 Top of Scre	en
Installation method:	Free drop			100 01 001	2611
installation lifethod.					
			497.96	55.84 Bottom of S	creen
Type of backfill material			496.86	56.94 Bottom of W	
Installation method:	(if applicable)		497.10	56.70 Bottom of B	lorehole
NOTES:			Referenced to a positive (+) values	National Geodetic Vertical Datum s below GS, negitive (-) values abou	
				G MEASUREMENT	
			Diameter of Bore	ehole (in)	8.0
			ID of Riser Pipe		2.0
WELL CONC.	TRUCTION MATERIAL C		Protective Casin	g Length (ft)	5.0
WELL CONST	RUCTION MATERIALS (circle one)		Riser Pipe Lengt		53.74
Protective Casing	SS304, SS316, PTFE, PVC or Other: Sta	eel	Bottom of Scree	n to End Cap (ft)	1.10
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC or Other:			ist slot to last slot] (ft)	3.97
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC or Other:		Total Length of		58.81
Screen	SS304, SS316, PTFE, PVC or Other:		Screen Slot Size	¥	#10 (0.01")
(AE950315)			*Hand-slotted well screens a	re unacceptable.	

Illinois Environmental Protection Agend	Well Completion	n Report						
Site #: 1678250020 County: Sangar	mon Well #: G122							
Site Name: City Water, Light & Power - FGDS Development	Borehole #+ BS	96-2						
Coordinates: X 2,305.1 Y 5,613.2 (or								
Surveyed by: Richard Davis, City Water, Light & Power IL Registration #:								
Drilling Contractor: AE Exploration Corp. Co								
Driller: A. Wiesenhofer Ge		eering, me.						
Drilling Method: Hollow stem auger Logged by: R. Hasenyager								
	port Form Completed by: R. Hasenyager							
Date Well Started: 05/20/96 Date Well Finished: 05/20		/06						
and the state of t		790						
	(MSL)* (BGS)*							
T	554.87 -2.17 Top of Prot	tective Casing						
ANNULAR SPACE DETAILS	554.44 <u>-1.74</u> Top of Rise	r Pipe						
Type of surface seal: Concrete								
	552.70 .00 Ground Surf	1						
Type of annular sealant: High-solids bentonite	551.70 1.00 Top of Anni	ular Sealant						
Installation method: Tremi	526.51 26.19 Static Wate	rlevel						
Setting time: 24+ hours	Measured (after comple	on 5/24/96						
		1						
Type of bentonite seal – Ganular, Pellet, Slurry (circle one)	T							
Installation method: Free drop	507.20 45.50 Top of Seal							
Setting time: 45 minutes	504.90 47.80 Top of Sand							
Type of sand pack: Quartz sand/formation sand	- Top or sand	раск						
Grain size: 10/20 (sieve size)	501.07 51.63 Top of Scre	200						
Installation method: Free drop								
	497.10 55.60 Bottom of S							
Type of backfill material: n/a	497.10 55.60 Bottom of S 496.00 56.70 Bottom of W							
(if applicable) Installation method: n/a	494.00 58.70 Bottom of B	orobolo						
NOTES:	Referenced to a National Geodetic Vertical Datum positive (+) values below GS, negitive (-) values above							
	CASING MEASUREMENTS							
	Diameter of Borehole (in)							
	ID of Riser Pipe (in)	8.0						
WELL CONCEDURE	Protective Casing Length (ft)	2.0						
WELL CONSTRUCTION MATERIALS (circle one)	Riser Pipe Length (ft)	5.0						

Protective Casing	SS304, SS316, PTFE, PVC or Other: Steel
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC or Other:
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC or Other:
Screen	SS304, SS316, PTFE, PVC or Other:
(AE950315)	

Diameter of Borehole (in)	8.0
ID of Riser Pipe (in)	2.0
Protective Casing Length (ft)	5.0
Riser Pipe Length (ft)	53.37
Bottom of Screen to End Cap (ft)	1.10
Screen Length [1st slot to last slot] (ft)	3.97
Total Length of Casing (ft)	58.44
Screen Slot Size [‡]	#10 (0.01")
*Hand-slotted well screens are unacceptable.	

Site #: 1678250020 County: Sangamon Well #: G123 Site Name: City Water, Light & Power - FGDS Development Borehole #: B96-3 Coordinates: X 2.481.5 Y 5.615.9 (or) Latitude: " " Longitude: " " Surveyed by: Richard Davis, City Water, Light & Power IL Registration #: LS-2098 Drilling Contractor: AE Exploration Corp. Consulting Firm: Andrews Environmental Engineering, Inc. Driller: A. Wiesenhofer Geologist: Rhonald Hasenyager Drilling Method: Hollow stem auger Logged by: Rhonald Hasenyager
Coordinates: X 2,481.5 Y 5,615.9 (or) Latitude: o ' " Longitude: o ' " Surveyed by: Richard Davis, City Water, Light & Power IL Registration #: LS-2098 Drilling Contractor: AE Exploration Corp. Consulting Firm: Andrews Environmental Engineering, Inc. Driller: A. Wiesenhofer Geologist: Rhonald Hasenyager
Surveyed by: Richard Davis, City Water, Light & Power IL Registration #: LS-2098 Drilling Contractor: AE Exploration Corp. Consulting Firm: Andrews Environmental Engineering, Inc. Driller: A. Wiesenhofer Geologist: Rhonald Hasenyager
Drilling Contractor: AE Exploration Corp. Consulting Firm: Andrews Environmental Engineering, Inc. Driller: A. Wiesenhofer Geologist: Rhonald Hasenyager
Driller: A. Wiesenhofer Geologist: Rhonald Hasenyager
Drilling Method: Hollow stem auger Logged by: Rhonald Hasenyager
Drilling Fluids (type): n/a Report Form Completed by: Rhonald Hasenyager
Date Well Started: 05/16/96 Date Well Finished: 05/16/96 Date Form Completed: 07/12/96
ELEVATION DEPTH (0.01 ft) (MSL)* (BGS)*
554.30 -2.10 Top of Protective Casing
ANNULAR SPACE DETAILS 553.90 -1.70 Top of Riser Pipe
Type of surface seal: Concrete 552.20 .00 Ground Surface
Type of annular sealant: High-solids bentonite 550.70 1.50 Top of Annular Sealant
Installation method: Tremi
Setting time: 24+ hours 526.35 25.85 Static Water Level Measured on 5/24/96 (after completion)
Type of bentonite seal - Ganular, Pellet, Slurry (circle one)
Installation method: Free drop 515.40 36.80 Top of Seal
Setting time: 30 minutes 513.70 38.50 Top of Sandpack
Type of sand pack: Quartz sand
Grain size: 10/20 (sieve size) 511.77 40.43 Top of Screen
Installation method: Free drop
507.81 44.39 Bottom of Screen 506.70 45.50 Bottom of Well
Type of backfill material: Bentonite chips 506.70 45.50 Bottom of Well (if applicable)
Installation method: Free drop 495.20 57.00 Bottom of Borehole
NOTES: Referenced to a National Geodetic Vertical Datum positive (+) values below GS, negitive (-) values above GS
CASING MEASUREMENTS
Diameter of Borehole (in) 8.0
ID of Riser Pipe (in) 2.0
WELL CONSTRUCTION MATERIALS Protective Casing Length (ft) 5.0
(circle one) Riser Pipe Length (ft) 42.13
Protective Casing SS304, SS316, PTFE, PVC or Other: Steel Bottom of Screen to End Cap (ft) 1.11 Riser Pipe Above W.T. SS304, SS316, PTFE, PVC or Other: Screen Length (1st slot to last slot) (ft) 3.06

Total Length of Casing (ft)

*Hand-slotted well screens are unacceptable.

Screen Slot Size[¥]

47.20

#10 (0.01")

Riser Pipe Below W.T.

Screen

(AE950315)

SS304, SS316, PTFE, PVC or Other:

SS304, SS316, PTFE, PVC or Other:

MPOUNDMENT	MONITORING \	WELL CONSTR	APPENDIX B3: EUCTION REPORTS

Illinois Enviro	onmental Prote	ction Agency	,		Well C	Completion	n Report
Site #: County:_Sangamon		We	#:_AP-1R				
Site Name: City Water, L	ght, & Power				Во	rehole #:_AP-	· IR
Coordinates: X 831.70	Y_5132.4	O (or)	Latitude:_		_'" Lo	ingitude:°	, ,
Surveyed by:					IL R	egistration #:_	
Drilling Contractor: Terra	Drill, Inc.	Cons	sulting Fir	m: Andre	ews Enginee	ering, Inc.	
Driller: J. Brown	-	Geo	logist: M.	Hewitt			
Drilling Method: 4½" HSA w/ 5' Continuous Barrel Logged by: M. Hewitt							
Drilling Fluids (type):			ort Form C	Completed	d by:J. Rh	oades	
Date Well Started: 1/30/	2012 Date We	II Finished: 1/30/2	012	Date	Form Compl	eted: 2/27/2	012
			ELE	VATION (MSL)*	(BGS)*	(0.01 ft)	
		T	5	35.60	-2.50	Top of Prote	ective Casing
ANNULAR SPA	CE DETAILS		_	.00	533.10	Top of Riser	Pipe
Type of surface seal: C	oncrete		<u> </u>	33.10	.00	Ground Surfa	ace
Type of annular sealant	Bentonite Grout		/// 5	30.10		Top of Annu	
Installation method:							
Setting time: 2 Hour			-	n/a	n/a	Static Water Measured (after complet	Level
octing time.		_				(a.ta. aampia	
Type of bentonite seal:	Bentonite Chips	— TY	Ē				
Installation method:	Free drop	— 🛭 🗸	5	17.00	16.10	Top of Seal	
Setting time: 2 Hour	S	_ 🐰 🕃	5	13.51	19.59	Top of Sand	pack
Type of sand pack: Unit	min Sand	— (A) (B)					
Grain size: 10/20	_ (sieve size)		=	21.59	554.69	Top of Scree	en
Installation method:	Free drop						
			_	30.97	564.07	Bottom of Sc	
Type of backfill material	(if applicable)		_	31.50	564.60	Bottom of We	ell
Installation method:	675500 F 100050000000000000000000000000000		5	00.60	32.50	Bottom of Bo	rehole
			•	Referenced to	o a National Geod	etic Vertical Datum gitive (–) values above	GS
	:					SUREMENTS	
			Diamet	er of B	orehole (ii	n)	8.0
				Riser Pip			2.0
WELL BOXES		TAL C			sing Lengt	h (ft)	5.0
WELL CONST	RUCTION MATER	IALS	Riser F	ipe Len	gth (ft)		21.59
Protective Casing	SS304, SS316, PTFE, PV0	C or Other:Steel	Botton	n of Scr	een to En	d Cap (ft)	.53
Riser Pipe Above W.T.	55304, 55316, PTFE, PV	C, or Other:	Scree	n Length	r [1st slot to I	ast slot] (ft)	9.38
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVI	C, or Other:			of Casing	(ft)	31.50
Screen	SS304, SS316, PTFE, PVI	C, or Other:		Slot S		h la	0.01"
(AE950315)			~Hand-slot	ted well scree	ens are unaccepta	DIE.	

Illinois Enviro	onmental Protecti	on Agency		Well C	ompletion	Report
Site #:	Co	unty: Sangamo	1	Wel	#:_AP-2R	
Site Name: City Water, L	ight, & Power			Bor	ehole #:_AP-	2R
Coordinates: X_725.50	Y_4184.70	(or) L	_atitude:°	_'" Lo	ngitude:°	
Surveyed by:				IL Re	egistration #:_	
Orilling Contractor: Terra	a Drill, Inc.	Cons	ulting Firm; Andr	ews Enginee	ring, Inc.	
Oriller: J. Brown		Geol	ogist: M. Hewitt			
	w/ 5' Continuous Barrel					
	2012 Date Well Fi					
Date non etc. (1			ELEVATION	DEPTH	(0.01 ft)	
			(MSL)* 535.60	(BGS)* -2.50	Top of Prote	ctive Casing
ANNIII AD CDA	OF DETAILS		536.1			
ANNULAR SPA	CE DETAILS		No. 15-71	333.10	Top of Riser	Pipe
Type of surface seal: C	Concrete	#	533.6			
Type of surface sea	•		///-		Ground Surfa	
Type of annular sealant	Bentonite Grout		530.10	3.00	Top of Annul	ar Sealant
Installation method:	Tremie		n/a	n/a	Chatta Mater	l-some l
Setting time: 2 Hour	rs				Static Water Measured (after complet	on
~					Will have been supported by	
Type of bentonite seal:	Bentonite Chips					
Installation method:	Free drop		528.96	4.14	Top of Seal	
Setting time: 2 Hour	rs .		526.96	6.14	Top of Sand	pack
Type of sand pack: Unit	min Sand					
Grain size: 10/20	_ (sieve size)		-8.14	541.24	Top of Scree	en
Installation method:	Free drop					
			-17.47	550.57	Callen of Co	
Type of backfill material	:		-18.00	551.10	Bottom of So Bottom of We	
	(if applicable)		E44 60	45 E0		
Installation method:		(dedicates)	514.60 Referenced	o a National Geode	Bottom of Bo	
	r.		* positive (+) v	alues below GS, neg	gitive (-) values above	
					UREMENTS	5
			Diameter of B		n)	8.0
			ID of Riser Pip		- (f+)	2.0
WELL CONST	RUCTION MATERIAL	S	Riser Pipe Ler		1 (11)	5.0 8.14
Protective Casing S5304, S5316, PTFE, PVC or Other:Steel Bottom of Screen to End Cap (ft)			.53			
Riser Pipe Above W.T. SS304, SS316, PTFE, PVC, or Other: Screen Length (1st slot to last slot) (ft)			9.33			
Riser Pipe Below W.T.	SS304, SS316, PTFE, <i>PVC</i> , or	Other:	Total Length	of Casing	(ft)	18.00
Screen	SS304, SS316, PTFE, PVC, or	Other:	Screen Slot S	ize [¥]		0.01"
(AE950315)			*Hand-slotted well scree	ens are unacceptab	le.	

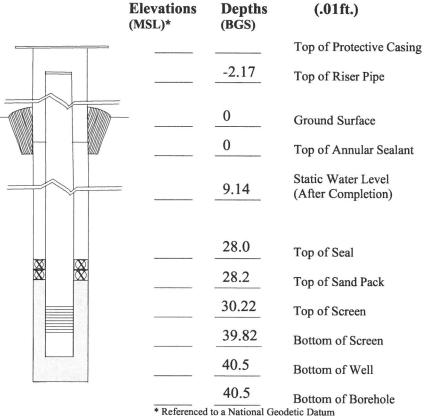
Illinois Environmental Protection Ag	ency	Well Completio	n Report
Site #:County: Sa	ngamon	well #: AP-2A	
Site Name: Springfield City Water, Light, and Power		Borehole #:	
Coordinates: x 735.9 y 4185.2	(or) Latitude:°	Longitude:	0 , ,
Surveyed by: Springfield City Water, Light, and Power		IL Registration #	***************************************
Orilling Contractor: Bulldog Drilling, Inc.	Consulting Firm: Andr	ews Engineering, Inc.	
Oriller: J. Edwards	Geologist: C. Myrvold		
Drilling Method: AMS Powerprobe w/ 4.25" HSA and 5' MC	Logged by: C. Myrvo	ld	
Drilling Fluids (type): <u>na</u>	_ Report Form Complete	ed by: C. Myrvold	
Date Well Started: 2/16/2016 Date Well Finished:	2/16/2016 Date	Form Completed: 3/06/20	016
	ELEVATION (MSL)	N DEPTH (0.01 ft) (BGS)*	
T	536.50	0.00	ective Casing
ANNULAR SPACE DETAILS	536.10	-2.50 Top of Rise	r Pipe
Type of surface seal; Concrete	533.60	0.00 Ground Surf	ace
Type of annular sealant: N/A		N/A Top of Anni	ular Sealant
Installation method:		Static Wate	r i evel
Setting time:		Measured (alter compl	on etion)
Type of bentonite seal: Bentonite chips	NH .		
Installation method: Free drop	530.60	3.00 Top of Sea	
Setting time: 24+ hours	527.19	6.41 Top of Sand	dpack
Type of sand pack: Silica sand			
Grain size: 20/40 (sieve size)	525.19	8.41 Top of Scre	en
Installation method: Free drop			
Type of backfill material: N/A	<u>515.54</u> 515.10	18.06 Bottom of S	
(if applicable)	514.60	10.00	
Installation method:	* Referenced	19.00 Bottom of B to a National Geodetic Vertical Datum	
Notes:		values below GS, negitive (-) values abov	
	Diameter of E		
	ID of Riser Pi		8.25
Protective Casing Length (ft)			
WELL CONSTRUCTION MATERIALS Riser Pipe Length (ft)			
Protective Casing Anodized Aluminum Bottom of Screen to End Cap (ft)			
Riser Pipe Above W.T. PVC Screen Length [1st slot to last slot] (ft)			
Riser Pipe Below W.T. PVC Total Length of Casing (ft)			21.00
Screen PVC	Screen Slot S		#10 (0.01)

Tillnois Enviro	onmental Protection A	gency		Well Completio	n Report
Site #:	Site #: County: Sangamon		Well #: AP-5		
Site Name: City Water, L	ight, & Power			Borehole #:_AP	-5
Coordinates: X 3203.10	Y_3164.10	(or) L	.atitude:°'	" Longitude:	, , , , , , ,
Surveyed by:				IL Registration #	
Drilling Contractor: Terra	a Drill, Inc.	Cons	ulting Firm: Andrew	is Engineering, Inc.	
Driller: J. Brown		Geold	ogist: M. Hewitt		
Drilling Method: 414" HSA	w/ 5' CB & 2' SS	Logg	ed by:_M. Hewitt		
Drilling Fluids (type):		Repo	t Form Completed	by: J. Rhoades	
Date Well Started: 2/1/20	012 Date Well Finished	1: 2/1/2012	Date F	orm Completed: 2/27/	2012
			ELEVATION (MSL)*	DEPTH (0.01 ft)	
			584.30	2 70	ective Casing
ANNULAR SPA	CE DETAILS		583.90	-2.30 Top of Rise	r Pipe
Type of surface seal:C	oncrete		581.60	.00 Ground Surf	ace
Type of annular sealant:	Bentonite Grout		578.60	3.00 Top of Annu	ılar Sealant
Installation method:	Tremie		n/a	n/a	
Setting time: 2 Hour	s			n/a Static Wate Measured (after comple	r Level on etion)
			_		
Type of bentonite seal:	Bentonite Chips				
Installation method:	Free drop	\boxtimes	565.48	16.12 Top of Seal	
Setting time: 2 Hour	s		563.48	18.12 Top of Sand	ipack
Type of sand pack: Unit	nin Sand				
Grain size: 10/20	_ (sieve size)		563.78	17.82 Top of Scre	en
Installation method:	Free drop				
			554.44	27.16 Bottom of S	creen
Type of backfill material	Bentonite Chips (if applicable)		553.90	27.70 Bottom of W	ell
Installation method:	N. Control of the con		551.10	30.50 Bottom of B	orehole
NOTES:			Referenced to a positive (+) value	National Geodetic Vertical Datum es below GS, negitive (-) values abov	e GS
	0.0 feet below ground surface (BGS)			IG MEASUREMENT	
and backfilled with bentonite o	thips to 30.5 feet BGS		Diameter of Bor	ehole (in)	8.0
			ID of Riser Pipe	(in)	2.0
WELL CONST	RUCTION MATERIALS		Protective Casir		5.0
Bratastiva Casina	CC204 CC210 PTFF 0V0 0V 0		Riser Pipe Lengt		20.12
Protective Casing Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC or Other:St	teei		en to End Cap (ft)	.54
Riser Pipe Below W.T.	SS304, SS316, PTFE, <i>PVC</i> , or Other: SS304, SS316, PTFE, <i>PVC</i> , or Other:		Total Length of	(Ist slot to last slot) (ft)	9.34
Screen	SS304, SS316, PTFE, PVC, or Other:		Screen Slot Size		30.00
(AE9503I5)	, ,, , , , , , , , , , , , , ,		*Hand-slotted well screens		1 0.01

Well Completion Report

Site Number:	County: Sangamon
Site Name: City Water, Light & Power (CWLP) Ash Ponds	Well #: TW3E
State o Plane Coordinate: X Y (or) Latitude:	
Surveyed by:	IL Registration #:
Drilling Contractor: Bulldog Drilling, Inc.	Driller: J. Gates
Consulting Firm: Andrews Engineering, Inc.	Geologist: D. Ghosh
Drilling Method: CME 55 w/ 4.25" HSA	Drilling Fluid (Type): none
Logged By: D. Ghosh	Date Started: 6/27/17 Date Finished: 6/27/17
Report Form Completed By: M. Hewitt	Date: 9/18/17

ANNULAR SPACE DETAILS	
	=
Type of Surface Seal: Bentonite Grout	_
Type of Annular Sealant: Bentonite Grout	
Installation Method: Tremi	
Setting Time: 24 hours	
Type of Bentonite Seal Granular, Perfet, Slurry (Choose One)	
Installation Method: Free drop	
Setting Time: N/A	
Type of Sand Pack: Silica Sand	
Grain Size: 10/20 (Sieve Size)	
Installation Method: Free Drop	
Type of Backfill Material: None	


Type of Backfill Material: None (if applicable)

Installation Method: N/A

WELL CONSTRUCTION MATERIAL

(Choose one type of material for each area)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

CASING MEASURMENTS

Diameter of Borehole (inches)	8.25	
ID of Riser Pipe (inches)	2.049	
Protective Casing Length (feet)		
Riser Pipe Length (feet)	32.39	
Bottom of Screen to End Cap (feet)	0.68	
Screen Length (1st slot to last slot) (feet)	9.6	
Total Length of Casing (feet)	42.67	
Screen Slot Size **	0.01	

^{**}Hand-Slotted Well Screens are Unacceptable

Well Completion Report

Site Number:	_ County: _S	Sangamon	
Site Name: City Water, Light & Power (CWLP) Ash	Ponds		Well #: TW3N / RW-3
State Plane Coordinate: X Y (or) Latitude:	o ' " Lon	o ' " gitude:	Borehole #: TW3N
Surveyed by:		IL Registration #:	
Drilling Contractor: Bulldog Drilling, Inc.		Driller: J. Gates	
Consulting Firm: Andrews Engineering, Inc.		Geologist: D. Ghosh	
Drilling Method: CME 55 w/ 4.25" HSA		Drilling Fluid (Type): none	
Logged By: D. Ghosh	-	Date Started: 6/26/17	Date Finished: 6/27/17
Report Form Completed By: M. Hewitt		Date: 9/18/17	

ANNULAR SPACE DETAILS Ele (M Type of Surface Seal: Bentonite Grout Type of Annular Sealant: Bentonite Grout Installation Method: _Tremi Setting Time: 24 hours Type of Bentonite Seal - - Granular, Pellet, Slurry Installation Method: Free drop Setting Time: N/A Type of Sand Pack: Silica Sand Grain Size: 10/20 (Sieve Size) Installation Method: Free Drop Type of Backfill Material: None (if applicable) CASING MEASURMENTS Installation Method: N/A

levations ISL)*	Depths (BGS)	(.01ft.)
		Top of Protective Casing
539.5	-2.5	Top of Riser Pipe
536.8	_0	Ground Surface
533.8	_3	Top of Annular Sealant
528.09	8.71	Static Water Level (After Completion)
509.8	27	Top of Seal
507.2	29.6	Top of Sand Pack
505.66	31.14	Top of Screen
496.08	40.72	Bottom of Screen
495.4	41.4	Bottom of Well
495.2	41.6	Bottom of Borehole

^{*} Referenced to a National Geodetic Datum

WELL CONSTRUCTION MATERIAL

(Choose one type of material for each area)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PWC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVIC, or Other

Diameter of Borehole (inches)	8.25	
ID of Riser Pipe (inches)	2,049	
Protective Casing Length (feet)		
Riser Pipe Length (feet)	33.84	
Bottom of Screen to End Cap (feet)	0.68	
Screen Length (1st slot to last slot) (feet)	9.58	
Total Length of Casing (feet)	44.1	
Screen Slot Size **	0.01	

^{**}Hand-Slotted Well Screens are Unacceptable

Well Completion Report

Site Number:	_ County	:_Sangamon	
Site Name: _City Water, Light & Power (CWLP) Ash	Ponds		Well #: TW3W
State Plane Coordinate: X Y (or) Latitude:	o ' " I	o ' " Longitude:	Borehole #: TW3W
Surveyed by:		IL Registration #:	
Drilling Contractor: Bulldog Drilling, Inc.		Driller: J. Gates	
Consulting Firm: Andrews Engineering, Inc.		Geologist: D. Ghosh	
Drilling Method: CME 55 w/ 4.25" HSA		Drilling Fluid (Type): none	,
Logged By: D. Ghosh		Date Started: <u>6/26/17</u>	Date Finished: 6/26/17
Report Form Completed By: M. Hewitt		Date: 9/18/17	

ANNULAR SPACE DETAILS		Elevations (MSL)*	Depths (BGS)	(.01ft.)
				Top of Protective Casing
			-2.58	Top of Riser Pipe
Type of Surface Seal: Bentonite Grout		536.80		Ground Surface
Type of Annular Sealant: Bentonite Grout			0	Top of Annular Sealant
Installation Method: Tremi		=	9.32	Static Water Level (After Completion)
Setting Time: 24 hours				
Type of Bentonite Seal Granular, Peket, Slurry (Choose One)	X		9.6	Top of Seal
Installation Method: Free drop			11.85	Top of Sand Pack
Setting Time: N/A			13.54	Top of Screen
Type of Sand Pack: Silica Sand			23.12	Bottom of Screen
Grain Size: 10/20 (Sieve Size)			_23.8	Bottom of Well
Installation Method: Free Drop			23.8	Bottom of Borehole
Type of Backfill Material: None (if applicable)	CA	* Referenced	to a National Geo MENTS	odetic Datum
Installation Method: N/A		neter of Borehole (inch		8.25

WELL CONSTRUCTION MATERIAL

(Choose one type of material for each area)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PWC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVIC, or Other

	T	
Diameter of Borehole (inches)	8.25	
ID of Riser Pipe (inches)	2.049	
Protective Casing Length (feet)		
Riser Pipe Length (feet)	16.12	
Bottom of Screen to End Cap (feet)	0.68	
Screen Length (1st slot to last slot) (feet)	9.58	
Total Length of Casing (feet)	26.38	
Screen Slot Size **	0.01	

^{**}Hand-Slotted Well Screens are Unacceptable

Illinois Environmental Protection Agency	,	Well Co	ompletion	Report
Site #: County: Sangamon		Well	#: <u>GP1</u>	
Site Name: Springfield CWLP Ash Pond		Bore	ehole #: GP1	
Coordinates: XY(or)	Latitude:°'	Lon	gitude:°	, , , , , , , , , , , , , , , , , , ,
Surveyed by: Andrews Engineering, Inc.		IL Reg	gistration #:_	
Drilling Contractor: Bulldog drilling Cons				
Driller: C. Clines Geol	ogist: B. Kenning	R		
Drilling Method: CME 55cc 4.25 in HSA w/ 5'MC and 2' SS Logs	ned by: B. Kenning			
Drilling Fluids (type): N/A Repo				
Date Well Started: 6/14/19 Date Well Finished: 6/14/19				
	ELEVATION (MSL)	DEPTH	(0.01 ft)	
	(MSL)*	(BGS)*	Top of Prote	ctive Casing
ANNULAR SPACE DETAILS	539.44	- 2.82'	Top of Riser	Pipe
Type of surface seal:	537.06	0.00'	Ground Surfa	
Type of annular sealant: Bentonite Grout	534.06	3.00'	Top of Annul	
Installation method: Tremie				
Setting time: > 24 hours			Static Water Measured (n
Setting time:			(after completi	on)
Type of bentonite seal: Bentonite Chips	Ė.			
Installation method: Free Drop	511.72	25.34'	Top of Seal	
Setting time: > 24 hours	509.72	27.34'	Top of Sand	
Type of sand pack: Silica Sand Pre-Pack			rop or Sand	Jack
Grain size: 10/20 (sieve size)	507.97	29.34'	T-0 -4 C-100	-
Installation method: Free Drop		27.3	Top of Scree	en .
	498.27	39.04'		
Type of backfill material: N/A	497.81	20 50!	Bottom of Sc Bottom of We	
(if applicable) Installation method:	497.06	40.00'	Bottom of Bo	rehole
	* Referenced to * positive (+) vak	a National Geodet Jes below GS, negi	ic Vertical Datum itive (-) values above	GS
			UREMENTS	
	Diameter of Bo	rehole (in)	8.25
	ID of Riser Pipe	e (in)		#2
WELL CONSTRUCTION MATERIALS	Protective Casi	ing Length	(ft)	N/A
	Riser Pipe Leng	th (ft)		31.91
Protective Casing N/A	Bottom of Scre			0.46
Riser Pipe Above W.T. PVC Scri		Screen Length [1st slot to last slot] (ft) 9.		
Riser Pipe Below W.T. PVC Total Length of Casing (ft)		ft)	N/A	
			#10 (0.01)	
	*Hand-slotted well screen	s are unacceptable	e.	

Site #: Country: Sangamon	Illinois Environmental Protection Agen	cy Well Completion Report	
Surveyed by: Andrews Engineering, Inc. 1.1. Registration #: Drilling Contractor: Buildog drilling Consulting Firm: Andrews Engineering, Inc. Drilling Contractor: Buildog drilling Consulting Firm: Andrews Engineering, Inc. Drilling Firm: Andrews Engineering, Inc. Depth Firm: Andrews Engineering, Inc. Depth Firm: Andrews Engineering, Inc. Depth Firm: Andrews Engineering, Inc. Depth Firm: Andrews Engineering, Inc. Depth Firm: Andrews Engineering, Inc. Depth Firm: Andrews Enginering, Inc. Depth Firm: Andrews Engineering, Inc. Depth Firm: Andrews Enginering, Inc.	Site #: County: Sangar	mon Well #: GP2 /AP-7	
Surveyed by: Andrews Engineering, Inc. Drilling Contractor: Building drilling Consulting Firm: Andrews Engineering, Inc. Drilling Method CME 55cc 4.25 in HSA w/ 5MC Legged by: B. Kenning Drilling Method CME 55cc 4.25 in HSA w/ 5MC Legged by: B. Kenning Drilling Method CME 55cc 4.25 in HSA w/ 5MC Legged by: B. Kenning Drilling Firm: Andrews Engineering, Inc. Drilling Method CME 55cc 4.25 in HSA w/ 5MC Legged by: B. Kenning Drilling Filling Started: 6/14/19 Date Form Completed by: B. Kenning Date Form Completed by: B	Site Name: Springfield CWLP Ash Pond	Borehole #: GP2	
Drilling Contractor: Building drilling Consulting Firm: Andrews Engineering, Inc. Drilling Fluids (type): N/A Report Form Completed by: B. Kenning Date Well Started: 6/14/19 Date Well Finished: 6/14/19 Date Form Completed by: B. Kenning Date Form Completed by: B. Kenning Date Well Finished: 6/14/19 Date Form Completed by: B. Kenning Date Form	Coordinates: XY	or) Latitude:°, n Longitude:°, n	
Difference CME 55cc 4.25 in HSA w/ 5'MC Legged by: B. Kenning	Surveyed by: Andrews Engineering, Inc.	IL Registration #:	
Drilling Method: CME 55c 4.25 in HSA w/ 5'MC Logged by: B. Kenning	Drilling Contractor: Bulldog drilling	consulting Firm: Andrews Engineering, Inc.	
Drilling Fluids (type): N/A Date Well Firmshed: 6/14/19 Date Form Completed: 7/19/2019	Driller: C. Clines	eologist: B. Kenning	
Drilling Fluids (type): N/A Date Well Firmshed: 6/14/19 Date Form Completed: 7/19/2019	Drilling Method: CME 55cc 4.25 in HSA w/ 5'MC	paged by: B. Kenning	
Date Well Started: 6/14/19 Date Well Finished: 6/14/19 Date Form Completed: 7/19/2019			
Static Water Pipe Static Water Level Measured or Betting time: 24 hours Silica Sand Pre-Pack Sizica Sand Pre-Pack Soreen Length (19) above the Sizica Sand Pre-Drop South of Casing Linestallation method: Free Drop Setting time: 24 hours Silica Sand Pre-Pack Soreen Length (19) above the Sizica Sand Pre-Pack Socreen Length (19) above the Sizica Sand Pre-Pack Socreen Length (19) above the Sizica Sand Pre-Pack Socreen Length (19) above the Sizica Sand Pre-Pack Socreen Length (19) above the Sizica Sand Pre-Pack Socreen Length (19) above the Sizica Sand Pre-Pack Socreen Length (19) above the Sizica Sand Pre-Pack Socreen Length (19) above the Sizica Sand Pre-Pack Socreen Length (19) above the Sizica Sand Pre-Pack Socreen Length (19) above the Sizica Sand Pre-Pack Socreen Length (19) above the Sizica Sand Pre-Pack Socreen Length (19) above the Sizica Sand Pre-Pack Socreen Length (19) above the Sizica Sand Pre-Pack Socreen Length (19) above the Sizica Sand Pre-Pack Socreen (1			
ANNULAR SPACE DETAILS 539.02 -2.66 Top of Riser Pipe Type of surface seal: Type of surface seal: Type of annular sealant: Bentonite Grout Installation method: Tremie Setting time: > 24 hours Type of bentonite seal: Type of bentonite seal: Type of bentonite seal: Type of sand pack: Silica Sand Pre-Pack Grain size: 10/20 (sieve size) Installation method: Free Drop Type of backfill material: N/A Installation method: WELL CONSTRUCTION MATERIALS Protective Casing N/A Riser Pipe Length (ft) Riser Pipe Length (ft) Riser Pipe Length (ft) Riser Pipe Length (ft) Riser Pipe Blow W.T. PVC Screen PVC Screen PVC Screen Length Int soit lais: soit (ias: soit (ft)) N/A Screen Pvolot Size of Riser Pipe (ft) Top of Riser Pipe Top of Riser Pipe Above W.T. PVC Screen PVC Screen Foot Size of Riser Pipe (ft) N/A Screen Pipe Siot Size of Riser Pipe (ft) N/A Screen Pipe Siot Size of Riser Pipe (ft) N/A Screen Pipe Siot Size of Riser Pipe (ft) N/A Screen Pipe Siot Size of Riser Pipe (ft) N/A Screen Foot Size of Riser Pipe (ft) Top of Riser Pipe (ft) Top of Riser Pipe (ft) Top of Riser P	Date Well Hilliams		
Type of annular sealant: Bentonite Grout Installation method: Tremie Setting time: > 24 hours Setting time: > 24 hours Setting time: > 24 hours Setting time: > 24 hours Setting time: > 24 hours Setting time: > 24 hours Setting time: > 24 hours Setting time: > 24 hours Setting time: > 24 hours Setting time: > 24 hours Setting time: > 24 hours Solution method: Free Drop Installation method: Free Drop Installation method: Free Drop Installation method: Free Drop Measured on Research on Resear			
Type of annular sealant: Bentonite Grout Installation method: Tremie Setting time: > 24 hours Installation method: Free Drop Setting time: > 24 hours Setting time: > 24 hours Setting time: > 24 hours Setting time: > 24 hours Setting time: > 24 hours Solution method: Free Drop Installation method: Silica Sand Pre-Pack Grain size: 10/20 (sieve size) Installation method: Free Drop Installation method: Silica Sand Pre-Pack Solution of Screen 497.76 38.6' 497.3 39.06' Bottom of Screen Setting time: Solution of Screen 497.3 39.06' Bottom of Screen Setting time: Solution of Screen 1	ANNULAR SPACE DETAILS	_539.02 -2.66 Top of Riser Pipe	
Installation method: Tremie Setting time: > 24 hours Type of bentonite seal: Bentonite Chips Installation method: Free Drop Setting time: > 24 hours Type of bentonite seal: Bentonite Chips Installation method: Free Drop Setting time: > 24 hours Type of sand pack: Silica Sand Pre-Pack Grain size: 10/20 (sieve size) Installation method: Free Drop Type of backfill material: N/A Installation method: Green Borehole *Referenced to a National Geodetic Vertical Datus *positive fir) values below 65, negline fir) values below 65, negline fir) values below 65, negline fir) values below 65, negline fir) values below 65, negline fir) values below 65, negline first of Borehole (in) 8.25 Diameter of Borehole (in) 8.25 ID of Riser Pipe (in) #2 Protective Casing M/A Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Riser Pipe Below W.T. PVC Screen PVC Screen Siot Size* #10 (0.01)	Type of surface seal:	536.36 $0.00'$ Ground Surface	
Setting time: > 24 hours Type of bentonite Seal: Bentonite Chips Installation method: Free Drop Setting time: > 24 hours Type of sand pack: Silica Sand Pre-Pack Grain size: 10/20 (sieve size) Installation method: Free Drop Type of backfill material: N/A Installation method: (if applicable) Installation method: (if applicable) WELL CONSTRUCTION MATERIALS Protective Casing N/A Riser Pipe Above W.T. PVC Riser Pipe Above W.T. PVC Riser Pipe Bellow W.T. PVC Riser Pipe Bellow W.T. PVC Riser Pipe Bellow W.T. PVC Screen PVC Screen Slot Size* / #10 (0.01)	Type of annular sealant: Bentonite Grout	.533.36 3.00' Top of Annular Sealant	
Type of bentonite sear: Bentonite Chips Installation method: Free Drop Setting time: > 24 hours Type of sand pack: Silica Sand Pre-Pack Grain size: 10/20 (sieve size) Installation method: Free Drop Type of backfill material: N/A (if appicable) Installation method: (if appicable) Installation method: (if appicable) WELL CONSTRUCTION MATERIALS Protective Casing N/A Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Riser Pipe Below W.T. PVC Riser Pipe Below W.T. PVC Riser Pipe Below W.T. PVC Screen Stot Size* (if the remipletion) 511.02 24.9' Top of Seal 507.46 28.9' Top of Screen 497.76 38.6' Bottom of Screen 497.73 39.06' Bottom of Screen 496.36 40.00' Bottom of Borehole *Referenced to a National Geodetic vertical Datum *Postific (if values below 85 register) - values above 6S CASING MEASUREMENTS Diameter of Borehole (in) 8.25 ID of Riser Pipe Length (ft) N/A Riser Pipe Length (ft) 31.56 Bottom of Screen to End Cap (ft) 0.46 Screen Length first slot to last slot (ft) 9.70 Total Length of Casing (ft) N/A Screen Slot Size* #10 (0.01)	1 1	Static Water Level	
Installation method: Free Drop Setting time: > 24 hours Type of sand pack: Silica Sand Pre-Pack Grain size: 10/20 (sieve size) Installation method: Free Drop Type of backfill material: N/A Installation method: (if applicable) Installation method: (if applicable) Installation method: (if applicable) WELL CONSTRUCTION MATERIALS Protective Casing N/A Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Screen PVC Screen Siot Size* (ft) N/A Screen Siot Size* (ft) N/A Screen Siot Size* (ft) N/A Screen Siot Size* (ft) N/A Screen Siot Size* (ft) N/A Screen Siot Size* (ft) N/A Screen Length (ft) N/A Screen Siot Size* (ft) N/A Screen Siot Size* (ft) (0.01)	Setting time: > 24 hours	Measured on (after completion)	
Installation method: Free Drop Setting time: > 24 hours Type of sand pack: Silica Sand Pre-Pack Grain size: 10/20 (sieve size) Installation method: Free Drop Type of backfill material: N/A Installation method: (if applicable) Installation method: (if applicable) Installation method: (if applicable) WELL CONSTRUCTION MATERIALS Protective Casing N/A Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Screen PVC Screen Siot Size* (ft) N/A Screen Siot Size* (ft) N/A Screen Siot Size* (ft) N/A Screen Siot Size* (ft) N/A Screen Siot Size* (ft) N/A Screen Siot Size* (ft) N/A Screen Length (ft) N/A Screen Siot Size* (ft) N/A Screen Siot Size* (ft) (0.01)	Bentonite Chins		
Setting time: > 24 hours Type of sand pack: Silica Sand Pre-Pack Grain size: 10/20 (sieve size) Installation method: Free Drop Type of backfill material: N/A (if applicable) Installation method: Installation method: WELL CONSTRUCTION MATERIALS Protective Casing N/A Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Screen PVC Screen Stot Size* Top of Sandpack 509.02 24.9' Top of Sandpack 509.02 24.9' Top of Sandpack 507.46 28.9' Top of Screen 497.76 38.6' Bottom of Screen 497.73 39.06' Bottom of Borehole *Referenced to a National Geodetic Vertical Datum *positive (1) values above 8S CASING MEASUREMENTS Diameter of Borehole (in) 8.25 ID of Riser Pipe (in) #2 Protective Casing Length (ft) N/A Riser Pipe Below W.T. PVC Total Length of Casing (ft) N/A Screen Stot Size* #10 (0.01)		511.02 24.9' Top of Seal	
Type of sand pack: Silica Sand Pre-Pack Grain size: 10/20 (sieve size) Installation method: Free Drop Type of backfill material: N/A (if applicable) Installation method: (if applicable) Installation method: (if applicable) Installation method: (if applicable) WELL CONSTRUCTION MATERIALS Protective Casing N/A Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Screen PVC Screen Slot Size* (if to port Sandpack) 507.46 (28.9' Top of Screen) 497.76 (38.6' Bottom of Screen) 497.76 (38.6' Bottom of Screen) 496.36 (40.00' Bottom of Borehole (in bottom of Borehole) * Referenced to a National Geodetic Vertical Datum * positive (+) values above 6S CASING MEASUREMENTS Diameter of Borehole (in) 8.25 (in bottom of Screen) Protective Casing Length (ft) N/A (if ser Pipe Length (ft) N/A) Riser Pipe Length (ft) (0.46) Screen Length fist slot to last slot] (ft) 9.70 (in bottom of Screen) Total Length of Casing (ft) N/A (in bottom of Screen) Screen Slot Size* (fill 0.001)	N N N N N N N N N N N N N N N N N N N		
Grain size: 10/20 (sieve size) Installation method: Free Drop Type of backfill material: N/A Installation method: (if applicable) Installation method: (if applicable) Installation method: (if applicable) Installation method: (if applicable) A97.76 38.6' 497.3 39.06' Bottom of Screen 497.3 39.06' Bottom of Borehole Referenced to a National Geodetic Vertical Datum * positive (+) values below 65, regitive (-) values above 65 CASING MEASUREMENTS Diameter of Borehole (in) 8.25 ID of Riser Pipe (in) #2 Protective Casing Length (ft) N/A Riser Pipe Length (ft) 31.56 Bottom of Screen to End Cap (ft) 0.46 Screen Length (ist slot to last slot) (ft) 9.70 Total Length of Casing (ft) N/A Screen Slot Size* #10 (0.01)		509.02 24.9 Top of Sandpack	
Installation method: Free Drop 497.76 38.6' Bottom of Screen 497.3 39.06' Bottom of Screen 497.3 39.06' Bottom of Well Installation method: 496.36 40.00' Bottom of Borehole Referenced to a National Geodetic Vertical Datum positive (+) values below GS, neglitive (-) values above 6S CASING MEASUREMENTS Diameter of Borehole (in) 8.25 ID of Riser Pipe (in) #2 Protective Casing Length (ft) N/A Riser Pipe Length (ft) 31.56 Bottom of Screen to End Cap (ft) 0.46 Riser Pipe Below W.T. PVC Riser Pipe Below W.T. PVC Screen PVC Screen Slot Size* #10 (0.01)		20.01	
Type of backfill material: N/A (if applicable) Installation method: WELL CONSTRUCTION MATERIALS Protective Casing N/A Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Riser Pipe Below W.T. PVC Riser Pipe Below W.T. PVC Screen PVC A96.36 40.00' Bottom of Borehole *Referenced to a National Geodetic Vertical Datum *Positive (+) values below SS, negltive (-) values above 6S CASING MEASUREMENTS Diameter of Borehole (in) 8.25 ID of Riser Pipe (in) #2 Protective Casing Length (ft) N/A Riser Pipe Length (ft) 31.56 Bottom of Screen to End Cap (ft) 0.46 Screen Length (ist slot to last slot) (ft) 9.70 Total Length of Casing (ft) N/A Screen Slot Size* #10 (0.01)		507.46. 28.9 Top of Screen	
Type of backfill material: N/A Installation method: Installation	Installation method: Free Drop		
Installation method: ### Referenced to a National Geodetic Vertical Datum *positive (+) values below GS, negitive (-) values above GS CASING MEASUREMENTS Diameter of Borehole (in) #2	Type of backfill materials N/A	107.3 20.061 Buttom of Screen	
*Referenced to a National Geodetic Vertical Datum *positive (+) values below GS, negitive (-) values above GS CASING MEASUREMENTS Diameter of Borehole (in) 8.25 ID of Riser Pipe (in) #2 Protective Casing Length (ft) N/A Riser Pipe Length (ft) 31.56 Protective Casing N/A Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Riser Pipe Below W.T. PVC Screen PVC Screen Slot Size* #10 (0.01)	(if applicable)	40626 40.00	
CASING MEASUREMENTS Diameter of Borehole (in) 8.25 ID of Riser Pipe (in) #2 Protective Casing Length (ft) N/A Riser Pipe Length (ft) 31.56 Protective Casing N/A Bottom of Screen to End Cap (ft) 0.46 Riser Pipe Above W.T. PVC Screen Length (ft) 9.70 Riser Pipe Below W.T. PVC Screen PVC Screen Slot Size* #10 (0.01)	Installation method:	Dorton of Bottone	
WELL CONSTRUCTION MATERIALS WELL CONSTRUCTION MATERIALS Protective Casing Length (ft) N/A Riser Pipe Length (ft) 31.56 Bottom of Screen to End Cap (ft) 0.46 Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Riser Pipe Below W.T. PVC Screen PVC Screen Slot Size* #10 (0.01)			
WELL CONSTRUCTION MATERIALS ID of Riser Pipe (in) #2			
WELL CONSTRUCTION MATERIALS Protective Casing Length (ft) N/A Riser Pipe Length (ft) 31.56 Protective Casing N/A Riser Pipe Length (ft) 0.46 Bottom of Screen to End Cap (ft) 0.46 Screen Length (ist slot to last slot) (ft) 9.70 Total Length of Casing (ft) N/A Screen PVC Screen Slot Size* #10 (0.01)		0.23	
Riser Pipe Length (ft) Protective Casing N/A Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Riser Pipe Below W.T. PVC Screen Length (ist slot to last slot) (ft) 9.70 Total Length of Casing (ft) N/A Screen PVC Screen Slot Size* #10 (0.01)	WELL CONSTRUCTION MATERIALS		
Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Screen Length [Ist slot to last slot] (ft) 9.70 Total Length of Casing (ft) N/A Screen PVC Screen Slot Size* #10 (0.01)	WELL CONSTRUCTION MATERIALS	Riser Pipe Length (ft) 31.56	
Riser Pipe Below W.T. PVC Total Length of Casing (ft) N/A Screen PVC Screen Slot Size* #10 (0.01)		Bottom of Screen to End Cap (ft) 0.46	
Screen Slot Size* #10 (0.01)	Riser Pipe Above W.T. PVC Screen Length (1st slot to last slot) (ft)		
(#10(0.01)			
	Screen PVC	(0.02)	

Illinois Environmental Protection Age	ncy Well Completion Report
Site #: County: Sans	amon well #: GP3
Site Name: Springfield CWLP Ash Pond	Borehole #: GP3
Coordinates: XY	(or) Latitude:° " Longitude:° "
Surveyed by: Andrews Engineering, Inc.	IL Registration #:
Drilling Contractor: Bulldog drilling	Consulting Firm: Andrews Engineering, Inc.
Driller: C. Clines	Geologist: B. Kenning
Drilling Method: CME 55cc 4.25 in HSA w/ 5'MC	Logged by: B. Kenning
Drilling Fluids (type): N/A	Report Form Completed by: B. Kenning
Date Well Started: 6/13/19 Date Well Finished: 6/	
	ELEVATION DEPTH (0.01 ft) (MSL)* (BGS)*
-	Top of Protective Casing
ANNULAR SPACE DETAILS	551.82 -2.7 Top of Riser Pipe
1).	
Type of surface seal:	549.12 0.00' Ground Surface
Parasite China	546.12 3.00' Top of Annular Sealant
Type of annular sealant: Bentonite Chips	Top of Allibert Sesiant
Installation method: <u>Free Drop</u>	Static Water Level
Setting time: > 24 hours	Measured on (after completion)
Type of bentonite seal: Bentonite Chips	510.10
Installation method: Free Drop	549.12 3.00' Top of Seal
Setting time: > 24 hours	532.05
	332.03 17.07' Top of Sandpack
Type of sand pack: Silica Sand Pre-Pack	504.40 47.00
Grain size: $10/20$ (sieve size)	531.49 17.63 Top of Screen
Installation method. Free Drop	
	526.81 22.31 Bottom of Screen
Type of backfill material: N/A	526.26 22.86 Bottom of Well
(il applicable)	524.32 24.80' Bottom of Borehole
	 Referenced to a National Geodetic Vertical Datum positive (+) values below GS, negitive (-) values above GS
	CASING MEASUREMENTS
	Diameter of Borehole (in) 8.25
	ID of Riser Pipe (in) #2
WELL CONSTRUCTION MATERIALS	Protective Casing Length (ft) N/A
Protective Casing N/A	Riser Pipe Length (ft) 20.33 Bottom of Screen to End Cap (ft) 0.55
Riser Pipe Above W.T. PVC	Bottom of Screen to End Cap (ft) 0.55 Screen Length (1st slot to last slot) (ft) 4.68
Riser Pipe Below W.T. PVC	Total Length of Casing (ft) N/A
Screen PVC	Screen Slot Size* #10 (0.01)
	*Hand-slotted well screens are unacceptable.

Illinois Environmental Protection Ager	су		Well C	ompletion	Report
Site #: County: Sanga	mon		wel	#: <u>GP4</u>	
Site Name: Springfield CWLP Ash Pond			Bor	ehole #: GP4	
Coordinates: XY	(or) Latitude:	_ ,	" Lo	ngitude:°	, n
Surveyed by: Andrews Engineering, Inc.	***		IL Re	egistration #:_	
Orilling Contractor: Bulldog drilling	Consulting Firm	Andrew	s Engineeri	ing, Inc.	
Driller: J. Edwards	Seologist: C. M	lyrvold	·		
Drilling Method: CME 55cc 4.25 in HSA w/ 5'MC	.ogged by: <u>C.</u> l	Myrvold			
Drilling Fluids (type): N/A	eport Form Co	mpleted	by: B. Ker	nning	
Date Well Started: 5/17/19 Date Well Finished: 5/17	/19	Date F	orm Comple	eted: 7/19/201	9
		ATION MSL)®	DEPTH (BGS)*	(0.01 ft)	
-				Top of Prote	ctive Casing
ANNULAR SPACE DETAILS	al –		- 3.00'	Top of Riser	Pipe
Type of surface seal:			0.00'	Ground Surfa	ace
Type of annular sealant: Bentonite Grout			3.00'	Top of Annu	
Installation method: <u>Tremie</u>					
Setting time: > 24 hours				Static Water Measured (after complet	
Type of bentonite seal: Bentonite Chips					
Installation method: Free Drop			23.43'	Top of Seal	
Setting time: > 24 hours			25.43'	Top of Sand	pack
Type of sand pack: Silica Sand Pre-Pack					
Grain size: 10/20 (sieve size)		-	27.43'	Top of Scree	en
Installation method: Free Drop					
Type of backfill material: N/A			37.20' 37.50'	Bottom of So	
(if applicable) Installation method:			38.00'		
Installation method.	• F	eferenced to		Bottom of Bo etic Vertical Datum gitive (-) values above	
	١			SUREMENTS	
	Diamete	er of Bo	rehole (ii	n)	8.25
	ID of R	iser Pipe	e (in)		#2
WELL CONSTRUCTION MATERIALS	Protect	ive Cas	ing Lengt	h (ft)	N/A
	Riser Pi	pe Leng	jth (ft)		30.18
Protective Casing N/A				d Cap (ft)	0.30
Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC				9.77	
Riser Pipe Below W.T. PVC Screen PVC		Slot Siz		(11)	N/A
[Солост разона на предоставания на пред			s are unaccepta	ble.	#10 (0.01)

Illinois Environmental Protection Agen	СУ	Well Co	ompletion	Report
Site #: County: Sangar	non	Well	#: <u>GP6</u> /AP-	6
Site Name: Springfield CWLP Ash Pond		Bore	ehole #: GP6	
Coordinates: XY(or) Latitude:°	Lon	igitude:°	, n
Surveyed by: Andrews Engineering, Inc.		IL Res	gistration #:_	
Drilling Contractor: Bulldog drilling	onsulting Firm: Andre	ws Engineerir	ng, Inc.	
Driller: J. Edwards	eologist: C. Myrvold			
Drilling Method: CME 55cc 4.25 in HSA w/ 5'MC	ogged by: C.Myrvol	i		
Drilling Fluids (type): N/A	eport Form Complete	ed by: B. Keni	ning	
Date Well Started: 5/17/19 Date Well Finished: 5/17/				
	ELEVATION (MSL)"		(0.01 ft)	
	(M2L)-		Top of Prote	ctive Casing
ANNULAR SPACE DETAILS	537.82	-2.42	Top of Riser	Pipe
Type of surface seal:	535.4	0.00'	Ground Surfa	ice
Type of annular sealant: Bentonite Grout	.532.4	3.00'	Top of Annul	ar Sealant
Installation method: <u>Tremie</u>				
Setting time: > 24 hours			Static Water Measured ((after completi	
			tarter completi	517
Type of bentonite seal: Bentonite Chips	行			
Installation method: Free Drop Seal				
Setting time: > 24 hours	510.97	24.43'	Top of Sand	pack
Type of sand pack: Silica Sand Pre-Pack				
Grain size: 10/20 (sieve size)	_508.64	26.76'	Top of Scree	en.
Installation method: Free Drop				• • •
	498.87	36.53'	Bottom of Sc	21000
Type of backfill material: N/A (ii applicable)	498.57		Bottom of We	
Installation method:	498.4		Bottom of Bo	
	Referenced positive (+)	to a National Geodei values below GS, neg	tic Vertical Datum litive (-) values above	GS
			UREMENTS	
	Diameter of 8	Borehole (in)	8.25
	ID of Riser P	ipe (in)		#2
WELL CONSTRUCTION MATERIALS	Protective Ca	sing Length	n (ft)	N/A
Riser Pipe Length (ft)			29.18	
Protective Casing N/A	Bottom of Sc	reen to End	Cap (ft)	0.30
Riser Pipe Above W.T. PVC				9.77
			N/A	
Screen PVC	Screen Slot		lo.	#10 (0.01)
	*Hand-slotted well scr	cens are unacceptab	it.	

Illinois Environmental Protection Agen	СУ	Well Completion	Report
Site #: County: Sangar	non	well #: <u>GP7</u>	
Site Name Springfield CWLP Ash Pond		Borehole #: GP7	444
Coordinates: XY(r) Latitude:°	Longitude:°	, _π
Surveyed by: Andrews Engineering, Inc.		IL Registration #:	
Orilling Contractor: Bulldog drilling Contractor	onsulting Firm: Andrew	vs Engineering, Inc.	
Driller: J. Edwards G	eologist: C. Myrvold		
Drilling Method: CME 55cc 4.25 in HSA w/5'MC	ogged by: C.Myrvold		
Drilling Fluids (type): N/A	eport Form Completed	by: B. Kenning	
Date Well Started: 5/16/2019 Date Well Finished: 5/16/	2019 Date (Form Completed: 7/19/20	19
	ELEVATION (MSL)	DEPTH (0.01 ft) (BGS)*	
T		Top of Prote	ective Casing
ANNULAR SPACE DETAILS	1	-3.08' Top of Riser	Pipe
Type of surface seal:]	0.00' Ground Surfa	200
Type of annular sealant: Bentonite Grout		3.00' Top of Annu	
Installation method: <u>Tremie</u>		Static Water	Lovel
Setting time: > 24 hours		Measured (after comple	on
Part with China			
Type of bentonite seal: Bentonite Chips	1	21 021	
Installation method: Free Drop		21.93' Top of Seal	
Setting time: > 24 hours		23.93' Top of Sand	Ipack
Type of sand pack: Silica Sand Pre-Pack			
Grain size: 10/20 (sieve size)		25.93' Top of Scre	en
Installation method: Free Drop			
	<u></u>	35.70' Bottom of S	
Type of backfill material: N/A (if applicable)		36.00' Bottom of W	ell
Installation method:	• Poteranced I	36.50' Bottom of B	orehole
	* positive (+) v	o a National Geodetic Vertical Datum alues below GS, negitive (-) values abovi	
	CAS	ING MEASUREMENTS	5
	Diameter of B		8.25
	ID of Riser Pip		#2
WELL CONSTRUCTION MATERIALS		sing Length (ft)	N/A
Protective Casing N/A	Riser Pipe Ler	een to End Cap (ft)	28.76
Riser Pipe Above W.T. PVC		h (Ist slot to last slot) (ft)	9.77
Riser Pipe Below W.T. PVC		of Casing (ft)	N/A
Screen PVC	Screen Slot S		#10 (0.01)
	*Hand-slotted well scree		#10 (0.01)

Illinois Environmental Protection Agend	Well Completion Report
Site #: County: Sangam	on well #: GP8
Site Name: Springfield CWLP Ash Pond	Borehole #: GP8
Coordinates: XY(or) Latitude:° "Longitude:° "
Surveyed by: Andrews Engineering, Inc.	IL Registration #:
Drilling Contractor: Bulldog drilling Co	onsulting Firm: Andrews Engineering, Inc.
Driller: J. Edwards Ge	eologist: C. Myrvold
Drilling Method: CME 55cc 4.25 in HSA w/ 5'MC	gged by: C.Myrvold
Drilling Fluids (type): N/A	port Form Completed by: B. Kenning
Date Well Started: 5/15/19 Date Well Finished: 5/16/1	9 Date Form Completed: 7/19/2019
	ELEVATION DEPTH (0.01 ft) (MSL)* (BGS)*
T	Top of Protective Casing
ANNULAR SPACE DETAILS	533.12 $3.00'$ Top of Riser Pipe
Type of surface seal:	530.08 0.00'
	Ground Surface
Type of annular sealant: Bentonite Grout	
Installation method: <u>Tremie</u>	Static Water Level
Setting time: > 24 hours	Measured on (after completion)
Type of bentonite seal: Bentonite Chips	
Installation method: Free Drop	
Setting time: > 24 hours	20.421
Type of sand pack: Silica Sand Pre-Pack	29.43' Top of Sandpack
	21.42
Grain size: 10/20 (sieve size)	31.43' Top of Screen
Installation method: Free Drop	数
Type of backfill material: N/A	41.20' Bottom of Screen 41.50' Bottom of Well
(if applicable)	42.00' Bottom of Borehole
	Referenced to a National Geodetic Vertical Datum positive (+) values below GS, negitive (-) values above GS
	CASING MEASUREMENTS
	Diameter of Borehole (in) 8.50
	ID of Riser Pipe (in) #2
WELL CONSTRUCTION MATERIALS	Protective Casing Length (ft) N/A
	Riser Pipe Length (ft) 34.18
Protective Casing N/A	Bottom of Screen to End Cap (ft) 0.30
Riser Pipe Above W.T. PVC	Screen Length [Ist slot to last slot] (ft) 9.77
Riser Pipe Below W.T. PVC Screen PVC	Total Length of Casing (ft) N/A
Screen PVC	Screen Slot Size # #10 (0.01) **Hand-slotted well screens are unacceptable.

Site #:	, n
Coordinates: x 1265.0 y 3401.7 (or) Latitude: o ' " Longitude: o o Surveyed by: Andrews Engineering, Inc. IL Registration #: Drilling Contractor: Total Drilling Services/Skinner LTD. Consulting Firm: Andrews Engineering, Inc. Driller: Todd Skinner Geologist: C. M. Latham Drilling Method: CME 850 4.25 in HSA w/ 5'MC and 2' SS Logged by: C.M.Latham Drilling Fluids (type): N/A Report Form Completed by: C.M. Latham	3 n
Surveyed by: Andrews Engineering, Inc. Drilling Contractor: Total Drilling Services/Skinner LTD. Driller: Todd Skinner Consulting Firm: Andrews Engineering, Inc. Geologist: C. M. Latham Drilling Method: CME 850 4.25 in HSA w/ 5'MC and 2' SS Drilling Fluids (type): N/A Report Form Completed by: C.M. Latham	
Surveyed by: Andrews Engineering, Inc. Drilling Contractor: Total Drilling Services/Skinner LTD. Driller: Todd Skinner Drilling Method: CME 850 4.25 in HSA w/ 5'MC and 2' SS Drilling Fluids (type): N/A Report Form Completed by: C.M. Latham	
Drilling Contractor: Total Drilling Services/Skinner LTD. Driller: Todd Skinner Geologist: C. M. Latham Drilling Method: CME 850 4.25 in HSA w/ 5'MC and 2' SS Drilling Fluids (type): N/A Report Form Completed by: C.M. Latham	
Driller: Todd Skinner Geologist: C. M. Latham Drilling Method: CME 850 4.25 in HSA w/ 5'MC and 2' SS Drilling Fluids (type): N/A Report Form Completed by: C.M. Latham	
Drilling Method: CME 850 4.25 in HSA w/ 5'MC and 2' SS Logged by: C.M.Latham Drilling Fluids (type): N/A Report Form Completed by: C.M. Latham	
Drilling Fluids (type): N/A Report Form Completed by: C.M. Latham	
Date Well Started: 2/25/2021 Date Well Finished: 2/25/2021 Date Form Completed: 3/2/2021	
ELEVATION DEPTH (0.01 ft) (MSL)* (BGS)*	
540.30 -3.10 Top of Protect	tive Casinç
ANNULAR SPACE DETAILS	⊃ipe
Type of surface seal: Concrete 537.20 Ground Surface	ce
Type of annular sealant: Bentonite Chips 534.20 3.00 Top of Annula	ır Sealant
Installation method: Free Drop 530.20 7.00 Static Water I	
Setting time: > 24 Setting time: > 24 Setting time: > 24	
Type of bentonite seal: Bentonite Chips	
Installation method: Free Drop 3.00 Top of Seal	
Setting time: > 24 hours	
Type of sand pack: Silica Sand Pre-Pack	аск
20/40	
Grain size: 20/40 (sieve size) 508.60 28.60 Top of Screen	٦
Installation method: Free Drop	
498.02 39.18 Bottom of Scr	een
Type of backfill material: N/A (if applicable) 497.60 39.60 Bottom of Well	ĺ
Installation method: 497.60 39.60 Bottom of Bor	ehole
 Referenced to a National Geodetic Vertical Datum positive (+) values below GS, negitive (-) values above G 	S
CASING MEASUREMENTS	
Diameter of Borehole (in)	3.25
ID of Riser Pipe (in)	
WELL CONSTRUCTION MATERIALS Protective Casing Length (ft)	N/A
Riser Pipe Length (ft)	.9.48'
	0.42
Riser Pipe Above W.T. PVC Screen Length [1st slot to last slot] (ft) 9	
Riser Pipe Below W.T. PVC Total Length of Casing (ft)	0.70
Screen Slot Size* # *Hand-slotted well screens are unacceptable	0.70 N/A

Illinois Environmental Protection Ag	jency	Well Completio	n Report
Site #: County: Sa	Well #: AP-9		
Site Name: Springfield CWLP Ash Pond		Borehole #: <u>W-8</u>	3
Coordinates: × 703.0 y 5216.8	(or) Latitude:°	'"Longitude:	, , ,
Surveyed by: Andrews Engineering, Inc.		IL Registration #:	
Drilling Contractor: Total Drilling Services/Skinner LTD.	Consulting Firm: Andrew	ws Engineering, Inc.	
Driller: Todd Skinner	Geologist: C. M. Lathar	n	
Drilling Method: CME 850 4.25 in HSA w/ 5'MC and 2' SS	Logged by: <u>C.M. Latha</u>	ım	
Drilling Fluids (type): N/A	_ Report Form Completed	by: C.M. Latham	
Date Well Started: 2/26/2021 Date Well Finished:			
	ELEVATION (MSL)*	DEPTH (0.01 ft)	
T	537.20	2 00	ective Casing
ANNULAR SPACE DETAILS	537.20	-2.90 Top of Rise	r Pipe
Type of surface seal: Concrete		0.00	
Type of surface seal: Concrete	534.30	0.00 Ground Surf	ace
Type of annular sealant: Bentonite Chips	531.30	3.00 Top of Annu	ılar Sealant
Installation method: Free Drop	525.00	9.30 Static Water	r Level
Setting time: > 24		Measured (after comple	on etion)
Pontonito China			
Type of bentonite seal: Bentonite Chips		3.00 Top of Seal	
Installation method: Free Drop		Top of Seal	
Setting time: > 24 hours	514.00	20.30 Top of Sand	dpack
Type of sand pack: Silica Sand Pre-Pack			
Grain size: 20/40 (sieve size)	512.00	22.30 Top of Scre	en
Installation method: Free Drop			
	<u>502.24</u> 501.80	32.06 Bottom of S	
Type of backfill material: N/A (if applicable)	(4.1.4.4.4.) (4.1.4.4.4.)	32.30 Bottom of W	ell
Installation method:	501.80 * Referenced to	32.50 Bottom of B	
		o a National Geodelic Vertical Datum alues below GS, negitive (-) values abov [NG MEASUREMENT:	
	Diameter of B		8.25
	ID of Riser Pip		
WELL CONSTRUCTION MATERIALS	Protective Cas	ath (ft)	N/A 24.91
Protective Casing N/A		een to End Cap (ft)	0.44
Riser Pipe Above W.T. PVC	W.T. PVC Screen Length [1st slot to last slot] (ft) 9.7		
Riser Pipe Below W.T. PVC	Total Length (of Casing (ft)	N/A
Screen PVC	Screen Slot Si *Hand-slotted well scree		#10 (0.01)

Illinois Environmental Protection Ag	ency Well Completion Report
Site #: County: Sa	ngamon well #: AP-10
Site Name: Springfield CWLP Ash Pond	Borehole #: W-5
Coordinates: × <u>695.6</u> y <u>4684.0</u>	(or) Latitude:°, Longitude:°,
Surveyed by: Andrews Engineering, Inc.	IL Registration #:
Drilling Contractor: Total Drilling Services/Skinner LTD.	Consulting Firm: Andrews Engineering, Inc.
Driller: Todd Skinner	Geologist: C. M. Latham
Drilling Method: CME 850 4.25 in HSA w/ 5'MC and 2' SS	Logged by: C.M. Latham
Drilling Fluids (type): N/A	
Date Well Started: 2/24/2021 Date Well Finished:	
	ELEVATION DEPTH (0.01 ft)
₹	(MSL)* (BGS)* 537.50 -3.10 Top of Protective Casing
ANNULAR SPACE DETAILS	
Type of surface seal: Concrete	524.40 0.00
Type of surface seal. Sollier	$\frac{534.40}{2000}$ Ground Surface
Type of annular sealant: Bentonite Chips	531.40 3.00 Top of Annular Sealant
Installation method: Free Drop	528.38 6.02 Static Water Level
Setting time: > 24	Static Water Level Measured on (after completion)
Type of bentonite seal: Bentonite Chips	531.4
Installation method: Free Drop	3.00 Top of Seal
Setting time: > 24 hours	511.80 22.60 Top of Sandpack
Type of sand pack: Silica Sand Pre-Pack	Top of Sandpack
Grain size: 20/40 (sieve size)	509.70 24.70 Tablet Screen
Installation method: Free Drop	509.70 24.70 Top of Screen
Installation method:	499.9 34.41
Type of backfill material: N/A	499.53 34.87 Bottom of Screen
(if applicable) Installation method:	
Installation lifethoo.	# Referenced to a National Geodetic Vertical Datum * positive (+) values below GS, negitive (-) values above GS
	CASING MEASUREMENTS
	Diameter of Borehole (in) 8.25
	ID of Riser Pipe (in)
WELL CONSTRUCTION MATERIALS	Protective Casing Length (ft) N/A
MELE CONSTRUCTION MATERIALS	Riser Pipe Length (ft) 27.8
Protective Casing N/A	Bottom of Screen to End Cap (ft) 0.46
Riser Pipe Above W.T. PVC	Screen Length [Ist slot to last slot] (ft) 9.71
Riser Pipe Below W.T. PVC	Total Length of Casing (ft) N/A
Screen PVC	Screen Slot Size* #10 (0.01) *Hand-slotted well screens are unacceptable.

Site #: Country: Sangamon	Illinois Environmental Prot	ection Agency		Well Completion	n Report
Surveyed by: Andrews Engineering, Inc. Drilling Centractor: Total Drilling Services/Skinner LTD Consulting First Andrews Engineering, Inc. Drilling Centractor: Total Drilling Services/Skinner LTD Consulting First Andrews Engineering, Inc. Drilling Method: CME 850 4.25 in HSA w/ 5MC and 2'SS Logged by: S Kangas Drilling Finals (type): N/A Report Form Completed by: S Kangas Drilling Finals (type): N/A Report Form Completed by: S Kangas Date Form Completed by: S Kangas Date Form Completed by: S Kangas Date Form Completed by: S Kangas Date Form Completed by: S Kangas Date Form Completed by: S Kangas Date Form Completed by: S Kangas Date Form Completed by: S Kangas Date Form Completed by: S Kangas Date Form Completed by: S Kangas Date Form Completed by: S Kangas Date Form Completed by: S Kangas Date Form Completed by: S Kangas Top of Protective Cosing 538.10 - 2.80 - Top of Protective Cosing 538.10 - 2.80 - Top of Protective Cosing 538.10 - 2.80 - Top of Protective Cosing 538.10 - 2.80 - Top of Protective Cosing 538.10 - 2.80 - Top of Protective Cosing base protection of Protective Cosing 538.10 - 2.80 - Top of Protective Cosing base protection of Protective Cosing 538.80 - Top of Sall base protection of Protective Cosing base prot	Site #:	County: Sangamon		Well #: AP-11	
Surveyed by: Andrews Engineering, Inc. Drilling Contractor: Total Drilling Services/Skinner LTD Consulting Firm: Andrews Engineering, Inc. Drilling Contractor: Total Drilling Services/Skinner LTD Consulting Firm: Andrews Engineering, Inc. Drilling Services/Skinner Consulting Firm: Andrews Engineering, Inc. Consulting Firm: Andrews Engineering, Inc. Drilling Skinner Consulting Firm: Andrews Engineering, Inc. Consulting Firm: Andrews Engineering, Inc. Drilling Skinner Consulting Firm: Andrews Engineering, Inc. Consulting Firm: Andrews Engineering Inc. Consulting Firm: Andrews Engineering Inc. Consulting Firm: Andrews Engineering Inc. Consulting Firm: Andrews Engineering Inc. Consulting Firm: Andrews Engineering Inc. Consulting Firm: Andrews Engineering Inc. Consulting Firm: Andrews Engineering Inc. Consulting Firm: Andrews Engineering Inc. Consulting Firm: Andrews Engineering Inc. Consulting Firm: Andrews Engineering Inc. Consulting Firm: Andrews Engine Consulting Firm: Andrews Engine Consulting	Site Name: Springfield CWLP Ash Pond			Borehole #: <u>W</u> -	4
Drilling Contractor: Total Drilling Services/Skinner LTD Driller: Total Skinner Cectoglist: S Kangas Drilling Method: CME 850 4.25 in HSA w/ 5'MC and 2' SS Drilling Method: CME 850 4.25 in HSA w/ 5'MC and 2' SS Drilling Fluids (type): N/A Date Well Started: 2/23/2021 Date well Finished: 2/23/2021 Date Well Started: 2/23/2021 Date Well Finished: 3/2/2021 Date Form Completed by: S Kangas Date Form Completed: 3/2/2021 Date Form Completed by: S Kangas Date Form Completed: 3/2/2021 Date Fo	Coordinates: x <u>524.5</u> y <u>4150</u>	0.6 (or) Lat	itude:°'	Longitude:	0 1 11
District Todd Skinner Ceelogist: S Kangas Logged by: S Kangas	Surveyed by: Andrews Engineering, Inc.			IL Registration #	:
Drilling Method: CME 850 4.25 in HSA w/ 5MC and 2' SS Logged by: S Kangas	Drilling Contractor: Total Drilling Services/Ski	inner LTD Consulti	ng Firm: Andrew	s Engineering, Inc.	
Date Well Started: 2/23/2021 Date Well Finished: 2/23/2021 Date Form Completed Sy/2/2021 Date Form Completed Sy/2/2021 Date Form Completed: 3/2/2021 Date Form Completed: 3/2/	Driller: Todd Skinner	Geologi:	st: S Kangas		
Date Meli Started 2/23/2021 Date Meli Finished 2/23/2021 Date Form Completed 3/2/2021	Drilling Method: CME 850 4.25 in HSA w/ 5'M	C and 2' SS Logged	by: S Kangas		
ANNULAR SPACE DETAILS Salid	Drilling Fluids (type): N/A	Report F	Form Completed	by: S Kangas	
MSL	Date Well Started: 2/23/2021 Date	Well Finished: 2/23/2021	Date F	orm Completed: 3/2/202	21
ANNULAR SPACE DETAILS 538.10 -2.80 Top of Protective Casing S38.10 -2.80 Top of Riser Pipe			ELEVATION (MSL)*	DEPTH (0.01 ft) (BGS)*	
Type of surface seal: Concrete Type of annular sealant: Bentonite Chips Installation method: Free Drop Setting time: >24 Type of bentonite seal: Bentonite Chips Installation method: Free Drop Setting time: >24 hours Type of sand pack: Silica Sand Pre-Pack Grain size: 20/40 (sieve size) Installation method: Free Drop Type of backfill material: N/A Installation method: Free Drop WELL CONSTRUCTION MATERIALS WELL CONSTRUCTION MATERIALS Frotective Casing N/A Riser Pipe Below W.T. PVC Screen Length [fits stot to last stot] (ftt) 9,70 Total Length of Casing (ftt) N/A Screen Length [fits stot to last stot] (ftt) 9,70 Total Length of Casing (ftt) N/A Screen Length [fits stot to last stot] (ftt) 9,70 Total Length of Casing (ftt) N/A Screen Length [fits stot to last stot] (ftt) 9,70 Total Length of Casing (ftt) N/A Screen Length [fits stot to last stot] (ftt) 9,70 Total Length of Casing (ftt) N/A Screen Siot Size* #10 (0.01)					tective Casing
Type of annular sealant: Bentonite Chips Installation method: Free Drop Setting time: >24 Type of bentonite seal: Bentonite Chips Installation method: Free Drop Setting time: >24 hours Type of sand pack: Silica Sand Pre-Pack Grain size: 20/40 (sieve size) Installation method: Free Drop Type of backfill material: N/A Installation method: Free Drop WELL CONSTRUCTION MATERIALS Frotective Casing N/A Riser Pipe Length (ft) N/A Riser Pipe Length (ft) N/A Riser Pipe Bellow W.T. PVC Riser Pipe Bellow W.T. PVC Riser Pipe Bellow W.T. PVC Screen Length (sist solit loss slot) (ft) N/A Screen Length (sist slot) loss slote (ft) N/A Screen Siot Size* #10 (0.01)	ANNULAR SPACE DETAILS		538.10	Top of Rise	er Pipe
Type of annular sealant: Bentonite Chips Installation method: Free Drop Setting time: >24 Type of bentonite seal: Bentonite Chips Installation method: Free Drop Setting time: >24 hours Type of sand pack: Silica Sand Pre-Pack Grain size: 20/40 (sieve size) Installation method: Free Drop Type of backfill material: N/A Installation method: Free Drop WELL CONSTRUCTION MATERIALS Frotective Casing N/A Riser Pipe Length (ft) N/A Riser Pipe Length (ft) N/A Riser Pipe Bellow W.T. PVC Riser Pipe Bellow W.T. PVC Riser Pipe Bellow W.T. PVC Screen Length (sist solit loss slot) (ft) N/A Screen Length (sist slot) loss slote (ft) N/A Screen Siot Size* #10 (0.01)	Type of surface seal: Concrete		525 20	0.00	
Installation method: Free Drop Setting time: >24 Type of bentonite seal: Bentonite Chips Installation method: Free Drop Setting time: > 24 hours Type of sand pack: Silica Sand Pre-Pack Grain size: 20/40 (sieve size) Installation method: Free Drop Type of backfill material: N/A Type of backfill material: N/A Installation method: Silica Sand Pre-Pack Of an insize: 20/40 (sieve size) Installation method: Silica Sand Pre-Pack S	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7	0.00,,000,	face
Setting time: >24 Type of bentonite seal: Bentonite Chips Installation method: Free Drop Setting time: >24 hours Type of sand pack: Silica Sand Pre-Pack Grain size: 20/40 (sieve size) Installation method: Free Drop Type of backfill material: N/A Installation method: (if applicable) Instal	Type of annular sealant: Bentonite Chips		331.80	3.30 Top of Ann	ular Sealant
Setting time: >24 Type of bentonite seal: Bentonite Chips Installation method: Free Drop Setting time: > 24 hours Type of sand pack: Silica Sand Pre-Pack Grain size: 20/40 (sieve size) Installation method: Free Drop Type of backfill material: N/A ((rapplicable)) Installation method: Silica Sand Pre-Pack Unstallation method: Free Drop Silis. Salis. 19.72 Solitom of Screen Solitom of Screen Solitom of Well Silis. Salis. 19.72 Solitom of Screen Solitom of Well Silis. Salis. 19.72 Solitom of Screen Solitom of Screen Solitom of Well Silis. Salis. Solitom of Screen Solitom of Screen Solitom of Well Silis. Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen to End Cap (it) N/A Screen Solitom of Screen to End Cap (it) N/A Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom of Screen Solitom Solitom of Screen Solitom Solitom of Screen Solitom Solitom Screen Solitom Solitom Solitom Screen Solitom Sol	Installation method: Free Drop			Ciplia Wala	
Type of bentonite seal: Bentonite Chips Installation method: Free Drop Setting time: > 24 hours Type of sand pack: Silica Sand Pre-Pack Grain size: 20/40	Setting time: >24			Measured	on
Installation method: Free Drop Setting time: ≥ 24 hours Type of sand pack: Silica Sand Pre-Pack Grain size: 20/40 (sieve size) Installation method: Free Drop Type of backfill material: N/A (if applicable) Installation method: 515.15 20.15 Bottom of Screen Bottom of Well Silica Sand Pre-Pack 515.15 20.15 Bottom of Screen Bottom of Well Silica Sand Pre-Pack 515.15 20.15 Bottom of Screen Bottom of Well Silica Sand Pre-Pack Silica Sand Pre-Pack 515.15 20.15 Bottom of Borehole Welland Boldon (New Problem Control Dalum Problem Control D					
Setting time: > 24 hours Type of sand pack: Silica Sand Pre-Pack Grain size: 20/40 (sieve size) Installation method: Free Drop Type of backfill material: N/A (if applicable) Installation method: Installation method: Installation method: Installation method: WELL CONSTRUCTION MATERIALS Protective Casing N/A Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Screen PVC Screen Slot Size* Top of Sandpack 527.60 7.70 Top of Sandpack 10.02 Top of Screen 525.28 10.02 Top of Screen 525.28 10.02 Top of Screen 525.28 10.02 Top of Screen 525.28 10.02 Top of Screen 525.28 10.02 Top of Screen 525.28 10.02 Top of Screen 525.28 10.02 Top of Screen 525.28 10.02 Top of Screen 525.28 10.02 Top of Screen 525.28 10.02 Top of Screen 525.28 10.02 Top of Sandpack 527.60 7.70 Top of Sandpack 527.60 7.70 Top of Screen 525.28 10.02 Top of Screen 525.28	Type of bentonite seal: Bentonite Chips	— T1 IT			
Type of sand pack: Silica Sand Pre-Pack Grain size: 20/40 (sieve size) Installation method: Free Drop Type of backfill material: N/A Installation method: Installation meth	Installation method: Free Drop		531.80	3.50 Top of Sea	d
Type of sand pack: Silica Sand Pre-Pack Grain size: 20/40 (sieve size) Installation method: Free Drop Type of backfill material: N/A Installation method: (if applicable) Installation method: (if applicable) Installation method: (if applicable) Installation method: (if applicable) Installation method: (if applicable) Installation method: (if applicable) Vertical Datum * positive (+) values below 65, negitive (-) values above 65 CASING MEASUREMENTS Diameter of Borehole (in) 8.25 ID of Riser Pipe (in) #2 Protective Casing Length (ft) N/A Riser Pipe Length (ft) 12.82 Protective Casing N/A Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Riser Pipe Below W.T. PVC Screen Length (ist stot to last slot) (ft) 9.70 Total Length of Casing (ft) N/A Screen Slot Size* #10 (0.01)	Setting time: > 24 hours	🛭 🖺	527.60	7.70 Top of San	dpack
Installation method: Free Drop Type of backfill material: N/A Installation method: In	Type of sand pack: Silica Sand Pre-Pack				
Installation method: Free Drop Type of backfill material: N/A Installation method: S15.15 20.15 Bottom of Screen *Referenced to a National Geodetic Vertical Datum *positive (+) values below 65, regitive (-) values above 65 CASING MEASUREMENTS Diameter of Borehole (in) 8.25 ID of Riser Pipe (in) #2 Protective Casing Length (ft) N/A Riser Pipe Length (ft) 12.82 Protective Casing N/A Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Riser Pipe Below W.T. PVC Screen PVC Screen Slot Size* #10 (0.01)	Grain size: 20/40 (sieve size)		525.28	10.02 Tab of Sort	een een
Type of backfill material: N/A (if applicable) Installation method: Installation method: S15.15 20.15 Bottom of Screen	Installation method. Free Drop			100 01 001	
Type of backfill material: N/A (if applicable) Installation method: Installation Installation Installation Installation Installation Installation Installation Installation Installation Installation Installation Installation Installation Installation Installation Installation Installation Installation Install	installation method.		515 50	10.72	
Installation method: S15.15 20.15 Bottom of Borehole	Type of backfill material: N/A			20.15	
*Referenced to a National Geodetic Vertical Datum positive (+) values above 6S **CASING MEASUREMENTS** Diameter of Borehole (in) 8.25 ID of Riser Pipe (in) #2 Protective Casing Length (ft) N/A Riser Pipe Length (ft) 12.82 Protective Casing N/A Bottom of Screen to End Cap (ft) 0.43 Riser Pipe Below W.T. PVC Screen Length (ft) 9.70 Riser Pipe Below W.T. PVC Total Length of Casing (ft) N/A Screen PVC Screen Slot Size* #10 (0.01)	(if applicable)		515.15	20.15	Jarobalo
CASING MEASUREMENTS Diameter of Borehole (in) 8.25 ID of Riser Pipe (in) #2 Protective Casing Length (ft) N/A Riser Pipe Length (ft) 12.82 Protective Casing N/A Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Riser Pipe Below W.T. PVC Screen PVC CASING MEASUREMENTS Bottom of Borehole (in) 8.25 ID of Riser Pipe (in) #2 Protective Casing Length (ft) N/A Riser Pipe Length (ft) 12.82 Screen to End Cap (ft) 0.43 Screen Length [Ist slot to last slot] (ft) 9.70 Total Length of Casing (ft) N/A Screen Slot Size* #10 (0.01)	mstallation method.	لنسف سنساسا	* Referenced to	a National Geodetic Vertical Datum	
Diameter of Borehole (in) 8.25 ID of Riser Pipe (in) #2 Protective Casing Length (ft) N/A Riser Pipe Length (ft) 12.82 Protective Casing N/A Bottom of Screen to End Cap (ft) 0.43 Riser Pipe Above W.T. PVC Screen Length [1st slot to last slot] (ft) 9.70 Riser Pipe Below W.T. PVC Screen PVC Total Length of Casing (ft) N/A Screen Slot Size* #10 (0.01)				20 0 5 0 0	
WELL CONSTRUCTION MATERIALS ID of Riser Pipe (in) #2					
WELL CONSTRUCTION MATERIALS Protective Casing Length (ft) Riser Pipe Length (ft) 12.82 Protective Casing N/A Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Riser Pipe Below W.T. PVC Screen PVC Screen Slot Size* Protective Casing Length (ft) 12.82 Bottom of Screen to End Cap (ft) 0.43 Screen Length [1st slot to last slot] (ft) 9.70 Total Length of Casing (ft) N/A Screen Slot Size* #10 (0.01)					
Riser Pipe Length (ft) Protective Casing N/A Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Riser Pipe Below W.T. PVC Screen PVC Riser Pipe Below W.T. PVC Screen Slot Size* #10 (0.01)	WELL CONSTRUCTION MATE	P			
Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC Screen Length [Ist slot to last slot] (ft) 9.70 Total Length of Casing (ft) N/A Screen PVC Screen Slot Size* #10 (0.01)	WELL CONSTRUCTION MATE	R	iser Pipe Leng	th (ft)	12.82
Riser Pipe Below W.T. PVC Screen PVC Total Length of Casing (ft) N/A Screen Slot Size* #10 (0.01)		В	ottom of Scre	en to End Cap (ft)	0.43
Screen PVC Screen Slot Size* #10 (0.01)		S	creen Length	[1st slot to last slot] (ft)	9.70
*Hand-slotted well screens are unacceptable.	Screen PVC				#10 (0.01)

Illinois Environmental Protection Ag	ency Well Completion Report
Site #: County: Sa	ngamon Well #: AP-12
Site Name: Springfield CWLP Ash Pond	Borehole #: W-3
Coordinates: x <u>667.6</u> y <u>3797.7</u>	(or) Latitude:°, Longitude:°,
Surveyed by: Andrews Engineering, Inc.	IL Registration #:
Drilling Contractor: Total Drilling Services/Skinner LTD.	Consulting Firm: Andrews Engineering, Inc.
Driller: Todd Skinner	Geologist: C. M. Latham
Drilling Method: CME 850 4.25 in HSA w/ 5'MC and 2' SS	Logged by: Scott Krangus
	Report Form Completed by: <u>C.M. Latham</u>
Date Well Started: 2/23/2021 Date Well Finished: 2	
	ELEVATION DEPTH (0.01 ft)
-	(MSL)* (BGS)* 540.70 -2.90 Top of Protective Casing
ANNULAR SPACE DETAILS	540.60 -2.80 Top of Riser Pipe
Type of surface seal: Concrete	537.80 0.00 Ground Surface
Type of annular sealant: Bentonite Chips	534.80 3.00 Top of Annular Sealant
Installation method: Free Drop	Static Water Level
Setting time: > 24	Measured on (after completion)
Type of bentonite seal: Bentonite Chips	3.00 Top of Seal
Installation method: Free Drop	3.00 Top of Seal
Setting time: > 24 hours	522.80 15.00 Top of Sandpack
Type of sand pack: Silica Sand Pre-Pack	
Grain size: 20/40 (sieve size)	520.80 17.00 Top of Screen
Installation method: Free Drop	
	510.88 26.92 Bottom of Screen
Type of backfill material: N/A (if applicable)	510.30 27.50 Bottom of Well
Installation method:	510.50 27.30 Bottom of Borehole
	 Referenced to a National Geodetic Vertical Datum positive (+) values below GS, negitive (-) values above GS
	CASING MEASUREMENTS
	Diameter of Borehole (in) 8.25
	ID of Riser Pipe (in)
WELL CONSTRUCTION MATERIALS	Protective Casing Length (ft) N/A
Protective Casing N/A	Riser Pipe Length (ft) 24.94
Protective Casing N/A Riser Pipe Above W.T. PVC	Bottom of Screen to End Cap (ft) 0.38 Screen Length [1st slot to last slot] (ft) 9.70
Riser Pipe Below W.T. PVC	
Screen PVC	Total Length of Casing (ft) N/A Screen Slot Size* #10 (0.01)
1110	*Hand-slotted well screens are unacceptable.

Illinois Environmental Protection A	gency		Well Completion	n Report
Site #: County:_	Sangamon		Well #: AP-13	
Site Name: Springfield CWLP Ash Pond			Borehole #: W-	2
Coordinates: × <u>852.1</u> y <u>3451.2</u>	(or) Lati	tude:°'	Longitude:	0 1 1
Surveyed by: Andrews Engineering, Inc.			IL Registration #	
Drilling Contractor: Total Drilling Services/Skinner LTD.				
Driller: Todd Skinner				
Drilling Method: CME 850 4.25 in HSA w/ 5'MC and 2' SS	_			
Drilling Fluids (type): N/A				
Date Well Started: 2/24/2021 Date Well Finished)1
Date Well Started: 2/24/2021 Date Well Finished	<u> </u>	ELEVATION	DEPTH (0.01 ft)	- 1
		(MSL)	(BGS)*	ective Casing
ANNULAR SPACE DETAILS			-3.40 Top of Rise	-
Type of surface seal: Concrete		538.60	0.00 Ground Sur	face
Type of annular sealant: Bentonite Chips		355.60	3.00 Top of Ann	ular Sealant
Installation method: <u>Free Drop</u>		532.35	6.25 Static Wate Measured	
Setting time: > 24			(after compl	etion)
Type of bentonite seal: Bentonite Chips				
Installation method: Free Drop			3.00 Top of Sea	Ī
Setting time: > 24 hours		524.08	14.52 Top of San	all walls
Type of sand pack: Silica Sand Pre-Pack		-	Top of San	араск
Grain size: 20/40 (sieve size)		522.08	16.52 Tab of Seri	
		322.00	Top of Scre	een
Installation method: Free Drop				
Type of backfill material: N/A			27.13 Bottom of S 27.60 Bottom of V	
(if applicable)		511.00	27.60	
Installation method:		* Referenced to a	27.60 Bottom of E National Geodetic Vertical Datum	
		positive (+) value	es below GS, negitive (-) values abo	
	-	of Riser Pipe		8.25
			ng Length (ft)	N/A
WELL CONSTRUCTION MATERIALS		ser Pipe Leng		19.94'
Protective Casing N/A	——————————————————————————————————————		en to End Cap (ft)	0.47'
Riser Pipe Above W.T. PVC			[1st slot to last slot] (ft)	9.70
Riser Pipe Below W.T. PVC		otal Length of		N/A
Screen PVC		creen Slot Siz	-	#10 (0.01)
		and-slotted well screens		[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Illinois Environmental Protection Age	ency Well Completion Repo	rt
Site #:County: Sam	gamon well #: AP-14	
Site Name: Springfield CWLP Ash Pond	Borehole #: W-1	
Coordinates: x <u>1275.2</u> y <u>3171.5</u>	(or) Latitude:°, Longitude:°,	n
Surveyed by: Andrews Engineering, Inc.	IL Registration #:	
Drilling Contractor: Total Drilling Services/Skinner LTD.	Consulting Firm: Andrews Engineering, Inc.	
Driller: Todd Skinner	Geologist: C. M. Latham	
Drilling Method: CME 850 4.25 in HSA w/ 5'MC and 2' SS	Logged by: C.M. Latham	
Drilling Fluids (type): N/A	Report Form Completed by: <u>C.M. Latham</u>	
Date Well Started: 2/25/2021 Date Well Finished: 2/25/2021		
	ELEVATION DEPTH (0.01 ft) (MSL)* (BGS)*	
T	539.60 -2.80 Top of Protective Cas	sing
ANNULAR SPACE DETAILS		
Type of surface seal: Concrete	536.80 0.00 Ground Surface	
	533 80 3.00	
Type of annular sealant: Bentonite Chips	555.80 Top of Annular Sealar	ıt
Installation method: Free Drop	534.80 2.00 Static Water Level	
Setting time: > 24	Measured on (after completion)	
Type of bentonite seal: Bentonite Chips		
	3.00 Top of Seal	
Installation method: Free Drop		
Setting time: > 24 hours	521.45 15.35 Top of Sandpack	
Type of sand pack: Silica Sand Pre-Pack		
Grain size: 20/40 (sieve size)	519.45 17.35 Top of Screen	
Installation method: Free Drop		
NI/A	$\frac{509.75}{509.30} \frac{27.05}{27.50} \text{Bottom of Screen}$	
Type of backfill material: N/A (if applicable)	tata and a second of well	
Installation method:	* Referenced to a National Geodetic Vertical Datum * positive (+) values below GS, negitive (-) values above GS	
	* positive (+) values below GS, negitive (-) values above GS CASING MEASUREMENTS	
	Diameter of Borehole (in) 8.25	\neg
	ID of Riser Pipe (in)	\dashv
WELL CONSTRUCTION MATERIALS	Protective Casing Length (ft) N/A	
	Riser Pipe Length (ft) 20.15	
Protective Casing N/A	Bottom of Screen to End Cap (ft) 0.45	
Riser Pipe Above W.T. PVC	Screen Length [Ist slot to last slot] (ft) 9.70	\perp
Riser Pipe Below W.T. PVC	Total Length of Casing (ft) N/A	\perp
Screen PVC	Screen Slot Size* #10 (0.01 *Hand-slotted well screens are unacceptable.)

Illinois Environmental Protection Agency			Well C	Well Completion Report		
Site #: County: Si	pringfield		Wel	#: <u>T1</u>		
Site Name: CWLP			Bor	rehole #: <u>Bl</u>		
Coordinates: x 1128150.33	(or) Lat	titude:°		ongitude:°	, , ,	
Surveyed by: Andrews Engineering, Inc.			IL Re	egistration #:		
Orilling Contractor: Skinner Limited	Consult	ting Firm: Andrey	ws Engineeri	ing, Inc.		
Driller: T. Skinner	Geologi	ist: S. Van Hook	Ĺ			
Drilling Method: 4 1/4" HSA 5' CSD 3"	Logged	by: S. Van Hoc	ok			
Drilling Fluids (type): NA	Report	Form Completed	d by: Lisa M	<u> 1auntel</u>		
Date Well Started: 05/01/2024 Date Well Finished:	05/01/2024	Date F	Form Comple		.024	
<u> </u>		ELEVATION (MSL)* 536.10	(BGS)*	(0.01 ft)	ective Casing	
ANNULAR SPACE DETAILS		535.65	-2.00	Top of Riser	r Pipe	
Type of surface seal: Concrete	冷濛	533.65	0	Ground Surfa	ace	
Type of annular sealant: Bentonite chips	1	531.83	2.50	Top of Annu		
Installation method: Free drop			NA	Static Water		
Setting time: 24+ hours				Measured (after comple		
Type of bentonite seal: Bentonite pellets	科井					
Installation method: Free drop		529.83	5.50	Top of Seal	I	
Setting time: 24+ hours		527.29	0.04			
Type of sand pack: Quartz sand		321.27	8.04	Top of Sand	jpack	
Grain size: 20/40 (sieve size)		525.77	9.56			
Installation method: Free drop		<i>J. L.</i>	9.50	Top of Scre	en	
Installation metrod.		516.27	19.06	Bottom of So	oroan.	
Type of backfill material: n/a (if applicable)		515.83	10.50	Bottom of We		
Installation method: n/a		515.83		Bottom of Bo		
				etic Vertical Datum gitive (-) values above		
	Γ-			SUREMENTS		
		Diameter of Bo		1)	8.25	
		ID of Riser Pip			2.00	
WELL CONSTRUCTION MATERIALS	-	Protective Cas		ה (ft)	5.00	
		Riser Pipe Leng			9.88	
Protective Casing Anodized Aluminum		Bottom of Scre			0.44	
Riser Pipe Above W.T. PVC		Screen Length			9.50	
Riser Pipe Below W.T. PVC		Total Length o		(ft)	19.82	
Screen PVC	5	Screen Slot Si:	₁ze [¥]		#10 (0.01')	

*Hand-slotted well screens are unacceptable.

#10 (0.01')

Illinois Environmental Protection Age	ency Well Comp	Well Completion Report		
Site #: County: Spri	ingfield well #: T	2		
Site Name: CWLP	Borehole	#: <u>B2</u>		
Coordinates: x 1128803.76 y 2455006.85	. (or) Latitude:°" Longitu	de:°"		
Surveyed by: Andrews Engineering, Inc.	IL Registr	ation #:		
Drilling Contractor: Skinner Limited	Consulting Firm: Andrews Engineering, Ir	nc.		
Driller: T. Skinner	Geologist: S. Van Hook			
Drilling Method: 4 1/4" HSA 5' CSD 3"	Logged by: S. Van Hook			
Drilling Fluids (type): NA	. Report Form Completed by: <u>Lisa Maunte</u>	el		
Date Well Started: 05/01/2024 Date Well Finished: 05/01/2024				
	ELEVATION DEPTH (O. (MSL)*	01 ft)		
T	<u>549.86</u> <u>-2.64</u> Top	of Protective Casing		
ANNULAR SPACE DETAILS	<u>549.62</u> <u>-2.4</u> Top	of Riser Pipe		
Type of surface seal: Concrete	547.22 0 Gray			
	544.22 3.00			
Type of annular sealant: Bentonite grout	+ op	of Annular Sealant		
Installation method: Free drop		ic Water Level		
Setting time: 24+ hours	Mea	sured on (after completion)		
Type of bentonite seal: Bentonite pellets				
	526.12 21.10 _{Top}	of Seal		
Installation method: Free drop		of Seal		
Setting time: 24+ hours	524.02 23.20 Top	of Sandpack		
Type of sand pack: Quartz sand				
Grain size: 20/40 (sieve size)	<u>522.46</u> <u>24.76</u> _{Top}	of Screen		
Installation method: Free drop				
	512.22 25.00	om of Screen		
Type of backfill material: n/a (if applicable)		om of Well		
Installation method: n/a		om of Borehole		
	 Referenced to a National Geodetic Verti positive (+) values below GS, negitive (-) 	cal Datum values above GS		
	CASING MEASURE	MENTS		
	Diameter of Borehole (in)	8.25		
	ID of Riser Pipe (in)	2.00		
WELL CONSTRUCTION MATERIALS	Protective Casing Length (ft			
	Riser Pipe Length (ft)	27.16		
Protective Casing Anodized Aluminum	Bottom of Screen to End Cap	0.11		
Riser Pipe Above W.T. PVC	Screen Length [Ist slot to last slo			
Riser Pipe Below W.T. PVC Screen PVC	Total Length of Casing (ft)	37.40		
Screen PVC	Screen Slot Size* *Hand-slotted well screens are unacceptable.	#10 (0.01')		

Illinois Environmental Protection Ag	gency Well Completion Repo
Site #: County: Sr	pringfield well #: T4
Site Name: CWLP	Borehole #: <u>B4</u>
Coordinates: x 1130726.70 y 2455622.14	(or) Latitude:°'" Longitude:°'
Surveyed by: Andrews Engineering, Inc.	IL Registration #:
Orilling Contractor: Skinner Limited	Consulting Firm: Andrews Engineering, Inc.
Driller: T. Skinner	Geologist: S. Van Hook
Drilling Method: 4 1/4" HSA 5' CSD 3"	Logged by: S. Van Hook
Drilling Fluids (type): NA	Report Form Completed by: Lisa Mauntel
Date Well Started: 04/26/2024 Date Well Finished:	
7	ELEVATION DEPTH (0.01 ft) (MSL)* (BGS)* 549.43 -2.87 Top of Protective Ca
ANNULAR SPACE DETAILS	
Type of surface seal: Concrete	546.56 0 Ground Surface
Type of annular sealant: Bentonite grout	543.56 3.00 Top of Annular Sealar
Installation method: Free drop	NAStatic Water Level
Setting time: 24+ hours	Measured on (after completion)
Type of bentonite seal: Bentonite pellets	\
Installation method: Free drop	534.76 11.80 Top of Seal
Setting time: 24+ hours	532.66 13.90 Lan of Sandarah
Type of sand pack: Quartz sand	532.66 13.90 Top of Sandpack
Grain size: 20/40 (sieve size)	531.43 15.13 Top of Screen
Installation method: Free drop	331.43 15.13 Top of Screen
	521.94 24.62 Bottom of Screen 521.56 25.00 Bottom of Well
Type of backfill material: n/a (if applicable)	521.56 25.00
Installation method: n/a	* Referenced to a National Geodetic Vertical Datum * positive (+) values below GS, negitive (-) values above GS
	* positive (+) values below GS, negitive (-) values above GS CASING MEASUREMENTS
	Diameter of Borehole (in) 8.25
	ID of Riser Pipe (in) 2.00
WELL CONSTRUCTION MATERIALS	Protective Casing Length (ft) 5.00
MELL COMPLETION MATERIALS	Riser Pipe Length (ft) 17.51
Protective Casing Anodized Aluminum	Bottom of Screen to End Cap (ft) 0.44
Riser Pipe Above W.T. PVC	Screen Length [1st slot to last slot] (ft) 9.49
Riser Pipe Below W.T. PVC	Total Length of Casing (ft) 27.38
Screen PVC	Screen Slot Size* #10 (0.0)

Illinois Environmental Protection Ag	ency Well Completion Repor			
Site #: County:_Sp	ringfield well #: T5			
Site Name: CWLP	Borehole #: <u>B5</u>			
Coordinates: × 1130996.32 y 2455852.04	(or) Latitude:°'" Longitude:°'			
Surveyed by: Andrews Engineering, Inc.	IL Registration #:			
Drilling Contractor: Skinner Limited	Consulting Firm: Andrews Engineering, Inc.			
Driller: T. Skinner	Geologist: S. Van Hook			
Drilling Method: 4 1/4" HSA 5' CSD 3" Logged by: S. Van Hook				
	Report Form Completed by: Lisa Mauntel			
Date Well Started: 04/25/2024 Date Well Finished:				
Bate Well Illianded	ELEVATION DEPTH (0.01 ft)			
₩	(MSL)* (BGS)* 541.00 -2.85 Top of Protective Casin			
ANNULAR SPACE DETAILS				
Type of surface seal: Concrete	538.15 0 Ground Surface			
Type of annular sealant: Bentonite grout	535.15 3.00 Top of Annular Sealant			
Installation method: Free drop	NA Static Water Level			
Setting time: 24+ hours	Measured on (after completion)			
Type of bentonite seal: Bentonite pellets				
Installation method: Free drop	$\underline{531.55}$ $\underline{6.60}$ Top of Seal			
Setting time: 24+ hours	529.35 8.80 Top of Sandpack			
Type of sand pack: Quartz sand	William Control of the Control of th			
Grain size: 20/40 (sieve size)	528.22 9.93 Top of Screen			
Installation method: Free drop				
	518.72 19.43 Bottom of Screen			
Type of backfill material: n/a (if applicable)	518.29 19.86 Bottom of Well			
Installation method: n/a	518.29 19.86 Bottom of Borehole			
	 Referenced to a National Geodetic Vertical Datum positive (+) values below GS, negitive (-) values above GS 			
	CASING MEASUREMENTS			
	Diameter of Borehole (in) 8.25			
	ID of Riser Pipe (in) 2.00 Protective Casing Length (ft) 5.00			
WELL CONSTRUCTION MATERIALS Protective Casing Length (ft)				
Distortive Casing A. P. 141	Riser Pipe Length (ft) 12.44			
Protective Casing Anodized Aluminum Riser Pipe Above W.T. PVC	Bottom of Screen to End Cap (ft) 0.43			
Riser Pipe Below W.T. PVC	Screen Length [1st slot to last slot] (ft) 9.50			
Screen PVC	Total Length of Casing (ft) 22.37 Screen Slot Size* #10 (0.01)			
1110	Screen Slot Size* #10 (0.01') *Hand-slotted well screens are unacceptable.			

Illinois Environmental Protection A	gency		Well (Completio	n Repor
Site #:County:	Springfield		We	#: <u>T6</u>	
Site Name: CWLP			Во	rehole #: <u>B6</u>	
Coordinates: x 1131175.15 y 2456259.47	(or) Latite	ıde:°	"" L	ongitude:	, ,
Surveyed by: Andrews Engineering, Inc.			IL R	egistration #:	
Orilling Contractor: Skinner Limited	Consulting	Firm: Andrew	vs Engineer	ring, Inc.	
Oriller: T. Skinner	Geologist	S. Van Hook			
Drilling Method: 4 1/4" HSA 5' CSD 3"	Logged b	v· S. Van Hoo	k		
Drilling Fluids (type): NA		•		Mauntel	
Date Well Started: 04/25/2024 Date Well Finished					2024
Date well Started. 5 11251251 Date well Finished	<u> </u>	ELEVATION (MSL)*	DEPTH (BGS)*	(0.01 ft)	
		(MSL)*	(BGS)*	Top of Prot	ective Casin
ANNULAR SPACE DETAILS		538.32	-2.36	Top of Rise	r Pipe
Type of surface seal: Concrete		535.96	0	Ground Surf	ace
Type of annular sealant: Bentonite grout		532.96	3.00	Top of Anni	ular Sealant
Installation method: <u>Free drop</u> Setting time: 24+ hours			NA	Static Wate Measured (after compl	on
Type of bentonite seal: Bentonite pellets Installation method: Free drop		507.96	28.00	Top of Seal	ı
Setting time: 24+ hours		505.76	30.20	Top of Sand	dpack
Type of sand pack: Quartz sand Grain size: 20/40 (sieve size) Installation method: Free drop		503.92	32.04	Top of Scre	en
Type of backfill material: n/a (if applicable)		<u>494.20</u> <u>493.85</u>	<u>41.76</u> <u>42.11</u>	Bottom of S Bottom of W	
Installation method: $\frac{n/a}{}$		493.85	42.11	Bottom of B	orehole
		* Referenced to * positive (+) val	a National Geod ues below GS, no	detic Vertical Datum egitive(-) values abov	re GS
		CASI	NG MEAS	SUREMENT	S
		meter of Bo		n)	8.25
		of Riser Pip		- (41\	2.00
WELL CONSTRUCTION MATERIALS		er Pipe Look		:h (ft)	5.00
Protective Casing Anodized Aluminum		er Pipe Leng		d Can (11)	32.85
Riser Pipe Above W.T. PVC		reen Length			0.35 9.72
Riser Pipe Below W.T. PVC		tal Length o			42.92
Screen PVC		reen Slot Si:		7.57	#10 (0.01')

APPENDIX B4: CCR IMPOUNDMENT WELL CONSTRUCTION REPORTS

Illinois Environmental Protection Ag	ency	Well Com	pletion Report
Site #: County: S	ringfield	Well #:_	D1
Site Name: CWLP	=======================================	Boreho	le #: <u>D1</u>
Coordinates: ×1129774.64 y 2455460.38	_ (or) Latitude:		ude:°
Surveyed by: Andrews Engineering, Inc.		IL Regist	tration #:
	$_{-}$ Consulting Firm: $\overline{ m An}$		
Driller: T. Skinner			
Drilling Method: 4 1/4" HSA 5' CSD 3"			
Drilling Fluids (type): NA	_ Report Form Comple	eted by: <u>S. Van Ho</u>	<u>ok</u>
Date Well Started: 04/29/2024 Date Well Finished:			
	ELEVATI (MSL)°	ON DEPTH (C * (BGS)*	0.01 ft)
5			p of Protective Casing
ANNULAR SPACE DETAILS	566.20	<u>-2.18</u> To	p of Riser Pipe
Type of surface seal: Concrete	564.02	0	ound Surface
Type of annular sealant: Bentonite grout	561.02	2 00	p of Annular Sealant
Installation method: Free drop			
			atic Water Level asuned on (after completion)
Setting time: 24+ hours			(after completion)
Type of bentonite seal: Bentonite pellets			
Installation method: Free drop	533.72	30.3 To	p of Seal
This tailed in the this s.			
Setting time: 24+ hours	532.72	<u>31.3</u> Tol	p of Sandpack
Type of sand pack: Quartz sand			
Grain size: 10/20 (sieve size)	530.75	33.27Top	p of Screen
Installation method: Free drop			
	526.00	00	ttom of Screen
Type of backfill material: bentonite chips/pellets (if applicable)	525.52		ttom of Well
Installation method: Free drop	523.52		ttom of Borehole
	® Referen * positive	ced to a National Geodetic Ve (+) values below GS, negitive (ertical Datum (-) values above GS
	CA	ASING MEASUR	EMENTS
	Diameter o	f Borehole (in)	8.5
	ID of Riser		2.00
WELL CONSTRUCTION MATERIALS		Casing Length (
	Riser Pipe L		35.44
Protective Casing NA		Screen to End Ca	0.10
Riser Pipe Above W.T. PVC		ngth [1st slot to last s	
Riser Pipe Below W.T. PVC	I I Total Lendi	th of Casina (ft)	140.67

*Hand-slotted well screens are unacceptable.

#10 (0.01')

PVC

Illinois Environmental Protection Agency			Well Completion Report		
Site #: County: Springfield			We	#: <u>D2</u>	
Site Name: CWLP			Во	rehole #: <u>D2</u>	
Coordinates: X 1130279.34 Y 2456218.06 (or) Latitu	de:°		ongitude:°	, n
Surveyed by: Andrews Engineering, Inc.			IL R	egistration #:	
Drilling Contractor: Skinner Limited Consulting Firm: Andrews Engineering, Inc.					
Driller: T. Skinner Geologist: S. Van Hook					
■rilling Method: 4 1/4" HSA 5' CSD 3" Logged by: S. Van Hook					
Drilling Fluids (type): NA Re	port Fo	rm Completed	by: S. Var	n Hook	
Date Well Started: 04/29/2024 Date Well Finished: 04/29/	/2024	Date F	orm Compl	leted: <u>04/29/2</u>	024
		ELEVATION (MSL)*	DEPTH (BGS)*	(0.01 ft)	
	T	560.02	-2.93	Top of Prot	0
ANNULAR SPACE DETAILS		560.93	-2.93	Top of Riser	Pipe
Type of surface seal: Concrete		558.00	0	Ground Surf	ace
Type of annular sealant: Bentonite grout		555.00	3.00	Top of Annu	
Installation method: Free drop					
Setting time: 24+ hours			NA	Static Water Measured (after comple	on
Setting time.				(orter comple	(ton)
Type of bentonite seal: Bentonite pellets	\Box				
Installation method: Free drop	\boxtimes	531.20	26.8	Top of Seal	
Setting time: 24+ hours		528.73	27.77	Top of Sand	dpack
Type of sand pack: Quartz sand					
Grain size: 10/20 (sieve size)		523.98	29.27	Top of Scre	en
Installation method: Free drop					
		523.98	34.02 34.5	Bottom of S	
Type of backfill material: bentonite chips/pellets (if applicable)		523.50	34.3	Bottom of W	eII
Installation method: Free drop	(4)	\$20.50 * Referenced to	37.5 a National Geod	Bottom of B letic Vertical Datum egitive (-) values abov	
				egitive (-) values abov SUREMENT	
	Dia	meter of Bo			8.5
ID of Riser Pipe (in)					2.00
WELL CONSTRUCTION MATERIALS	Pro	tective Cas	ing Lengt	h (ft)	NA
<u> </u>	- I	er Pipe Leng			32.19
Protective Casing NA		tom of Scre		===================================	0.48
Riser Pipe Above W.T. PVC		een Length			4.75
Riser Pine Below W.T. IPVC	I I Tot	allenath o	t Casino	(f +)	127.42

*Hand-slotted well screens are unacceptable.

#10 (0.01')

PVC

Illinois Environmental I	Protection Ager	псу			Well C	Completion	n Report
Site #:	County: Spring	gfield			We	II #: <u>D3</u>	
Site Name: CWLP					Во	rehole #: <u>D3</u>	
Coordinates: x <u>1129517.94</u> y	2455925.82	(or) L	atitud	e:°	<u>"</u> " Lo	ongitude:°	
Surveyed by: Andrews Engineering, Inc.	•				IL R	egistration #:.	
Drilling Contractor: Skinner Limited							
Drilling Method: 4 1/4" HSA 5' CSD 3"			-				
Drilling Fluids (type): NA	f	Repor	t Fori	n Completed	ьу: <u>S. Va</u>	n Hook	
Date Well Started: 04/30/2024	Date Well Finished: 04/3	30/202	24	Date F	Form Comp	leted: <u>04/30/2</u> 0	024
			Е	LEVATION (MSL)*	DEPTH (BGS)*	(0.01 ft)	
	7					Top of Prote	ective Casino
ANNULAR SPACE DETAIL	S			557.90	-2.87	Top of Riser	Pipe
Type of surface seal: Concrete				555.03	0	Ground Surf	ace
Type of annular sealant: Bentonite gro	ut			552.03	3.00	Top of Annu	
Installation method: Free drop					NA	Static Water	
Setting time: 24+ hours						Measured (after comple	on
Type of bentonite seal: Bentonite pelle	ets T	Ϋ́Т					
Installation method: Free drop				535.14	19.9	Top of Seal	
Setting time: 24+ hours				522.10	21.05		
	×	\bowtie		533.18	21.85	Top of Sand	dpack .
Type of sand pack: Quartz sand							
Grain size: $10/20$ (sieve size)			531.76	23.27	Top of Scre	en
Installation method: Free drop		∄					
				527.01	28.02	Bottom of S	creen
Type of backfill material: bentonite chip	ps/pellets			526.53	28.5	Bottom of W	ell
Installation method: Free drop	Cable)			523.53	31.5	Bottom of B	orehole
				* Referenced to	a National Geod Iues below GS, no	detic Vertical Datum egitive(-) values abov	e GS
						SUREMENT:	
		Ī	Dian	neter of Bo	prehole (i	n)	8.5
		İ	ID c	f Riser Pip	e (in)		2.00
WELL CONSTRUCTION N	MATERIALS	į	Prot	ective Cas	ing Lengt	th (ft)	NA
				r Pipe Len			26.13
Protective Casing NA						id Cap (ft)	0.48
Riser Pipe Above W.T. PVC		_				last slot) (ft)	4.75
Riser Pipe Below W.T. PVC				al Length o		(ft)	31.36
Screen		- 11	Scr	een Slot S i	ze*		#10 (0.01')

 * Hand-slotted well screens are unacceptable.

Illinois Environmental Protection	Agency		Well C	Completion	n Report
Site #: Count	y: Springfield		We	II #:_D4	
Site Name: CWLP			Во	rehole #: D4	
Coordinates: x_1129061.39 y_2455862.82	(or) L	atitude:°		ongitude:°	, n
Surveyed by: Andrews Engineering, Inc.			IL R	egistration #:.	
Drilling Contractor: Skinner Limited	Consi	ulting Firm: Andrew	vs Engineer	ring, Inc.	<u> </u>
Driller: T. Skinner	Geolo	gist: S. Van Hook			
■rilling Method: 4 1/4" HSA 5' CSD 3"	Logg	ed by: S. Van Hoo	k		
Drilling Fluids (type): NA	Repor	t Form Completed	by: <u>S. V</u> a	n Hook	
Date Well Started: 04/30/2024 Date Well Finish	ned: <u>04/30/20</u> 2	24 Date F	Form Comp	leted: 04/30/20	024
		ELEVATION (MSL)*	DEPTH (BGS)*	(0.01 ft)	
				Top of Prote	ective Casing
ANNULAR SPACE DETAILS		565.61	-3.81	Top of Riser	Pipe
Type of surface seal: Concrete		561.80	0	Ground Surf	ace
Type of annular sealant: Bentonite grout		558.80	3.00	Top of Annu	
Installation method: Free drop					
Setting time: 24+ hours			NA	Static Water Measured (after comple	on
Setting time:				(arter comple	tion)
Type of bentonite seal: Bentonite pellets					
Installation method: Free drop		537.70	24.1	Top of Seal	
Setting time: 24+ hours		536.55	25.25	Top of Sand	in ack
Type of sand pack: Quartz sand				10p 01 3and	JP BCK
Grain size: $10/20$ (sieve size)		535.53	26.27	Top of Scre	en
Installation method: Free drop				100 01 3010	CII
		530.78	31.02	Bottom of S	creen
Type of backfill material: bentonite chips/pellets (if applicable)		530.30	31.5	Bottom of W	
Installation method: Free drop		525.00	36.8	Bottom of B	orehole
		Referenced to positive (+) va	a National Geod Iues below GS, no	detic Vertical Datum egitive(-) values abov	e GS
		CASI	NG MEAS	SUREMENT	S
		Diameter of Bo	prehole (i	n)	8.5
		ID of Riser Pip	e (in)		2.00
WELL CONSTRUCTION MATERIALS		Protective Cas	ing Lengt	th (ft)	NA
		Riser Pipe Len	gth (ft)		30.08
Protective Casing NA		Bottom of Scr	een to En	id Cap (ft)	0.48
Riser Pipe Above W.T. PVC		Screen Length	1st slot to	last slot) (ft)	4.75
Riser Pipe Below W.T. PVC		Total Length o	of Casino	(ft)	35 31

*Hand-slotted well screens are unacceptable.

#10 (0.01')

PVC

Illinois Environmental Protection Agency			Well C	Well Completion Report		
Site #: County: Springfield			We	⊪ #: <u>L1</u>		
Site Name: CWLP			Во	rehole #: <u>L1</u>		
Coordinates: x 1127471.56	∋titu	de:	Lo	ongitude:°		
Surveyed by: Andrews Engineering, Inc.			IL R	egistration #:_		
Drilling Contractor: Skinner Limited Consulting Firm: Andrews Engineering, Inc.						
Driller: T. Skinner Geo	logi	st: S. Van Hook				
■rilling Method: 4 1/4" HSA 5' CSD 3" Log	ged	by: S. Van Hoo	k			
Drilling Fluids (type): NA Rep	ort f	orm Completed	by: S. Var	ı Hook		
Date Well Started: 05/02/2024 Date Well Finished: 05/02/2	024	Date F	orm Compl	eted: 05/02/20)24	
		ELEVATION (MSL)®	DEPTH (BGS)*	(0.01 ft)		
	P			Top of Prote	ective Casing	
ANNULAR SPACE DETAILS		572.31	-3.35	Top of Riser	Pipe	
Type of surface seal: Concrete		568.96	0	Ground Surfa	ace	
Type of annular sealant: Bentonite grout		565.96	3.00	Top of Annu		
Installation method: Free drop			NT A			
Setting time: 24+ hours			NA	Static Water Measured (after comple	on	
Type of bentonite seal: Bentonite pellets	Τ					
Installation method: Free drop	Z R	543.86	25.1	Top of Seal		
Setting time: 24+ hours		541.21	27.75	Top of Sand	pack	
Type of sand pack: Quartz sand						
Grain size: 10/20 (sieve size)		539.69	29.27	Top of Scre	en	
Installation method: Free drop						
		534.94	34.02	Bottom of S	creen	
Type of backfill material: bentonite chips/pellets (if applicable)	9	534.46	34.5	Bottom of We	ell	
Installation method: free drop		530.96	38	Bottom of Bi		
				etic Vertical Datum gitive (-) values above		
	_			SUREMENTS	<u> </u>	
	_	Diameter of Bo		n)	8.5	
	-	D of Riser Pip		b (41)	2.00	
WELL CONSTRUCTION MATERIALS	-	Protective Cas		n (Tt)	NA	
Protective Casing NA	-	Riser Pipe Leng Bottom of Scre		d (an (++)	0.48	
Riser Pipe Above W.T. PVC	-	Screen Length			4.75	
Riser Pipe Below W.T. PVC	-	otal Length o			37.85	
Screen PVC		Screen Slot Si		. ,	#10 (0.01')	

Illinois Environmental I	Protection Ager	псу			Well C	Completion	n Report
Site #:	County: Spring	gfield			We	II #: <u>D3</u>	
Site Name: CWLP					Во	rehole #: <u>D3</u>	
Coordinates: x <u>1129517.94</u> y	2455925.82	(or) L	atitud	e:°	<u>"</u> " Lo	ongitude:°	
Surveyed by: Andrews Engineering, Inc.	•				IL R	egistration #:.	
Drilling Contractor: Skinner Limited							
Drilling Method: 4 1/4" HSA 5' CSD 3"			-				
Drilling Fluids (type): NA	f	Repor	t Fori	n Completed	ьу: <u>S. Va</u>	n Hook	
Date Well Started: 04/30/2024	Date Well Finished: 04/3	30/202	24	Date F	Form Comp	leted: <u>04/30/2</u> 0	024
			Е	LEVATION (MSL)*	DEPTH (BGS)*	(0.01 ft)	
	7					Top of Prote	ective Casino
ANNULAR SPACE DETAIL	S			557.90	-2.87	Top of Riser	Pipe
Type of surface seal: Concrete				555.03	0	Ground Surf	ace
Type of annular sealant: Bentonite gro	ut			552.03	3.00	Top of Annu	
Installation method: Free drop					NA	Static Water	
Setting time: 24+ hours						Measured (after comple	on
Type of bentonite seal: Bentonite pelle	ets T	Ϋ́Т					
Installation method: Free drop				535.14	19.9	Top of Seal	
Setting time: 24+ hours				522.10	21.05		
	×	\bowtie		533.18	21.85	Top of Sand	dpack .
Type of sand pack: Quartz sand							
Grain size: $10/20$ (sieve size)			531.76	23.27	Top of Scre	en
Installation method: Free drop		∄					
				527.01	28.02	Bottom of S	creen
Type of backfill material: bentonite chip	ps/pellets			526.53	28.5	Bottom of W	ell
Installation method: Free drop	Cable)			523.53	31.5	Bottom of B	orehole
				* Referenced to	a National Geod Iues below GS, no	detic Vertical Datum egitive(-) values abov	e GS
						SUREMENT:	
		Ī	Dian	neter of Bo	prehole (i	n)	8.5
		İ	ID c	f Riser Pip	e (in)		2.00
WELL CONSTRUCTION N	MATERIALS	į	Prot	ective Cas	ing Lengt	th (ft)	NA
				r Pipe Len			26.13
Protective Casing NA						id Cap (ft)	0.48
Riser Pipe Above W.T. PVC		_				last slot) (ft)	4.75
Riser Pipe Below W.T. PVC				al Length o		(ft)	31.36
Screen		- 11	Scr	een Slot S i	ze*		#10 (0.01')

 * Hand-slotted well screens are unacceptable.

Illinois Environmental Protection	Agency		Well C	Completio	n Report
Site #: County: Springfield			We	II #:_D4	
Site Name: CWLP		<u> </u>	Во	rehole #: <u>D4</u>	
Coordinates: x_1129061.39 y_2455862.82	(or) L	atitude:°		ongitude:°	, n
Surveyed by: Andrews Engineering, Inc.			IL R	egistration #:	
Drilling Contractor: Skinner Limited	Consi	ulting Firm: Andrew	vs Engineer	ring, Inc.	
Driller: T. Skinner	Geolo	gist: S. Van Hook			
■rilling Method: 4 1/4" HSA 5' CSD 3"	Logge	ed by: S. Van Hoo	k		
Drilling Fluids (type): NA	Repor	t Form Completed	ьу: <u>S. V</u> а	n Hook	
Date Well Started: 04/30/2024 Date Well Finish	ned: <u>04/30/202</u>	<u> 24</u>	Form Comp	leted: 04/30/2	024
		ELEVATION (MSL)*	DEPTH (BGS)*	(0.01 ft)	
		(H3E)		Top of Prot	ective Casing
ANNULAR SPACE DETAILS		565.61	-3.81	Top of Riser	Pipe
Type of surface seal: Concrete		561.80	0	Ground Surf	ace
Type of annular sealant: Bentonite grout		558.80	3.00	Top of Annu	
Installation method: Free drop					
Setting time: 24+ hours			NA	Static Water Measured (after comple	on
Setting time:				(arter comple	ettori)
Type of bentonite seal: Bentonite pellets	TYT				
Installation method: Free drop		537.70	24.1	Top of Seal	
Setting time: 24+ hours		536.55	25.25	Top of Sand	to ack
Type of sand pack: Quartz sand				10b 01 29110	JP ack
Grain size: $10/20$ (sieve size)		535.53	26.27	Top of Scre	en
Installation method: Free drop				100 01 3010	CII
		530.78	31.02	Bottom of S	creen
Type of backfill material: bentonite chips/pellets (if applicable)		530.30	31.5	Bottom of W	
Installation method: Free drop		525.00	36.8	Bottom of B	orehole
		Referenced to positive (+) va	a National Geod Nues below GS, no	detic Vertical Datum egitive(-) values abov	e GS
		CASI	NG MEAS	SUREMENT	S
		Diameter of Bo	prehole (i	n)	8.5
		ID of Riser Pip	e (in)		2.00
WELL CONSTRUCTION MATERIALS		Protective Cas	ing Lengt	th (ft)	NA
		Riser Pipe Len	gth (ft)		30.08
Protective Casing NA		Bottom of Scr	een to En	id Cap (ft)	0.48
Riser Pipe Above W.T. PVC		Screen Length	1st slot to	last slot) (ft)	4.75
Riser Pipe Below W.T. PVC		Total Length o	of Casino	(ft)	35 31

*Hand-slotted well screens are unacceptable.

#10 (0.01')

PVC

Illinois Environmental Protection	n Agency		Well C	Completio	n Report
Site #: County: Springfield			We	II #: <u>L5</u>	
Site Name: CWLP	3		Во	rehole #: <u>L5</u>	
Coordinates: x 1128308.68 y 2456118.11	(or) L	atitude:°	<u>, </u>	ongitude:°	
Surveyed by: Andrews Engineering, Inc.			IL R	egistration #:	
Drilling Contractor: Skinner Limited	Consu	ulting Firm: Andrew	vs Engineer	ring, Inc.	
Driller: T. Skinner	Geolo	gist: S. Van Hook			
■rilling Method: 4 1/4" HSA 5' CSD 3"	Logge	ed by: S. Van Hoo	k		
Drilling Fluids (type): NA	Repor	t Form Completed	by: S. Va	n Hook	
Date Well Started: 05/03/2024 Date Well Finis	shed: <u>05/03/202</u>	<u> 24</u> Date F	Form Comp	leted: 05/03/2	024
		ELEVATION (MSL)*	DEPTH (BGS)*	(0.01 ft)	
		(H3E)		Top of Prot	ective Casing
ANNULAR SPACE DETAILS		568.01	-2.82	Top of Riser	^r Pipe
Type of surface seal: Concrete		565.19	0	Ground Surf	ace
Type of annular sealant: Bentonite grout		562.19	3.00	Top of Annu	
Installation method: Free drop			27.		
Setting time: 24+ hours			NA	Static Water Measured (after comple	on
Setting time.				(offer comple	ctorry
Type of bentonite seal: Bentonite pellets					
Installation method: Free drop		541.49	23.7	Top of Seal	
Setting time: 24+ hours		539.39	25.8	Top of Sand	to ack
Type of sand pack: Quartz sand				100 01 30110	раск
Grain size: $10/20$ (sieve size)		535.09	30.1	Top of Scre	en
Installation method: Free drop			-	100 01 3010	CII
		530.39	34.8	Bottom of S	creen
Type of backfill material: bentonite chips/pellets (if applicable)		529.89	35.3	Bottom of W	
Installation method: Free drop		525.69	39.5	Bottom of B	
		* Referenced to * positive (+) va	a National Geod Nues below GS, no	detic Vertical Datum egitive(-) values abov	e GS
		CASI	NG MEAS	SUREMENT	S
		Diameter of Bo	orehole (i	n)	8.5
		ID of Riser Pip	e (in)		2.00
WELL CONSTRUCTION MATERIALS	[Protective Cas	ing Lengt	th (ft)	NA
		Riser Pipe Len	gth (ft)		32.92
Protective Casing NA		Bottom of Scr	een to En	id Cap (ft)	0.48
Riser Pipe Above W.T. PVC		Screen Length	1 [1st slot to	last slot) (ft)	4.75
Riser Pipe Below W.T. PVC		Total Length o	of Casing	(ft)	38 12

*Hand-slotted well screens are unacceptable.

#10 (0.01')

PVC

Illinois Environ	nmental Protecti	on Agency			Well	Completio	n Report
Site #:		County: Sang	gamon		W	Vell #:I	0006
Site Name: CWLP Ash Pond	Dewatering				В	orehole #:	DO06
State Plane Coordinate: X 2,456,191	.3 Y 1,129,174.1	(or) Latitude:			Longitud	e:	
Surveyed By: Romanotto			IL Registi	ration #:			
Drilling Contractor: Skinner Li	mited		Driller: _	T. Skinner			
Consulting Firm: Hanson Prof	essional Services Inc.		Geologist	: Rhonald W.	Hasenyage	r, LPG #196-0	00246
Drilling Method: Bucket Auge	r		Drilling F	luid (Type): <u>no</u>	ne		
Logged By: Rhonald W. Hase	nyager		Date Start	ted: 6/19/20	25 Dat	e Finished:	6/20/2025
Report Form Completed By: Rh	onald W. Hasenyager		Date:	7/2/2025			
ANNULAR SPA	CE DETAILS			Elevations (MSL)*	Depths (BGS)	(0.01 f	t.)
				(WISE)	(BGS)	Top of Protecti	ve Casing
				553.69	0.93	Top of Riser Pi	pe
Type of Surface Seal:none				552.77	0.00	Ground Surface	e
				552.77	0.00	Top of Annula	r Sealant
Type of Annular Sealant: <u>none</u>		— 7 I				1	
Installation Method:				7 40.00			
Setting Time:		\[\sum_{\bullet} \]	<u>/</u>	_548.00_	4.77	Static Water Le (After Completio	
Type of Bentonite Seal Gran	•	+					
Installation Method:	(choose one)			n/a	n/a	Top of Seal	
Setting Time:				540.77	2.00	Ton of Soud Do	. ale
				549.77	3.00	Top of Sand Pa	ick
Type of Sand Pack: Sand/Grave	<u> </u>			532.48	20.29	Top of Screen	
Grain Size: FA4 & CA1 (sie				_332.46_		Top of Screen	
Installation Method: <u>Gravity</u>	7	$- \mid \parallel$	≣	522.84	29.93	Bottom of Scre	en
Type of Backfill Material: <u>n/a</u>	(if applicable)	_ [522.47	30.30	Bottom of Well	
Installation Method:				522.47	30.30	Bottom of Bore	ehole .
instantation rectiod.				* Referenced to a			Shole
				CAS	ING MEA	SUREMENTS	
			Γ	Diameter of Boreho	ole	(inche	s) 8.0
	TRUCTION MATERIA e type of material for each area)	ALS	I	D of Riser Pipe		(inche	s) 2.0
				Protective Casing L	ength	(fee	
Protective Cosine	SS304 SS316 PTFE	PVC OTHER: (N	=	Riser Pipe Length		(fee	
Protective Casing Riser Pipe Above W.T.	SS304 SS316 PTFE SS304 SS316 PTFE	PVC OTHER: (N		Bottom of Screen to	•		0.64
Riser Pipe Below W.T.	SS304 SS316 PTFE	PVC OTHER:		Screen Length (1s) Total Length of Cas		ot) (fee	21.00
		_		oun Longui oi Cas	nng	(lee	u J1.44

SS304 SS316 PTFE PVC OTHER:

Well Completion Form (revised 02/06/02)

Screen Slot Size **

**Hand-Slotted Well Screens Are Unacceptable

0.010

(inches)

Illinois Enviro	onmental Protection	on Agency			Well	Completio	n Report
Site #:		County: Sang	gamon		v	Vell #:I	0007
Site Name: <u>CWLP Ash Pon</u>	d Dewatering				В	orehole #:	DO07
State Plane Coordinate: X 2,456,0	95.0 Y 1,129,197.2	(or) Latitude:			Longitud	e:	
Surveyed By: Romanotto			IL Registr	ration #:			
Drilling Contractor: Skinner	Limited		Driller: _	T. Skinner			
Consulting Firm: Hanson Pro	ofessional Services Inc.		Geologist	Rhonald W.	Hasenyage	er, LPG #196-0	00246
Drilling Method: Hollow Ste	em Auger		Drilling F	luid (Type):no	one		
Logged By: Rhonald W. Ha	senyager		Date Start	ted: <u>6/19/20</u>)25 Dat	e Finished:	5/19/2025
Report Form Completed By:F	Rhonald W. Hasenyager		Date:	7/2/2025			
ANNULAR SPA	ACE DETAILS			Elevations (MSL)*	Depths (BGS)	(0.01 f	t.)
				(WISE)	(DOS)	Top of Protecti	ve Casing
				555.80	3.04		
Type of Surface Seal: Bentonite	e chips			552.75	0.00	Ground Surface	e
Type of Annular Sealant: Bent	onite chine			552.75	0.00	Top of Annula	Sealant
Installation Method: Grav		_					
Setting Time:		<u></u>	z I I	548.07	4.68	Static Water Le	evel
						(After Completio	n) 6/23/2025
Type of Bentonite Seal Gra	Pellet Slurry (choose one)		YT.				
Installation Method: <u>Grav</u>	ity			n/a	n/a	Top of Seal	
Setting Time:				540.05	_12.70_	Top of Sand Pa	ick
Type of Sand Pack: Silica							
Grain Size: #12 (sieve size)	_		_538.37_	14.38	Top of Screen	
Installation Method: <u>Grav</u>	ity	_					
Type of Backfill Material: <u>n/a</u>			\exists	<u>528.13</u> <u>527.75</u>	<u>24.62</u> <u>25.00</u>	Bottom of Scre Bottom of Wel	
To the Media	(if applicable)			525.75	27.00	D. ((CD	1 1
Installation Method:				* Referenced to a	27.00 National Geodet	Bottom of Bore	enoie
				CAS	SING MEA	SUREMENTS	
WELL CO.	ICTRI ICTIONI & C. TERRA	AT C	Γ	Diameter of Boreho		(inche	0.0
	ISTRUCTION MATERIA one type of material for each area)	ALS		D of Riser Pipe		(inche	s) 2.0
				rotective Casing I	Length	(fee	
Protective Cosine	SS304 SS316 PTFE	PVC OTHER: (N		Riser Pipe Length		(fee	
Protective Casing Riser Pipe Above W.T.		PVC OTHER: (NOTHER:		Bottom of Screen t		•	1
Riser Pipe Adove W.T. Riser Pipe Below W.T.		PVC OTHER:		Cotel Length of Co		ot) (fee	9.59 30.05

SS304 SS316 PTFE PVC OTHER:

Well Completion Form (revised 02/06/02)

Screen Slot Size **

**Hand-Slotted Well Screens Are Unacceptable

0.010

(inches)

Illinois Enviro	nmental Protect	ion Agency			Well	Completio	n Report
Site #:		County: Sang	gamon		v	Vell #:I	0008
Site Name: CWLP Ash Pond	Dewatering				В	Sorehole #:	DO08
State Plane Coordinate: X 2,456,25	7.4 Y 1,129,401.4	(or) Latitude:			Longitud	le:	
Surveyed By: Romanotto			IL Registr	ration #:			
Drilling Contractor: Skinner L	imited		Driller: _	T. Skinner			
Consulting Firm: Hanson Prof	Sessional Services Inc.		Geologist	: Rhonald W.	Hasenyage	er, LPG #196-0	00246
Drilling Method: Hollow Sten	n Auger		Drilling F	luid (Type): <u>no</u>	ne		
Logged By: Rhonald W. Hase	enyager		Date Start	ted: 6/19/20	0 <u>25</u> Dat	e Finished:	5/19/2025
Report Form Completed By: R	nonald W. Hasenyager		Date:	7/2/2025			
ANNULAR SPA	CE DETAILS			Elevations (MSL)*	Depths (BGS)	(0.01 f	t.)
						Top of Protecti	ve Casing
				554.33	-2.53	Top of Riser Pi	pe
Type of Surface Seal: Bentonite	chips			_551.80_	0.00	Ground Surface	e
				551.80	0.00	Top of Annula	: Sealant
Type of Annular Sealant: Bento		— ¶				1	
Installation Method: <u>Gravit</u>							
Setting Time:		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\mathbb{Z} \mid \mid$	_545.72_	6.08	Static Water Le (After Completio	
Type of Bentonite Seal Gran	Pellet Slurry (choose one)	, 					
Installation Method: Gravit	,			n/a	n/a	Top of Seal	
Setting Time:				535.90	15.90	Top of Sand Pa	ick
						Top of Sund To	
Type of Sand Pack: Silica				534.13	17.67	Top of Screen	
Grain Size: #12 (signature of size)						1	
Installation Method: <u>Gravit</u>	y	-		_524.13_	27.67	Bottom of Scre	en
Type of Backfill Material:n/a	(if applicable)	[523.53	28.27	Bottom of Wel	[
Installation Method:				523.53	28.27	Bottom of Bore	ehole
				* Referenced to a	National Geodet	ic Datum	
				CAS	SING MEA	SUREMENTS	
WELL COM	TTDI ICTIONI NA ATERI	AIC	Γ	Diameter of Boreho	ole	(inche	s) 8.0
	STRUCTION MATERS ne type of material for each area)	ALS		D of Riser Pipe			1
				Protective Casing I			1
Protective Casing	SS304 SS316 PTFE	PVC OTHER: (N	, 	Riser Pipe Length		(fee	
Riser Pipe Above W.T.	SS304 SS316 PTFE	PVC OTHER:		Bottom of Screen to	•		
Riser Pipe Below W.T.	SS304 SS316 PTFE	PVC OTHER:		Screen Length (1strate		ot) (fee	21.52
	 			can Longui oi Ca	J1115	(lee	v 21.22

SS304 SS316 PTFE PVC OTHER:

Well Completion Form (revised 02/06/02)

Screen Slot Size **

**Hand-Slotted Well Screens Are Unacceptable

0.010

(inches)

Illinois Environ	nmental Protection Age	ncy		Well	Completion	Report
Site #:	County: _	Sangamon		W	Vell #:DV	/01
Site Name: CWLP Ash Pond	Dewatering			В	orehole #:	W01
State Plane Coordinate: X 2,456,19	1.3 Y 1,129,174.1 (or) Lati	tude:		Longitud	e:	
Surveyed By: Romanotto		IL Reg	stration #:			
Drilling Contractor: Skinner L	imited	Driller:	T. Skinner			
Consulting Firm: Hanson Prof	Sessional Services Inc.	Geolog	ist: Rhonald W.	Hasenyage	r, LPG #196-000	246
Drilling Method: Bucket Auge	er	Drilling	g Fluid (Type): <u>no</u>	ne		
	enyager		arted:6/19/20			
	nonald W. Hasenyager		7/2/2025		e i misned0/2	.0/2023
		Date			(0.01.6.)	
ANNULAR SPA	CE DETAILS		Elevations (MSL)*	Depths (BGS)	(0.01 ft.)	
					Top of Protective	Casing
			554.16	1.16	Top of Riser Pipe	
Town of Conference and	=					
Type of Surface Seal: <u>none</u>				0.00	Ground Surface	
Type of Annular Sealant: <u>none</u>		H H			Top of Annular S	ealant
Installation Method:						
Setting Time:			547.58	5.43	Static Water Leve	
					(After Completion)	6/23/2025
Type of Bentonite Seal Gran	ular Pellet Slurry — (choose one)					
Installation Method:			n/a	n/a	Top of Seal	
Setting Time:			_550.01_	3.00	Top of Sand Pack	
					1	
Type of Sand Pack: Sand/Grave			_547.01_	6.00	Top of Screen	
Grain Size: FA4 & CA1 (sign					•	
Installation Method: <u>Gravit</u>	<u>y</u>		_523.31_	_29.70_	Bottom of Screen	
Type of Backfill Material:n/a	(if applicable)		522.71	30.30	Bottom of Well	
	· · · · · · · · · · · · · · · · · · ·		522.71	30.30	Bottom of Boreho	ole
			* Referenced to a	National Geodeti	c Datum	
			CAS	ING MEAS	SUREMENTS	
WELL CONS	STRUCTION MATERIALS		Diameter of Boreho	ole	(inches)	36.0
	ne type of material for each area)		ID of Riser Pipe			16.5
			Protective Casing L	ength	(feet)	6.45
Protective Casing	SS304 SS316 PTFE PVC OT	HER: None	Riser Pipe Length Bottom of Screen to	Fnd Can	(feet)	0.00
Riser Pipe Above W.T.		HER:	Screen Length (1s	•		25.00
Riser Pipe Below W.T.	SS304 SS316 PTFE PVC OT	HER:	Total Length of Cas		(feet)	31.45
Screen	SS304 SS316 PTFE PVC OT	HER:	Screen Slot Size **		(inches)	

Well Completion Form (revised 02/06/02)

**Hand-Slotted Well Screens Are Unacceptable

FLOW PATH	INVESTIGATIO	N WELL COI	PENDIX B5: N REPORTS

Illinois Environmental Protection	Agency		Well (Completio	n Report
Site #: 16782500020 Count	y: Sangamon		We	#: AP6S	
Site Name: FGDS Development			Во	rehole #: <u>AP</u>	6SA
Coordinates: XYY	(or) La	atitude: 39 ° 46	, 13 , _	ongitude: <u>-89</u> °	35 , 57 ,
Surveyed by: Andrews Engineering			IL R	eaistration #:	
Drilling Contractor: Skinner LTD					
		_			
Driller: Todd Skinner		-			
Drilling Method: 4.25 HSA and 5' CB	Logge	d by: Nathan Bec	k	· · ·	
Drilling Fluids (type): <u>n/a</u>	Report	Form Completed	by: Natha	n Beck	
Date Well Started: 5/13/2025 Date Well Finish	hed: 5/13/2025	Date F	Form Comp	leted: 6/10/20	25
		ELEVATION (MSL)*	DEPTH (BGS)*	(0.01 ft)	
	-	536.80		Top of Prot	ective Casing
ANNULAR SPACE DETAILS		536.47		Top of Rise	
		-			
Type of surface seal: Concrete		534.16	0.0	Ground Surf	ace
Type of annular sealant: n/a		***************************************		Top of Annu	ılar Sealant
Installation method:					
Setting time:				Static Water Measured (after comple	on on tion)
Type of bentonite seal: Bentonite pellets		-			
Installation method: free drop		532.16	2.0	Top of Seal	
Setting time: 24+ hours		527.36	6.8	Top of Sand	dpack
Type of sand pack: quartz sand					
Grain size: 10/20 (sieve size)		525.26	8.9	Top of Scre	en
Installation method: free drop					
		520.56	13.6	5	
Type of backfill material: n/a		520.16	14.0	Bottom of S Bottom of W	
(if applicable) Installation method: $rac{ ext{n/a}}{ ext{}}$		520.16	14.0		
Installation method:				Bottom of B detic Vertical Datum egitive (-) values abov	
				egitive (-) values abov SUREMENT:	
	Γ	Diameter of Bo			8.25
	-	ID of Riser Pip		/	2.0
WELL CONCEDUCTION MATERIALS		Protective Cas		th (ft)	5.0
WELL CONSTRUCTION MATERIALS		Riser Pipe Len	gth (ft)		11.21
Protective Casing Steel		Bottom of Scre	een to Er	nd Cap (ft)	0.4
Riser Pipe Above W.T. PVC		Screen Length	Ist slot to	last slot] (ft)	4.7
Riser Pipe Below W.T. PVC		Total Length c	of Casing	(ft)	16.31
Screen Pre-packed screen		Screen Slot Si	ze*		#10 (0.01)

Illinois Environmental Protect	ion Agency		Well (Completion	n Report
Site #: 16782500020 Co	ounty: Sangamon		We	#: AP-8S	
Site Name: FGDS Development			Во	rehole #:AP-	8SA
Coordinates: XYY	(or) Lat	itude: 39 ° 46	10 " [ongitude: 89 °	36 , 2 ,
Surveyed by: Andrews Engineering					
Drilling Contractor: Skinner LTD					
_		_			
Driller: Todd Skinner	_				
Drilling Method: 4.25 HSA and 5' CB	Logged	by: Nathan Bec	k	· · · ·	
Drilling Fluids (type): n/a	Report F	orm Completed	ру: <u>Natha</u>	n Beck	
Date Well Started: 5/14/2025 Date Well F	inished: 5/14/2025	Date F	orm Comp	leted. 6/9/202:	5
		ELEVATION (MSL)*	DEPTH (BGS)*	(0.01 ft)	
		538.59		Top of Prote	ective Casing
ANNULAR SPACE DETAILS		538.53	-2.56	Top of Riser	r Pipe
Type of surface seal: Concrete		535.97	0.0	Ground Surf	ace
Type of annular sealant: n/a				Top of Annu	
Installation method:	-			Ciplia Water	
Setting time:				Static Water Measured (after comple	on etion)
Type of bentonite seal: Bentonite pellets					
Installation method: free drop		533.97	2.0	Top of Seal	
Setting time: 24+ hours		528.87	7.1	Top of Sanc	dpack
Type of sand pack: quartz sand					
Grain size: 10/20 (sieve size)		526.96	9.01	Top of Scre	en
Installation method: free drop				·	
mstanation method.		500.06	12 71		
Type of backfill material: Sandpack		<u>522.26</u> <u>521.86</u>	13.71 14.11	Bottom of S Bottom of W	
(if applicable)		520.07	1.7.0		
Installation method: free Drop	. <u>Francisco al Co</u>	520.97 * Referenced to	a National Geod	Bottom of B detic Vertical Datum	
				detic Vertical Datum egitive(-) values abov	
	<u></u>			SUREMENT	T
	ļ	Diameter of Bo D of Riser Pip		in)	8.25
		rotective Cas		th (ft)	5.0
WELL CONSTRUCTION MATERIA	LS	liser Pipe Leng		C	11.57
Protective Casing Steel		Bottom of Scre		nd Cap (ft)	0.4
Riser Pipe Above W.T. PVC		Green Length			4.7
Riser Pipe Below W.T. PVC		otal Length o			16.67
Screen Pre-packed screen		icreen Slot Si:			#10 (0.01)

Illinois Enviro	nmental Protection	n Agency		N	Iell C	Completio	n Report
Site #: 16782500020	Cou	ınty: Sangamon			_ We	#: AP-15D	
Site Name: FGDS Develop	ment				. Bo	rehole #: AP-	15D
Coordinates: X	Y	(or)	Latitude: 39	45, 4	6 " Lc	ongitude:89	35 , 59 ,
Surveyed by: Andrews En	gineering				IL R	egistration #:	
Drilling Contractor: Skinne	r LTD	Cons	sultina Firm: A	ndrews Er	ngineer	ring	
Driller: Todd Skinner							
Drilling Method: 4.25 HSA,						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Drilling Fluids (type): n/a		Repo	ort Form Comp	leted by:	Natha	n Beck	
Date Well Started: 5/12/20	Date Well Fin	ished: <u>5/12/20</u> 2	25	ate Form	Compl	eted: 6/3/202	5
			ELEVA (MSI		EPTH 3GS)*	(0.01 ft)	, , , , , , , , , , , , , , , , , , ,
			538.7			Top of Prot	ective Casing
ANNULAR SPAC	CE DETAILS		538.6	<u>-2.</u>	31	Top of Rise	r Pipe
Type of surface seal: \underline{Cc}	oncrete		<u> </u>	0.0	١	Ground Surf	ace
Type of annular sealant:	Bentonite grout		534.3			Top of Annu	
Installation method:	Ггетіе					Static Wate	r l evel
Setting time: 24+ Ho	urs					Measured (after comple	on etion)
Type of bentonite seal: \underline{I}	Bentonite pellets						
Installation method:_	free drop		512.7	23.	6	Top of Seal	
Setting time: 30+ mir			510.7	25.	6		
			310.7		<u> </u>	Top of Sand	dpack
Type of sand pack: quar							
Grain size: <u>10/20</u>			508.6	<u>3</u> <u>27.</u>	67	Top of Scre	en
Installation method:	free drop						
			506.2			Bottom of S	icreen
Type of backfill material:	n/a (if applicable)		505.8	30.	5	Bottom of W	lell
Installation method: 1			504.3	<u>30.</u>	5	Bottom of B	lorehole
			® Refer * positi	enced to a Nat ve (+) values be	ional Geod low GS, ne	letic Vertical Datum egitive (-) values abov	ve GS
			(CASING	MEAS	SUREMENT	S
			Diameter	of Boreh	ole (i	n)	8.25
			ID of Rise	r Pipe (i	n)		2.0
WELL CONST	RUCTION MATERIAL	S	Protective	Casing	Lengt	h (ft)	5.0
			Riser Pipe				29.98
	Steel					d Cap (ft)	0.43
	PVC					last slot] (ft)	2.4
	PVC		Total Len			(ft)	32.81
Screen	Pre-packed screen		Screen SI	ot Size*			#10 (0.01)

*Hand-slotted well screens are unacceptable.

Illinois Enviro	onmental Prote	ction Agency		Well (Completio	n Report
Site #: 16782500020		_ County: Sangamon		W∈	#: AP15S	
Site Name: FGDS Develop	ment			Вс	orehole #:AP1	15S
Coordinates: X	Y	(or) L	_atitude:39 。 45	<u>46</u> " L	ongitude: <u>-89</u> c	35 , 59 ,
Surveyed by: Andrews En	gineering			IL R	egistration #:	
Drilling Contractor: Skinne	er LTD	Cons	ulting Firm: Andre	ws Engineer	ring	
Driller: Todd Skinner		Geol	ogist: Nathan Bec	k		
Drilling Method: 4.25 HSA	and 5' CB	Logs	ed by: Nathan Be	ck		
Drilling Fluids (type): n/a		Repo	rt Form Complete	d by: Natha	ın Beck	
Date Well Started: 5/12/20)25 Date W	ell Finished: <u>5/13/202</u>	. <u>5</u> Date	Form Comp	leted: 6/5/202	5
			ELEVATION (MSL)®	DEPTH (BGS)*	(0.01 ft)	
			538.79		Top of Prot	ective Casing
ANNULAR SPA	CE DETAILS		538.53	-2.11	Top of Rise	r Pipe
Type of surface seal: <u>Co</u>	oncrete		536.42	0.0	Ground Surf	ace
Type of annular sealant:	Bentonite chips		534.42	2.0	Top of Anni	
Installation method:						
Setting time: 24+ho		and the same of th			Static Wate Measured (after compli	on
Type of bentonite seal:	Bentonite pellets					
Installation method:	C 1		523.62	12.8	Top of Sea	I
Setting time: 24+ hou			521.62	14.8		
Type of sand pack: quar			321.02	14.0	Top of San	dpack
Grain size: 10/20			519.61	16.81	Top of Scre	200
Installation method:					100 01 3016	2011
	V 4017 Manual Control of Control		514.88	21.54	Bottom of S	Screen
Type of backfill material	Quartz sand (if applicable)		514.44	22.0	Bottom of W	
Installation method:			511.92	24.5	Bottom of E	
			* Referenced * positive (+)	to a National Geor alues below GS, n	detic Vertical Datum egitive(-) values abo	ve GS
			CAS	ING MEA	SUREMENT 	S
			Diameter of E		in)	8.25
			ID of Riser Pi	pe (in)		2.0
WELL CONST	RUCTION MATER	RIALS	Protective Ca	ising Leng	th (ft)	5.0
			Riser Pipe Ler			18.92
	Steel		Bottom of Sc	reen to Er	nd Cap (ft)	0.46
Riser Pipe Above W.T.			Screen Lengt			4.73
Riser Pine Below W.T.	DVC	i i	Intallenath	of Casina	(f +)	24.11

*Hand-slotted well screens are unacceptable.

#10 (0.01)

Screen

Pre-packed screen

Illinois Environmental Prote	ction Agency		Well (Completio	n Report
Site #: 16782500020	. County: Sangamon		We	#: AP-16	
Site Name: FGDS Development			Во	rehole #: AP-	16
Coordinates: XYY	(or)	Latitude: 39 ° 46	, <u>18</u> " Lo	ongitude: <u>-89</u> o	36 , 0 ,
Surveyed by: Andrews Engineering			IL R	egistration #:	
Drilling Contractor: Skinner LTD	Cons	sulting Firm: Andrev	vs Engineer	ring	
Driller: Todd Skinner					
Drilling Method: 4.25 HSA and 5' CB					
_					
Drilling Fluids (type): <u>n/a</u>	Repo	ort Form Completed	i by: <u>Natha</u>	ın Beck	
Date Well Started: 5/20/2025 Date We	ell Finished: $5/20/202$	25 Date F	Form Comp	leted: 6/6/202	5
		ELEVATION (MSL)* 539.45	DEPTH (BGS)* -2.51	(0.01 ft) Top of Prot	ective Casing
ANNULAR SPACE DETAILS		539.28	-2.34		
Type of surface seal: <u>Concrete</u>		536.94	0.0	Ground Surf	ace
Type of annular sealant. Bentonite Hole plug		534.94	2.0	Top of Annu	ılar Sealant
Installation method: Free drop				Static Wate	rlevel
Setting time: 24+ hours				Measured (after comple	on etion)
Type of bentonite seal: Bentonite pellets	— TIÝ				
Installation method: free drop	_ 😾 🕏	525.64	11.3	Top of Seal	
Setting time: 30+ minutes	_ 🛭 🖺	523.14	13.8	Top of Sand	dpack
Type of sand pack: quartz sand					
Grain size: $20/40$ (sieve size)		519.1	17.84	Top of Scre	100
Installation method: free drop				100 01 3010	.011
,		<u>514.42</u> 513.94	22.52 23.0	Bottom of S Bottom of W	
Type of backfill material: n/a (if applicable)				BOTTOM OF W	ell
Installation method: n/a		513.94	23.0	Bottom of B	
				detic Vertical Datum egitive(-) values abov	
				SUREMENT	S
		Diameter of Bo		in)	8.25
		ID of Riser Pip		+b (f+\	2.0
WELL CONSTRUCTION MATER	KIALS	Protective Cas		in (TT)	5.0
Protective Casing Steel		Riser Pipe Len Bottom of Scr		d Cap (41)	20.18
Protective Casing Steel Riser Pipe Above W.T. PVC		Screen Length			0.48
Riser Pipe Below W.T. PVC		Total Length			
Screen Pre-packed screen		Screen Slot Si		X 1 X 7	25.34 #10 (0.01)

*Hand-slotted well screens are unacceptable.

Illinois Enviro	nmental Protec	tion Ager	псу			Well (Completio	n Report
Site #: 16782500020	(County: Sanga	mon			We	#: <u>P03D</u>	
Site Name: FGDS Develop	nent					Bc	rehole #: <u>P03</u>	D
Coordinates: X	Y		(or) L	.atitude: <u>3</u>	9 . 46	, 14 , _	ongitude: <u>-89</u> c	35 , 45 ,
Surveyed by: Andrews Eng	gineering					IL R	egistration #:	
Drilling Contractor: Skinne	r LTD		Consi	ulting Firm	: Andrey	ws Engineer	ring	
Driller: Todd Skinner			Geolo	ogist: Natl	nan Beck		<u>,</u>	
Drilling Method: 4.25 HSA								
Drilling Fluids (type): n/a							n Beck	
Date Well Started: 5/14/20							leted: 6/3/202	
Date Well Started: 3/11/20		Finished: 3/15	r/ 2U2.		VATION	DEPTH	(0.01 ft)	
				(MSL)® 3.20	(BGS)*	Top of Prot	ective Casing
ANNULAR SPAC	CE DETAILS	T	$\exists I$	53	33.04	-3.02	Top of Rise	
Type of surface seal: <u>Co</u>	increte				20.02	0.0		
Type of surface seat. Co	Herete	_		//// _J ammo —	30.02		Ground Surf	ace
Type of annular sealant:.	Bentonite Grout	-	H	32	28.02	2.0	Top of Annu	ular Sealant
Installation method:	Ггетіе	_					Static Wate	r l evel
Setting time: 24+ hou	ırs	turama.					Measured (after comple	on etion)
				_				
Type of bentonite seal: \underline{I}	Bentonite pellets	- TI	Ϋ́Π					
Installation method:_	free drop	_ 😾		_50	04.22	25.8	Top of Seal	
Setting time: 24+		_ 🐰		50	2.22	27.8	Top of Sand	dnack
Type of sand pack: quar	tz sand			And Andrews			100 01 2816	apack
Grain size: 10/20				50	0.19	29.83		
			$\equiv 1$	<u> </u>	0.17	29.03	Top of Scre	en
Installation method:	rice drop		∄					
	n/a		=		5.49	$\frac{34.53}{35.0}$	Bottom of S Bottom of W	
Type of backfill material:	(if applicable)			***************************************			20110111 01 11	
Installation method: $_^1$	Па				25.02 Referenced to	35.0	Bottom of B detic Vertical Datum	lorehole
				* [oositive (+) va	alues below GS, n	egitive (-) values abov SUREMENT	
				Diamet		prehole (T
					liser Pip			8.25 2.0
, , , , , , , , , , , , , , , , , , , ,						sing Leng	th (ft)	5.0
WELL CONST	RUCTION MATERIA	ALS				gth (ft)		32.85
Protective Casing	Steel			Bottom	of Scr	een to Er	nd Cap (ft)	0.47
	PVC			Screen	Length	n [1st slot to	last slot] (ft)	4.7
Riser Pipe Below W.T.	PVC			Total L	ength d	of Casing	(ft)	38.02
Screen	Pre-packed screen			Screen	Slot Si	ize*		#10 (0.01)

*Hand-slotted well screens are unacceptable.

Illinois Environmental Protection	on Agency		Well (Completion	n Report
Site #: 16782500020 Cou	unty: Sangamon		W∈	#: <u>P03S</u>	
Site Name: FGDS Development			Вс	rehole #: <u>P03</u>	S
Coordinates: XYY	(or) L≘	atitude: 39 ° 46	, 14 , _	ongitude: <u>-89</u> °	35 , 45 ,
Surveyed by: Andrews Engineering					
Drilling Contractor: Skinner LTD	Consul	ting Firm. Andrev	vs Engineer	ring	
Driller: Todd Skinner		_			
Drilling Method: 4.25 HSA and 5' CB	Logge	d by: Nathan Bec	k	×	
Drilling Fluids (type): <u>n/a</u>	Report	Form Completed	by: Natha	n Beck	
Date Well Started: 5/14/2025 Date Well Fin	nished: 5/14/2025	Date F	Form Comp	leted: 6/3/202	5
		ELEVATION (MSL)*	DEPTH (BGS)*	(0.01 ft)	
	-	533.10		Top of Prot	ective Casin
ANNULAR SPACE DETAILS		532.75		Top of Rise	
Type of surface seal: Concrete		529.99	0.0	Ground Surf	ace
-				Top of Annu	
Type of annular sealant: <u>n/a</u>				TOP OT ANNO	Har Sedidill
Installation method:				Static Water	r I aval
Setting time:				Measured (after comple	on etion)
		_			
Type of bentonite seal: Bentonite pellets	T1 YT	-			
Installation method: free drop		527.99	2.0	Top of Seal	
Setting time: 24+ hours		523.09	6.9	Top of Sand	dpack
Type of sand pack: quartz sand					
Grain size: 10/20 (sieve size)		521.01	8.98	Top of Scre	ıen
Installation method: free drop				100 01 0010	
installation method:		51604	12.65		
- n/a		<u>516.34</u> 515.99	$\frac{13.65}{14.0}$	Bottom of S Bottom of W	
Type of backfill material: $\frac{n/a}{}$ (if applicable)				Bottom of W	Q11
Installation method: n/a	12,012,012,012,	515.99	14.0	Bottom of B	
		* positive (+) va	lues below GS, n	detic Vertical Datum egitive(-) values abov	e GS
	r-	CASI	NG MEA	SUREMENT	S
		Diameter of Bo		in)	8.25
		ID of Riser Pip		LL (4:\	2.0
WELL CONSTRUCTION MATERIAL	S 1-	Protective Cas		(n (it)	5.0
Protective Casing Steel		Riser Pipe Leng Bottom of Scre		nd (20 (ft)	0.35
Riser Pipe Above W.T. PVC		Screen Length		· · · · · · · · · · · · · · · · · · ·	4.67
Riser Pipe Below W.T. PVC	——————————————————————————————————————	Total Length o			16.76
Screen Pre-packed screen		Screen Slot Si		/	#10 (0.01)

*Hand-slotted well screens are unacceptable.

Illinois Enviro	onmental Protec	tion Agend	by Well Completion F				n Report
Site #: 16782500020		County: Sangam	on		W∈	#: P104S	
Site Name: FGDS Develor	oment				Вс	prehole #: <u>P10</u>	4S
Coordinates: X	Y	(o	·) L	atitude: 39 ° 4	13 " L	ongitude: <u>-89</u>	35 , 49 ,
Surveyed by: Andrews En	ngineering				IL R	Registration #:	
Drilling Contractor: Skinn	er LTD	Cı	onsu	ulting Firm: Andr	ews Enginee	ring	
			eolo	gist: Nathan Be	ck		
Drilling Method: 4.25 HSA							
Drilling Fluids (type): n/a				•		3,110,200,10	
Date Well Started: 5/15/2	Date Well	Finished: <u>3/13/</u>	2023			leted: 6/6/202	
		Company		ELEVATION (MSL)® 532.66	(BGS)*	(0.01 ft) Top of Prot	ective Casing
ANNULAR SPA	CE DETAILS			532.27	-2.53	Top of Rise	r Pipe
Type of surface seal: \underline{C}	oncrete	-		529.74	0.0	Ground Surf	ace
Type of annular sealant	Bentonite grout			527.74	2.0	Top of Anni	
Installation method:	Tremie					Static Wate	rlevel
Setting time: 24+ He	ours	uumma				Measured (after compli	on etion)
Type of bentonite seal:	Bentonite pellets	_		515.04	147		
Installation method:	free drop	- 😾		515.04	14./	Top of Sea	
Setting time: 30+ mi	nutes	- 📓		512.84	16.9	Top of San	dpack
Type of sand pack: qua	rtz sand	- 🕍					
Grain size: <u>10/20</u>	(sieve size)			510.42	19.32	Top of Scre	een
Installation method:	free drop						
				505.72	24.02	Bottom of S	Screen
Type of backfill materia	: n/a (if applicable)	-		505.24	24.5	Bottom of W	lell
Installation method:				504.74	25	Bottom of E	
				* Referenced * positive (+)	d to a National Geo values below GS, n	detic Vertical Datum negitive (-) values abo	ve GS
			,	CAS	SING MEA	SUREMENT	S
				Diameter of I		in)	8.25
				ID of Riser P			2.0
WELL CONS	TRUCTION MATERIA	ALS		Protective C		th (ft)	5.0
	la. 1		۱ ٦	Riser Pipe Le			21.85
Protective Casing	Steel		4	Bottom of So			0.48
	1 , C		4	Screen Leng			4.7
Riser Pipe Below W.T.	PVC		_	Total Length		(††)	27.03
Screen	Pre-packed screen			Screen Slot	Size*		#10 (0.01)

*Hand-slotted well screens are unacceptable.

Illinois Environmental Protection	Well Complet			•		
Site #: 16782500020 County:	Sangamon	1	,	We	#: R103S	
Site Name: FGDS Development				Во	rehole #: <u>R10</u>	13S
Coordinates: XYY	(or)	Latit	ude: <u>39</u> ° <u>46</u>	13 " Lo	ongitude: <u>-89</u> c	35, 42,
Surveyed by: Andrews Engineering				IL R	egistration #:	
Drilling Contractor: Skinner LTD	Con:	sultin	g Firm: Andrev	vs Engineer	ring	
Driller: Todd Skinner	Geo	logist	· Nathan Beck		.,	
Drilling Method: 4.25 HSA and 5' CB					· · · · · · · · · · · · · · · · · · ·	
Drilling Fluids (type): n/a	Керс	ort F	orm Completed	ı by: Natha	n Beck	
Date Well Started: 5/19/2025 Date Well Finishe	d: 5/19/202	25	Date F	Form Comp.	leted: 6/3/202	5
			ELEVATION (MSL)®	DEPTH (BGS)*	(0.01 ft)	
	Т	=	537.78		Top of Prot	
ANNULAR SPACE DETAILS			537.64	-2.54	Top of Rise	r Pipe
Type of surface seal: Concrete			535.10	0.0	Ground Surf	iare
Type of annular sealant: Bentonite grout			533.10	2.0	Top of Annu	
Installation method: Tremie						
Setting time: 24+ hours					Static Water Measured (after comple	r Level
Setting time.					fatter combin	Etiony
Type of bentonite seal: Bentonite pellets	TIÝ	Τ				
Installation method: free drop		, R	519.60	15.5	Top of Seal	I
Setting time: 30+ minutes			517.00	18.1	Top of Sand	dnack
Type of sand pack: quartz sand			And a service and a service applicable and		TOP OF Said	3pack
Grain size: 10/20 (sieve size)			514.73	20.37	Top of Scre	en
Installation method: free drop					100 01 0010	, , , , , , , , , , , , , , , , , , , ,
			510.06	25.04	Bottom of S	Screen
Type of backfill material: bentonite pellets (if applicable)			509.60	25.5	Bottom of W	
Installation method: free drop			505.10	30.0	Bottom of B	lorehole
			Referenced to positive (+) va	a National Geod Nues below GS, n	detic Vertical Datum egitive(-) values abov	ve GS
		·	CASI	NG MEAS	SUREMENT	S
			ameter of Bo		n)	8.25
			of Riser Pip			2.0
WELL CONSTRUCTION MATERIALS		Pr	otective Cas	ing Lengt	th (ft)	5.0
		Ri	ser Pipe Len	gth (ft)		22.91
Protective Casing Steel		Во	ttom of Scr	een to En	nd Cap (ft)	0.46
Riser Pipe Above W.T. PVC		Sc	reen Length	1 [1st slot to	last slot] (ft)	4.67
Riser Pipe Below W.T. PVC		To	tal Length c	of Casing	(ft)	28.04

Screen Slot Size*

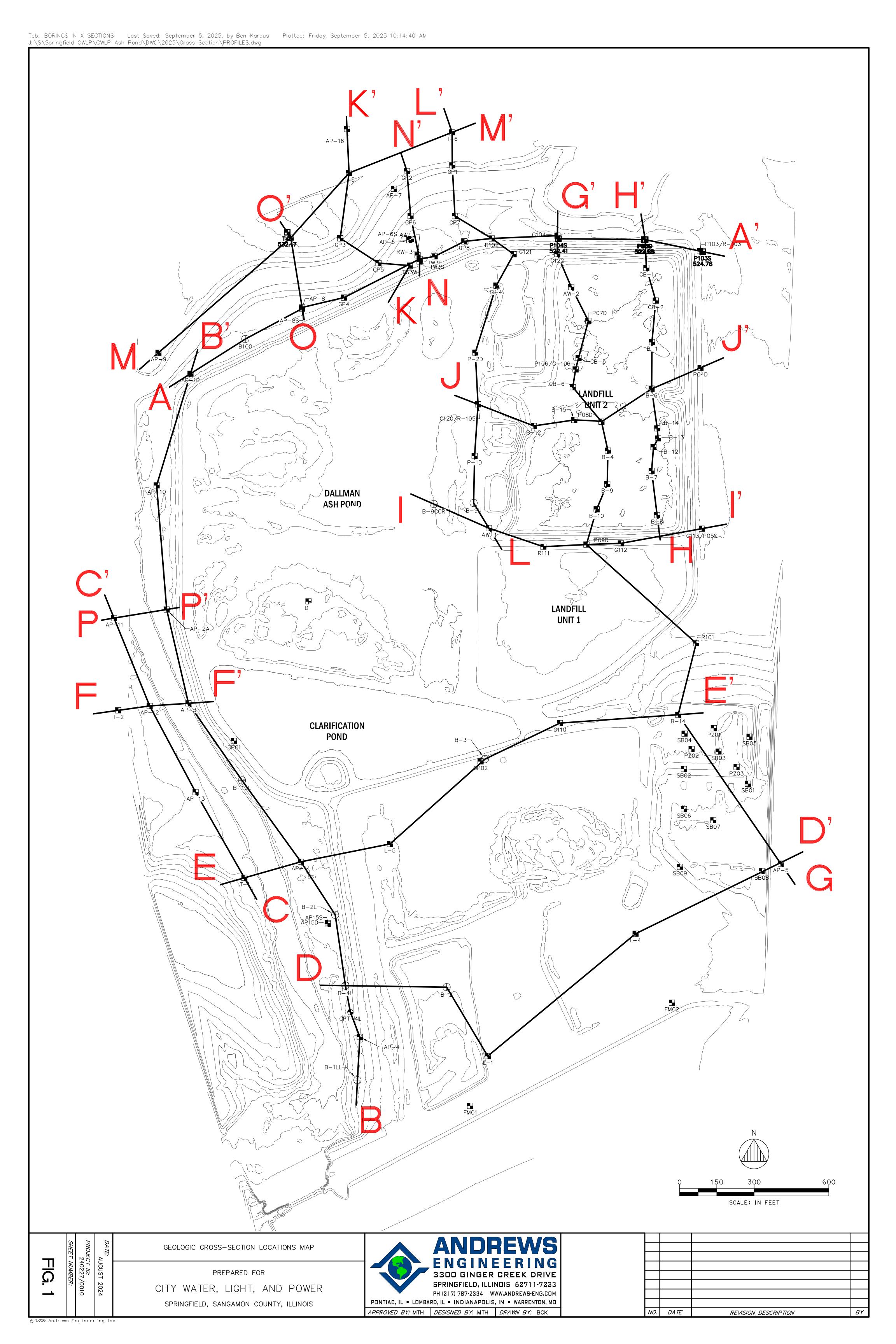
*Hand-slotted well screens are unacceptable.

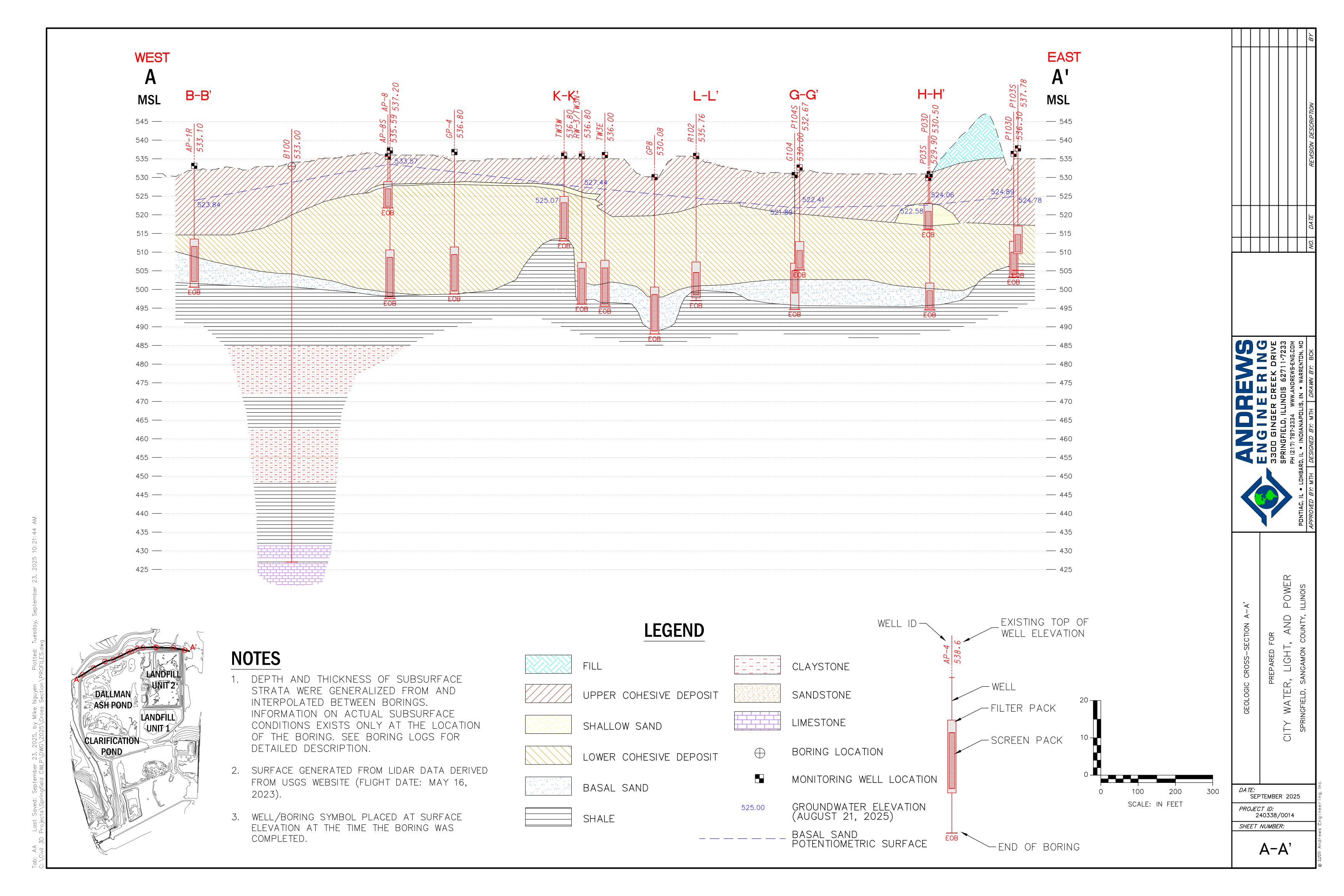
Screen

Pre-packed screen

#10 (0.01)

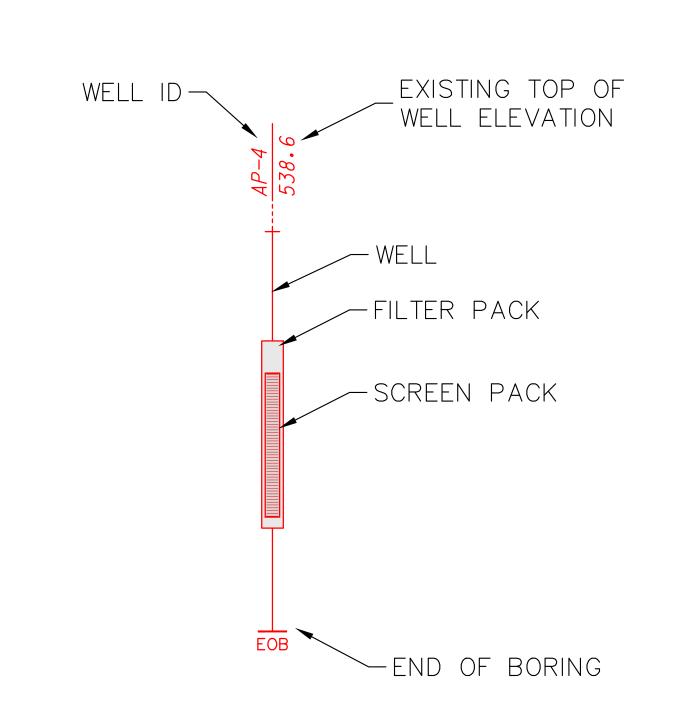
Illinois Environmental Protec		Well Completion Report			
Site #: 16782500020	County: Sangamon	-	Well #: RW-3	3S	
Site Name: FGDS Development			Borehole #:	RW-3S	
Coordinates: XYY	(or) L	atitude: 39 ° 46	, <u>13</u> " Longitude:	<u>-89</u> ° <u>35</u> , <u>56</u> "	
			IL Registratio		
				π	
	Consu				
Driller: Todd Skinner	Geolo	gist: Nathan Beck			
Drilling Method: 4.25 HSA and 5' CB	Logge	ed by: Nathan Bec	k	111111 AVAILABLE DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTI	
Drilling Fluids (type): n/a	Repor	t Form Completed	i by: Nathan Beck		
Date Well Started: 5/15/2025 Date Well	Finished: 5/15/2025) Nate F	Form Completed: 6/3	/2025	
Date Hell States	, , , , , , , , , , , , , , , , , , , ,	ELEVATION	DEPTH (0.01 f		
		(MSL)* 538.65	(BGS)* -2.78 Top of	Protective Casing	
ANNULAR SPACE DETAILS		538.39	2.52	Riser Pipe	
ANNOLAN OF ACE BETALES			105 01	Miscr Tipe	
Type of surface seal: Concrete		535.87	0.0 Ground	0	
		<u> </u>			
Type of annular sealant: n/a			Top of	Annular Sealant	
Installation method:	_		Chalia		
Setting time:		 	Measur (after	vater Level red on completion)	
Type of bentonite seal: Bentonite pellets					
		533.87	2.0 Top of	Seal	
Installation method: free drop	$^ \boxtimes$ \boxtimes				
Setting time: 30+ minutes	- 🕍 🔯	527.97	7.9 Top of	Sandpack	
Type of sand pack: quartz sand	_				
Grain size: $10/20$ (sieve size)		525.94	9.93 Top of	Sorgon	
			100 01	Screen	
Installation method: free drop					
		$\frac{521.24}{520.87}$	15.0	of Screen	
Type of backfill material: <u>n/a</u> (if applicable)		320.07	13.0 Bottom	ot well	
Installation method: n/a		520.87		of Borehole	
		"Referenced to "positive (+) va	o a National Geodetic Vertical D Ilues below GS, negitive (-) value	atum es above GS	
		CASI	NG MEASUREME	ENTS	
		Diameter of Bo	orehole (in)	8.25	
		ID of Riser Pip		2.0	
WELL CONSTRUCTION MATERI	ALS .		sing Length (ft)	5.0	
Brotostivo Casina G. 1		Riser Pipe Len		12.45	
Protective Casing Steel Riser Pipe Above W.T. PVC			een to End Cap (, , , , , , , , , , , , , , , , , , , ,	
Riser Pipe Above W.T. PVC Riser Pipe Below W.T. PVC		Total Length o	of Casing (ft)	17.52	
Screen Pre-packed screen		Screen Slot Si		#10 (0.01)	


*Hand-slotted well screens are unacceptable.


Illinois Enviror	nmental Protection A	gency		Well (Completio	n Report
Site #: 16782500020	County:	Sangamon		We	#: <u>T4S</u>	
Site Name: FGDS Developm	nent			Bo	rehole #: <u>T4S</u>	
Coordinates: X	Y	(or) L	atitude: 39 ° 46	, <u>13</u> " Lo	ongitude: <u>-89</u> a	36, 3,
Surveyed by: Andrews Eng						
Drilling Contractor: Skinner LTD Co						
					5	
Driller: Todd Skinner Geologist: Nath					,	
Drilling Method: 4.25 HSA and	nd 5' CB, 2 ' split spoon	Logg	ed by: Nathan Be	ck		
Drilling Fluids (type): n/a		Repor	t Form Complete	d by: Natha	n Beck	
Date Well Started: 5/20/202	25 Date Well Finished	5/20/202	5 Date	Form Comp	leted: 6/3/202	5
			ELEVATION (MSL)*	DEPTH (BGS)*	(0.01 ft)	7.77.78.1177.00.000
	c		549.25		Top of Prot	ective Casing
ANNULAR SPAC	E DETAILS		549.04	-2.29	Top of Rise	r Pipe
	_		_			
Type of surface seal: <u>Con</u>	ncrete		546.75	0.0	Ground Surf	ace
Type of annular sealant: <u>T</u>	n/a				Top of Annu	ılar Sealant
Installation method:						
Setting time:					Static Wate Measured (after comple	r Level on etion)
Jetting time.					(a) tall a sample	,
Type of bentonite seal: \underline{B}	entonite pellets					
Installation method:			544.75	2.0	Top of Seal	
Setting time: 24+ hour	'S	\bowtie	538.85	7.9	Top of Sand	dpack
Type of sand pack: quartz	z sand					
Grain size: 10/20	(sieve size)		536.83	9.93	Top of Scre	en
Installation method: $\underline{\mathrm{fr}}$	ree drop					
			532.15	14.6		
Type of backfill material: 1	n/a		531.75	15.0	Bottom of S Bottom of W	
Installation method: $\underline{\mathbf{n}}'$	(if applicable)		531.75	15.0		
Installation method:		· · · · · · · · · · · · · · · · · · ·	® Referenced i	o a National Geod	Bottom of E detic Vertical Datum	
			•		egitive (-) values abov SUREMENT	
			Diameter of B			8.25
			ID of Riser Pip		,	2.0
WELL CONSTE	RUCTION MATERIALS		Protective Ca	sing Leng	th (ft)	5.0
WELL CONSTR	TOCTION MATERIALS		Riser Pipe Ler	igth (ft)		12.21
Protective Casing S	teel		Bottom of Scr	een to Er	id Cap (ft)	0.4
Riser Pipe Above W.T. P	VC		Screen Lengti	n [1st slot to	last slot] (ft)	4.68
	PVC		Total Length	of Casing	(ft)	17.29
Screen P	Pre-packed screen		Screen Slot S	ize*		#10 (0.01)

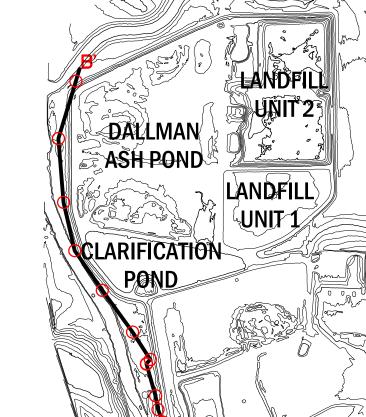
*Hand-slotted well screens are unacceptable.

APPENDIX C: GEOLOGIC CROSS SECTIONS



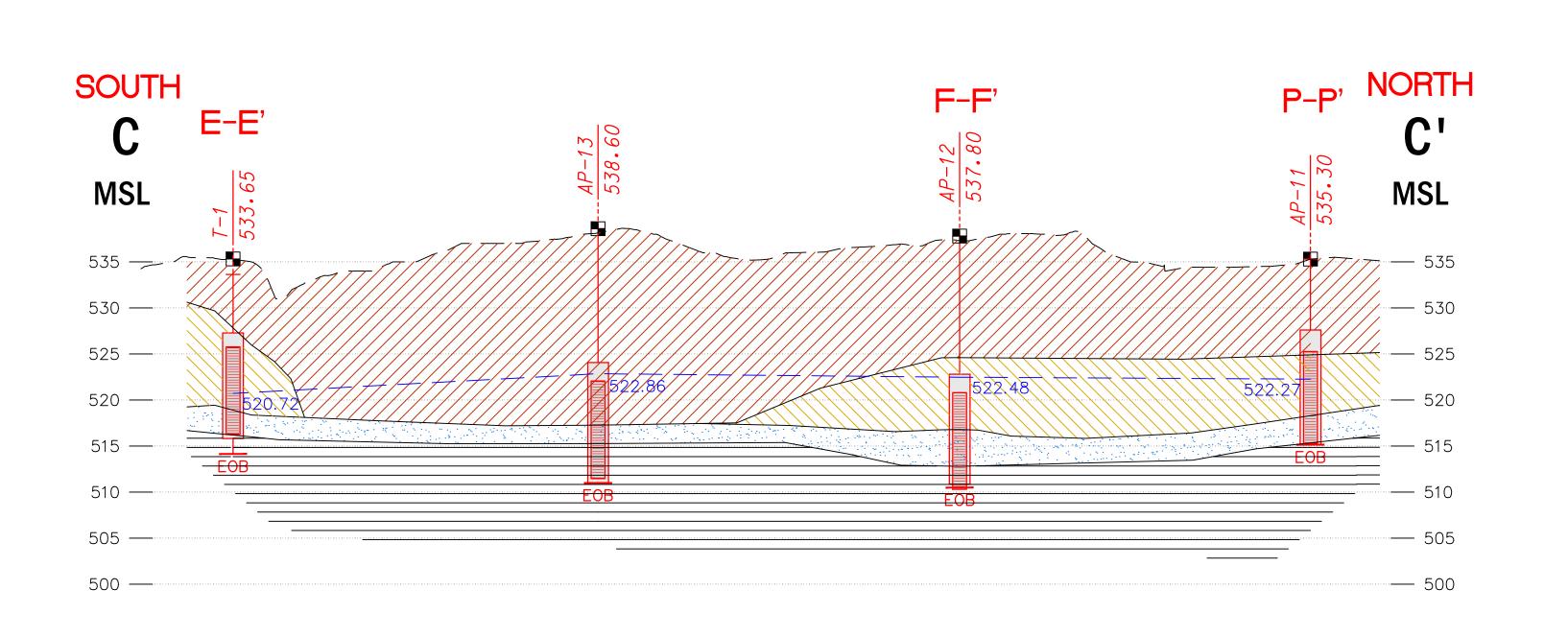
NOTES DEPTH AND THICKNESS OF SUBSURFACE STRATA WERE GENERALIZED FROM AND INTERPOLATED BETWEEN BORINGS. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE LOCATION OF THE BORING. SEE BORING LOGS FOR DETAILED DESCRIPTION.

- 2. SURFACE GENERATED FROM LIDAR DATA DERIVED FROM USGS WEBSITE (FLIGHT DATE: MAY 16,
- 3. WELL/BORING SYMBOL PLACED AT SURFACE ELEVATION AT THE TIME THE BORING WAS COMPLETED.

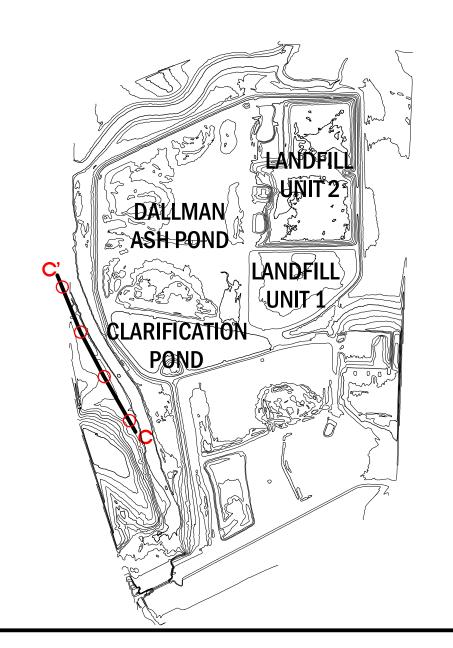


POWER

CITY SPRII

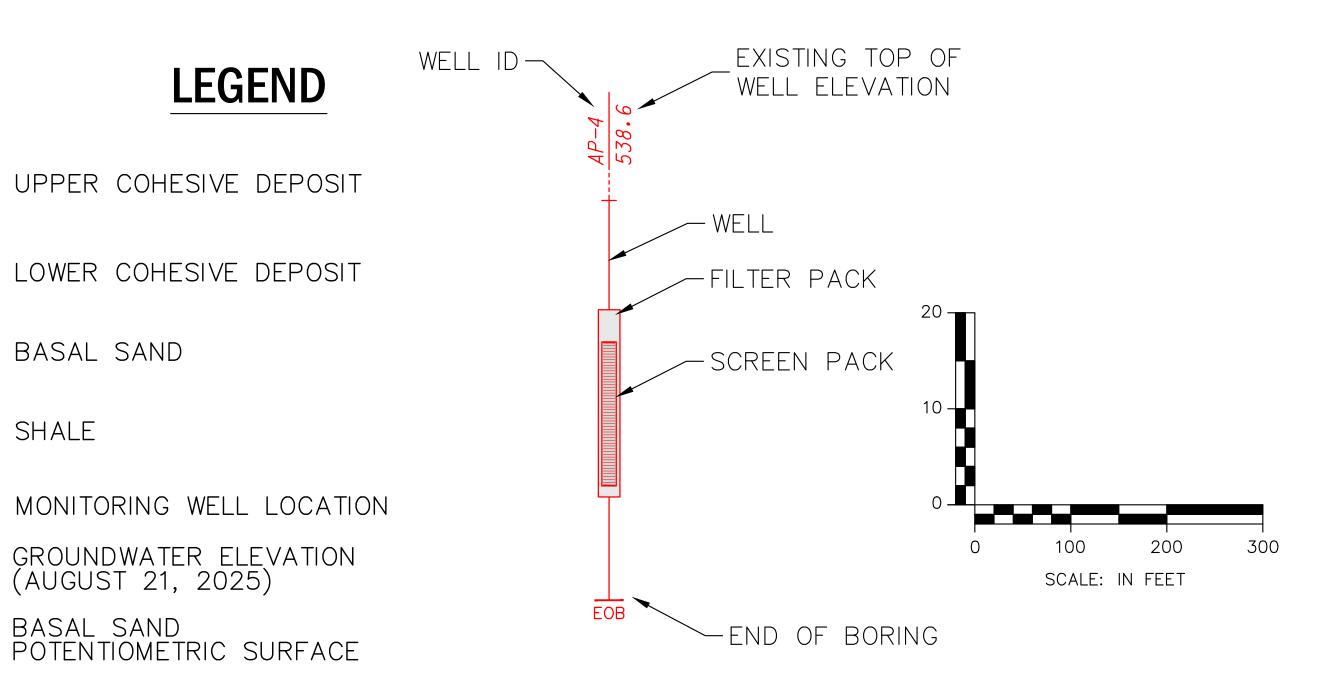

DATE: SEPTEMBER 2025 *PROJECT ID:* 240338/0014 SHEET NUMBER:

B-B'



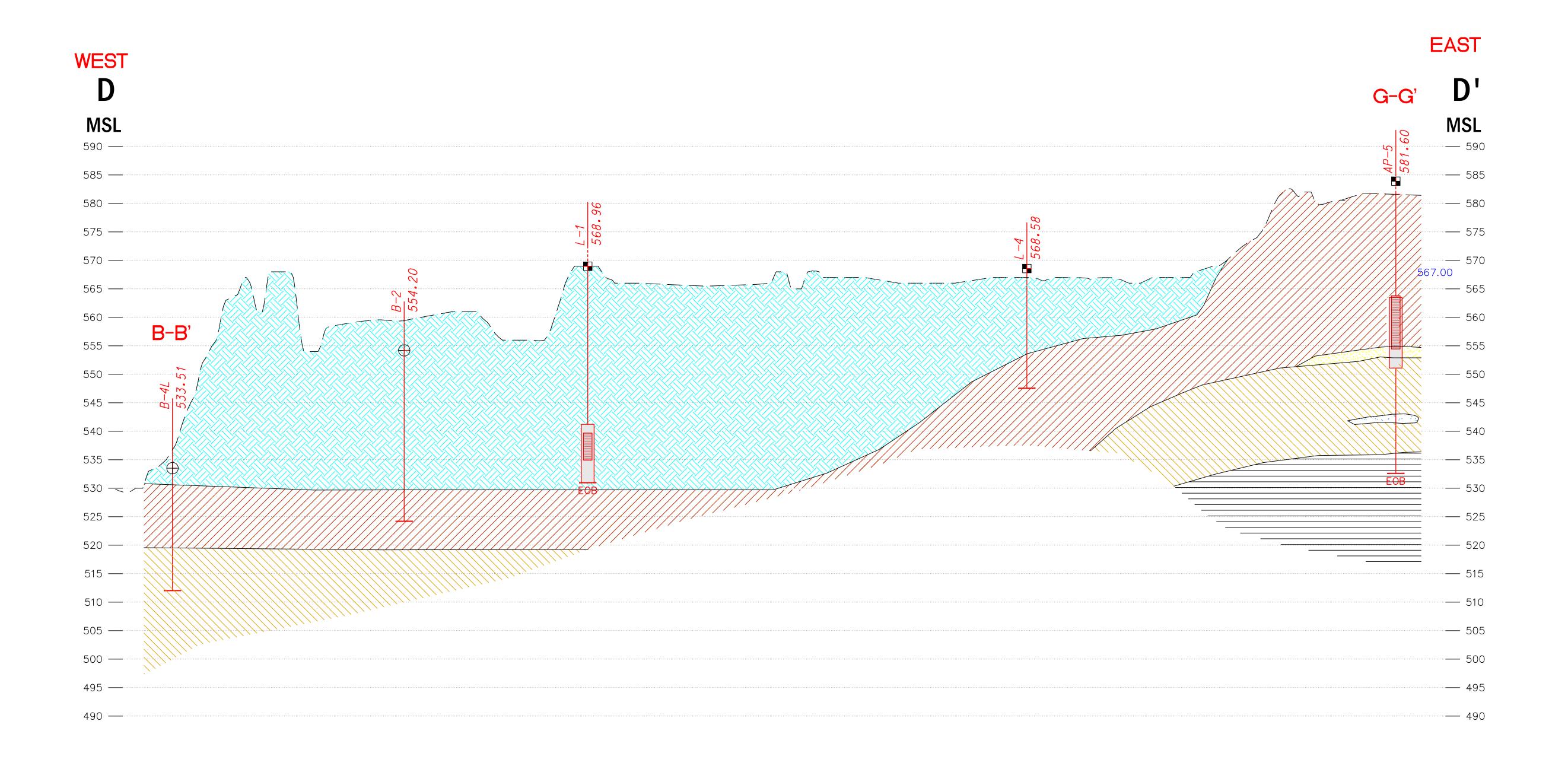
UPPER COHESIVE DEPOSIT LOWER COHESIVE DEPOSIT BASAL SAND SHALE SHALLOW SAND BORING LOCATION MONITORING WELL LOCATION CPT BORING LOCATION GROUNDWATER ELEVATION (AUGUST 21, 2025) 525.00

BASAL SAND POTENTIOMETRIC SURFACE



525.00

NOTES


- 1. DEPTH AND THICKNESS OF SUBSURFACE STRATA WERE GENERALIZED FROM AND INTERPOLATED BETWEEN BORINGS. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE LOCATION OF THE BORING. SEE BORING LOGS FOR DETAILED DESCRIPTION.
- 2. SURFACE GENERATED FROM LIDAR DATA DERIVED FROM USGS WEBSITE (FLIGHT DATE: MAY 16, 2023).
- 3. WELL/BORING SYMBOL PLACED AT SURFACE ELEVATION AT THE TIME THE BORING WAS COMPLETED.

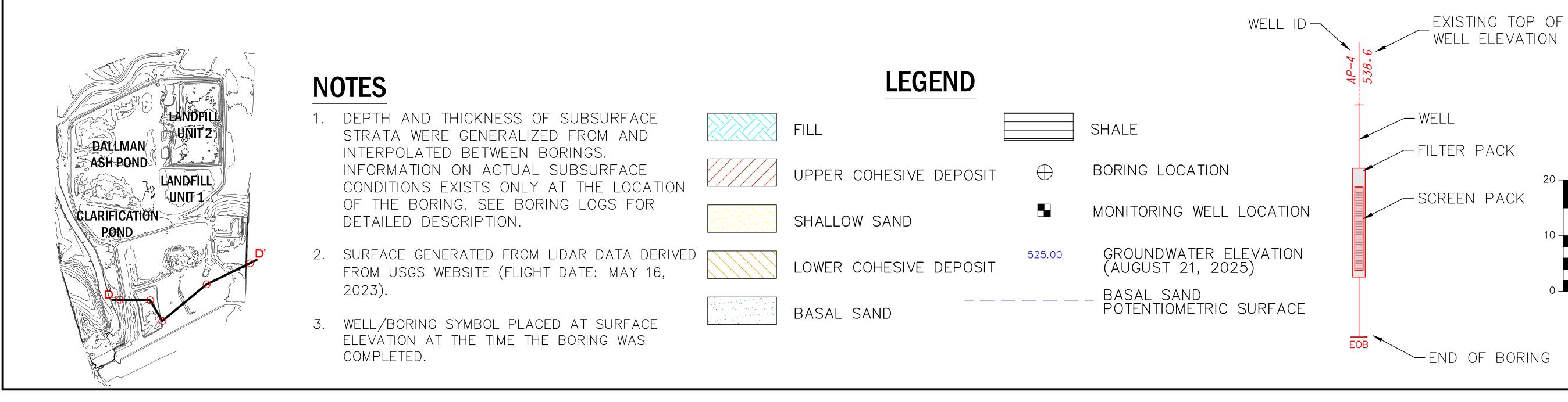
POWER WATER, LIGHT, NGFIELD, SANGAMON *DATE:*SEPTEMBER 2025 PROJECT ID: 240338/0014

SHEET NUMBER:

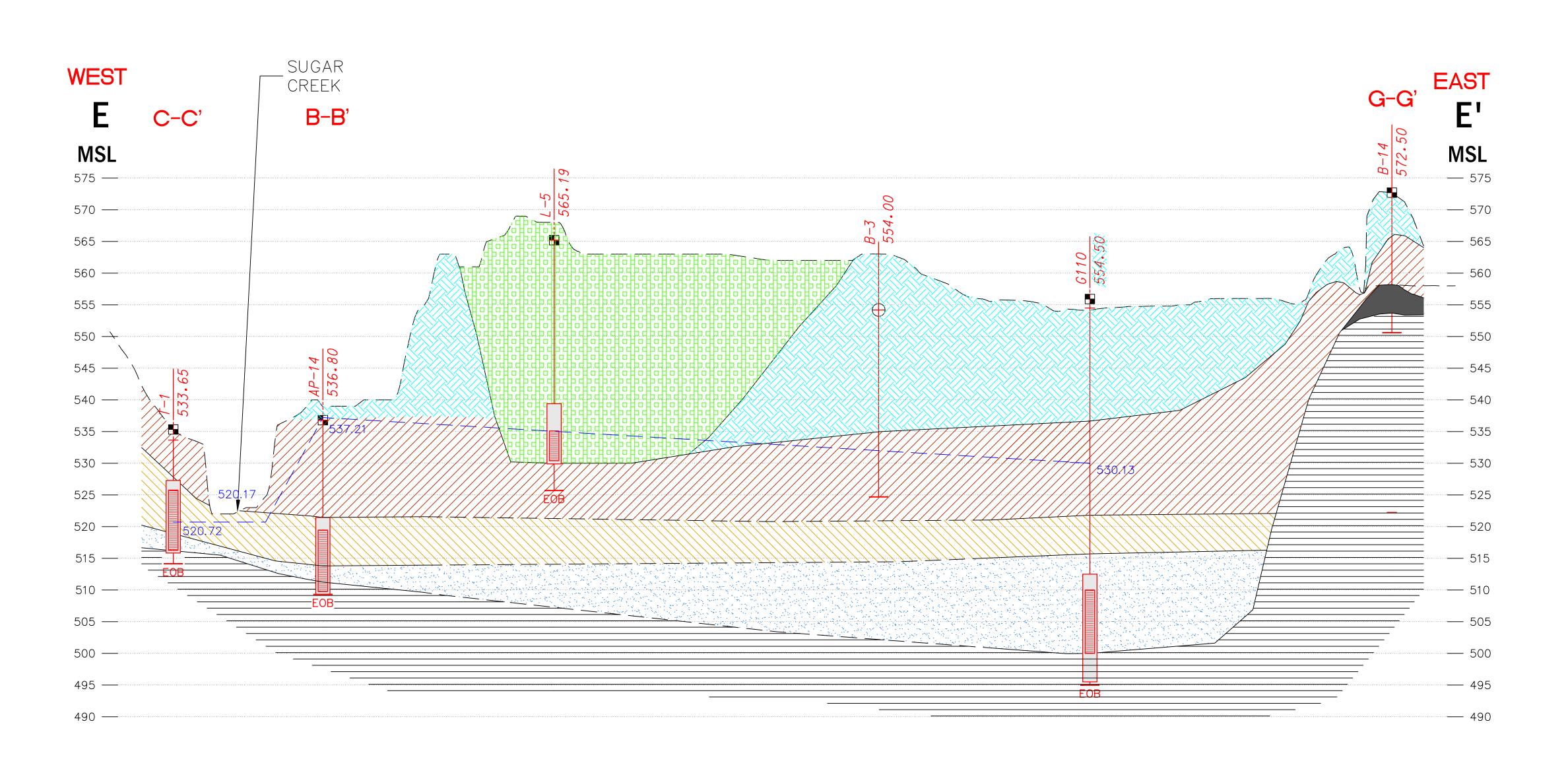
C-C'

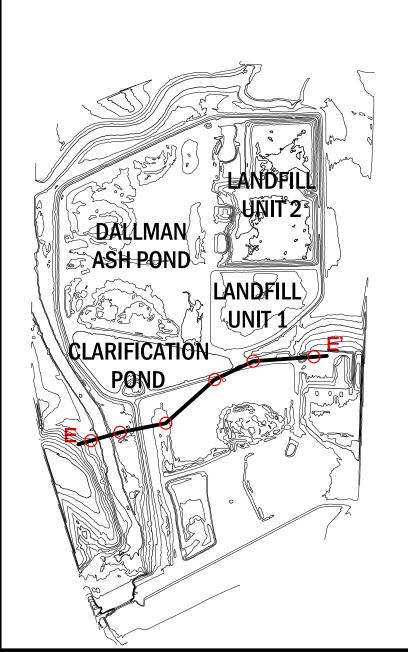
POWER

WATER, LIGHT, NGFIELD, SANGAMON

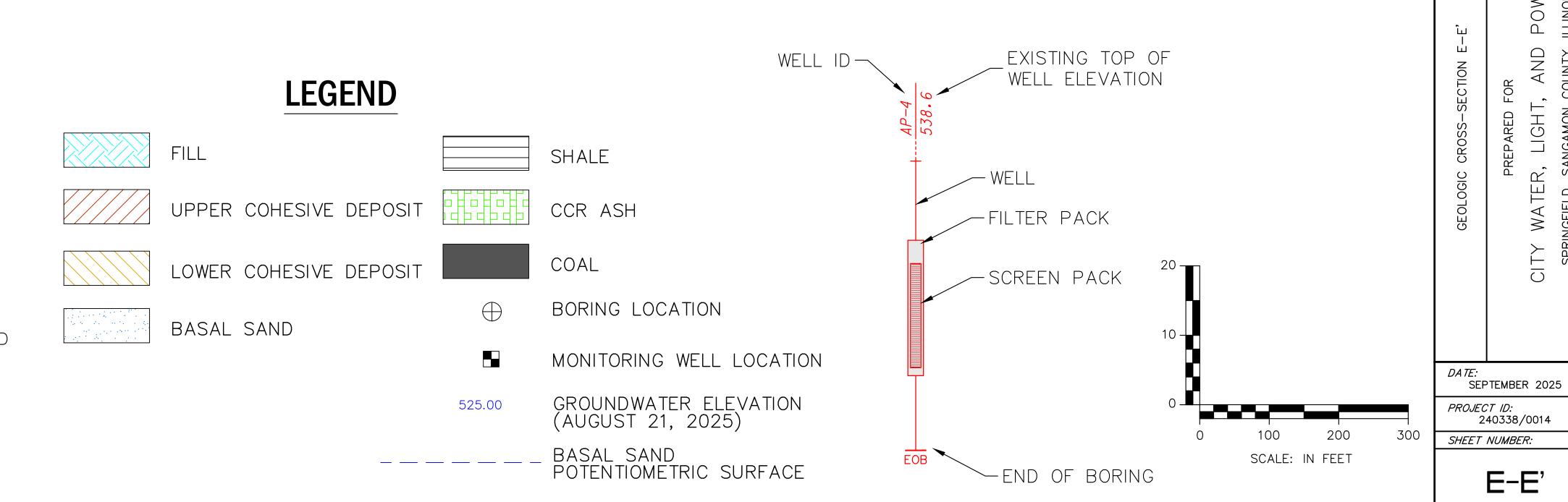

*DATE:*SEPTEMBER 2025

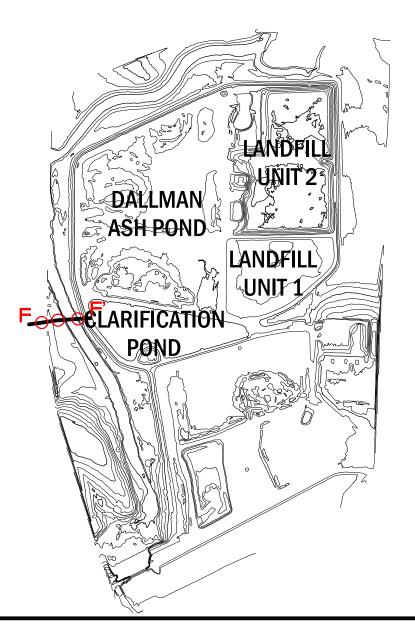
PROJECT ID: 240338/0014


D-D'

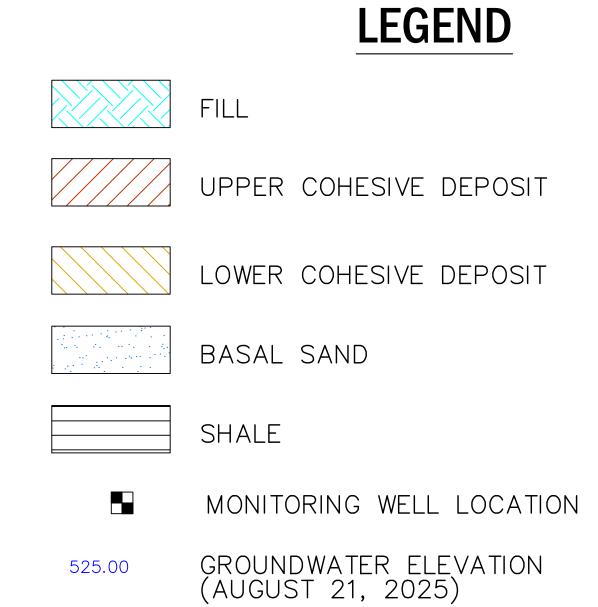

SHEET NUMBER:

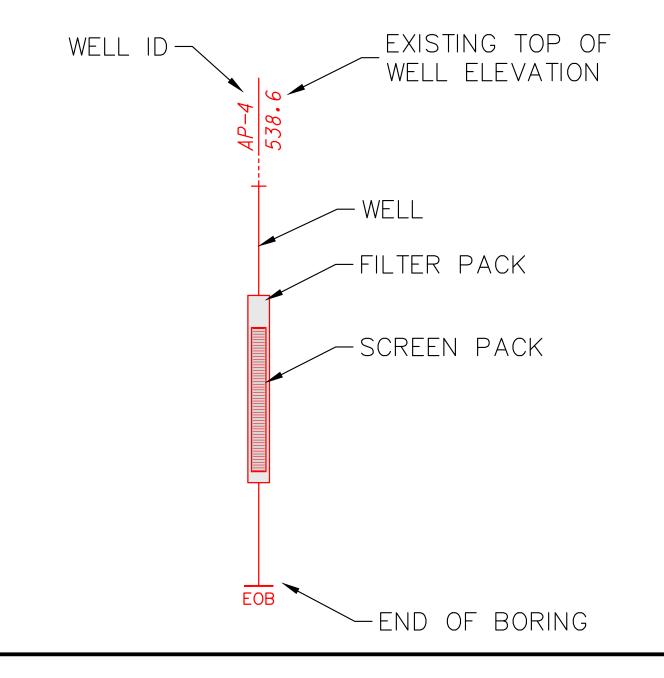
SCALE: IN FEET

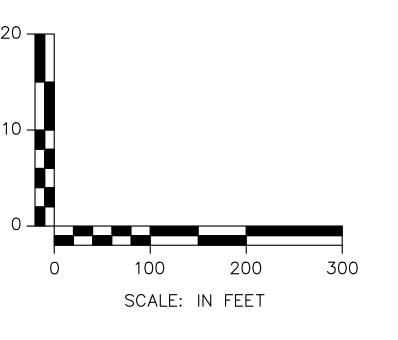

Last Saved: September 19, 2025, by Ben Karpus Plotted: Monday, September 22, 2025 ringfield CWLP\CWLP Ash Pond\DWG\2025\Cross Section\PROFILES.dwg


NOTES

- 1. DEPTH AND THICKNESS OF SUBSURFACE STRATA WERE GENERALIZED FROM AND INTERPOLATED BETWEEN BORINGS. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE LOCATION OF THE BORING. SEE BORING LOGS FOR DETAILED DESCRIPTION.
- SURFACE GENERATED FROM LIDAR DATA DERIVED FROM USGS WEBSITE (FLIGHT DATE: MAY 16, 2023).
- WELL/BORING SYMBOL PLACED AT SURFACE ELEVATION AT THE TIME THE BORING WAS COMPLETED.


POWER

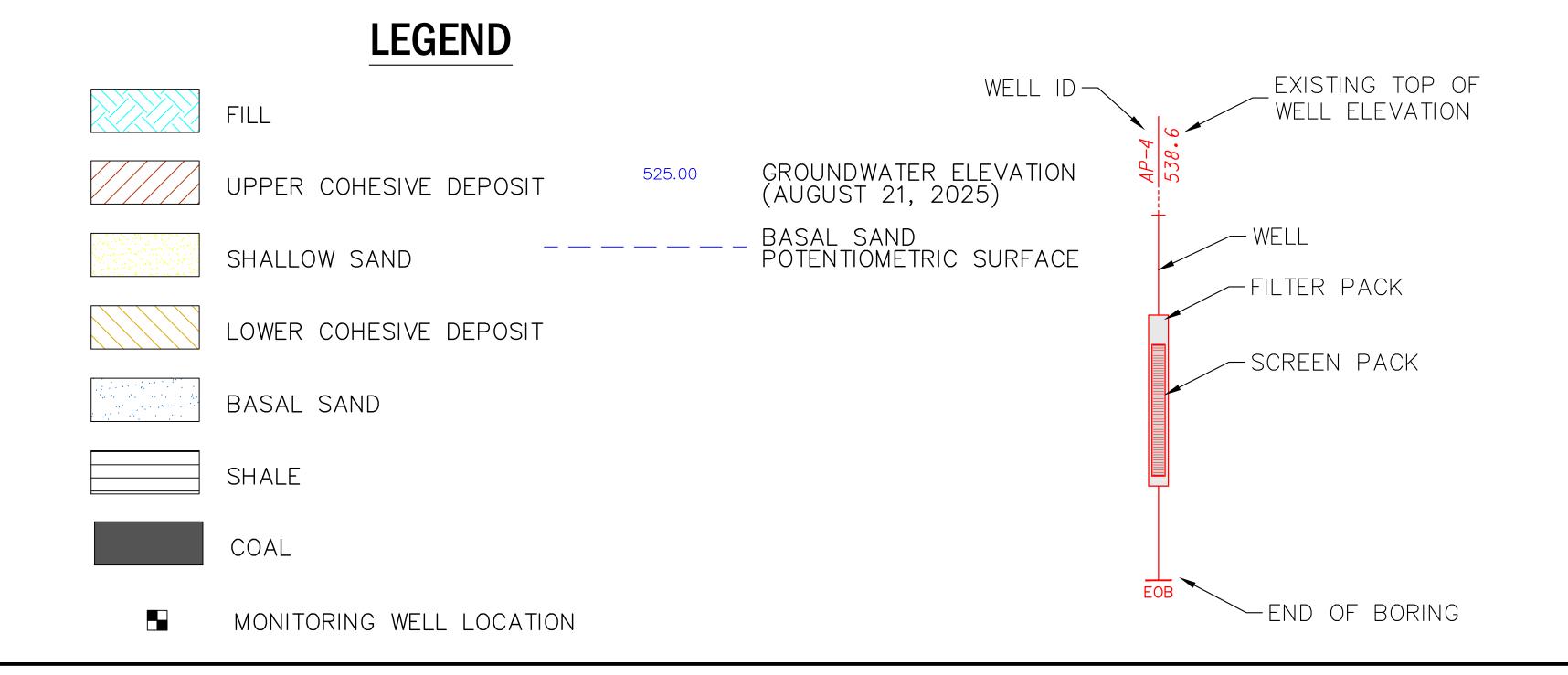

WATER, LIGHT, NGFIELD, SANGAMON

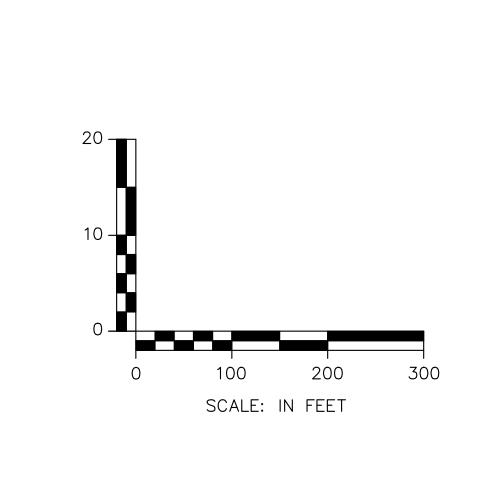


NOTES

- DEPTH AND THICKNESS OF SUBSURFACE STRATA WERE GENERALIZED FROM AND INTERPOLATED BETWEEN BORINGS. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE LOCATION OF THE BORING. SEE BORING LOGS FOR DETAILED DESCRIPTION.
- 2. SURFACE GENERATED FROM LIDAR DATA DERIVED FROM USGS WEBSITE (FLIGHT DATE: MAY 16, 2023).
- WELL/BORING SYMBOL PLACED AT SURFACE ELEVATION AT THE TIME THE BORING WAS COMPLETED.

POWER WATER, LIGHT, NGFIELD, SANGAMON *DATE:*SEPTEMBER 2025 PROJECT ID: 240338/0014 SHEET NUMBER:


F-F'


BASAL SAND POTENTIOMETRIC SURFACE

DALLMAN ASH-POND LANDFIN UNIT 1 CLARIFICATION POND G

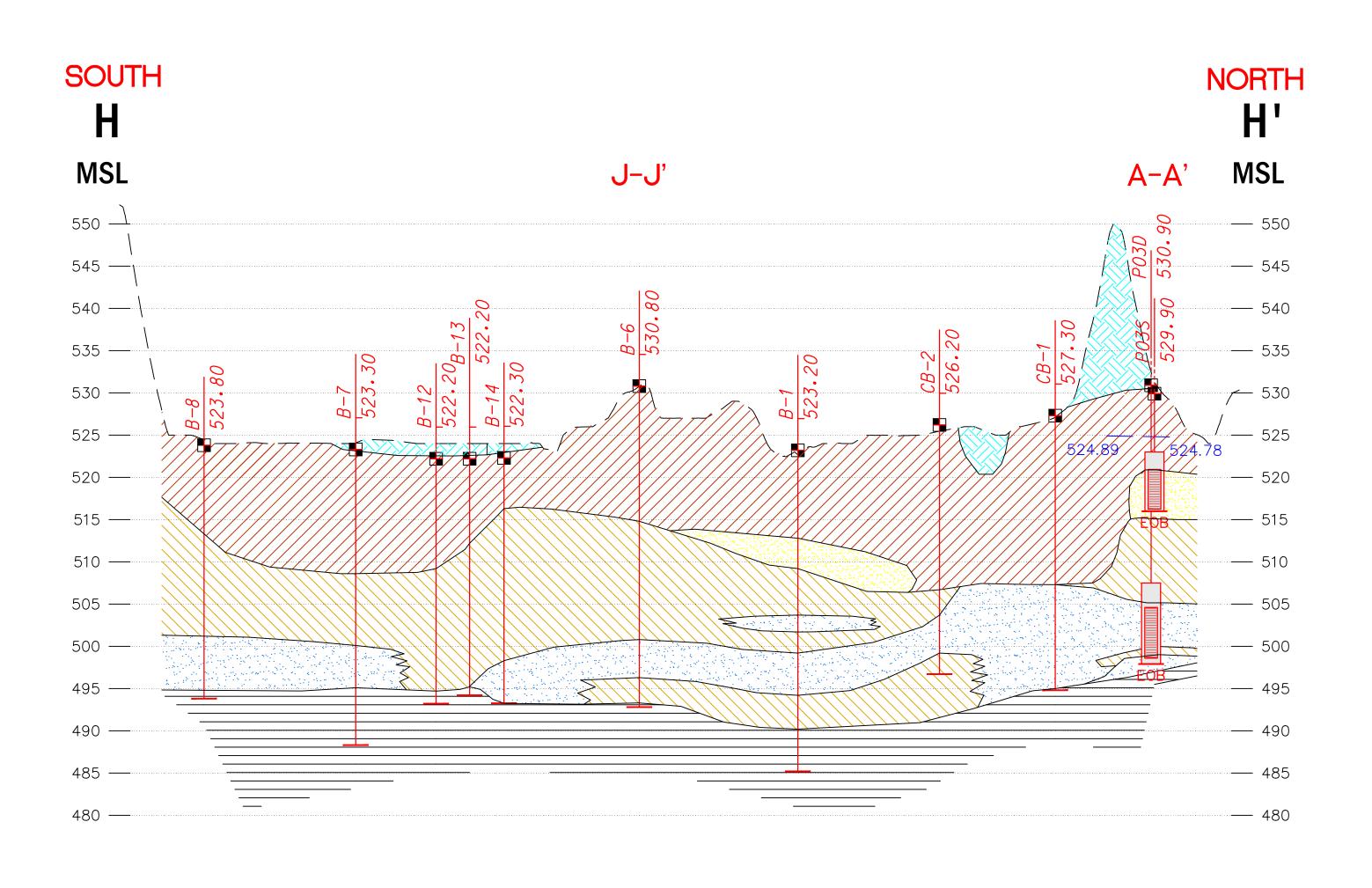
NOTES

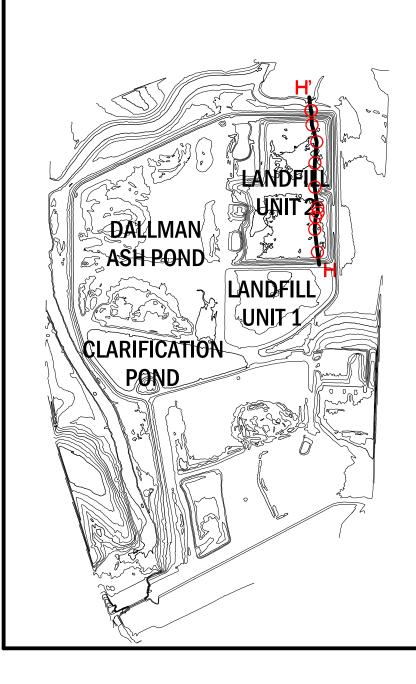
- 1. DEPTH AND THICKNESS OF SUBSURFACE STRATA WERE GENERALIZED FROM AND INTERPOLATED BETWEEN BORINGS.
 INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE LOCATION OF THE BORING. SEE BORING LOGS FOR DETAILED DESCRIPTION.
- 2. SURFACE GENERATED FROM LIDAR DATA DERIVED FROM USGS WEBSITE (FLIGHT DATE: MAY 16, 2023).
- 3. WELL/BORING SYMBOL PLACED AT SURFACE ELEVATION AT THE TIME THE BORING WAS COMPLETED.

ENGINEER DRIVE
SPRINGFIELD, ILLINDIS 62711-7233
PH (217) 787-2334 WWW.ANDREWS-ENG.COM
PPROVED BY: MTH DESIGNED BY: MTH DRAWN BY: BCK

EOLOGIC CROSS-SECTION G-G'
PLANS PREPARED FOR
VATER, LIGHT, AND POWER
SFIELD, SANGAMON COUNTY, ILLINOIS

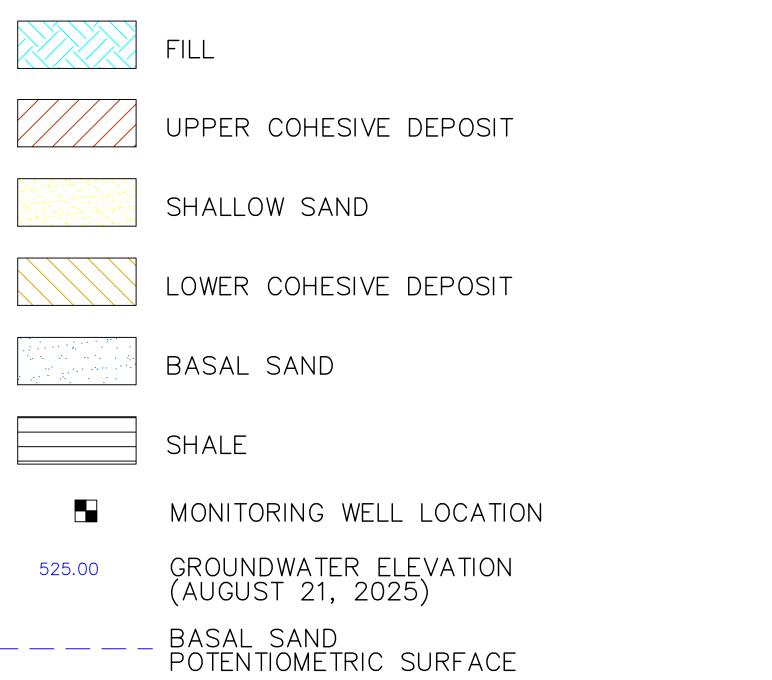
PLANS PRE CITY WATER, LIG SPRINGFIELD, SANGAM

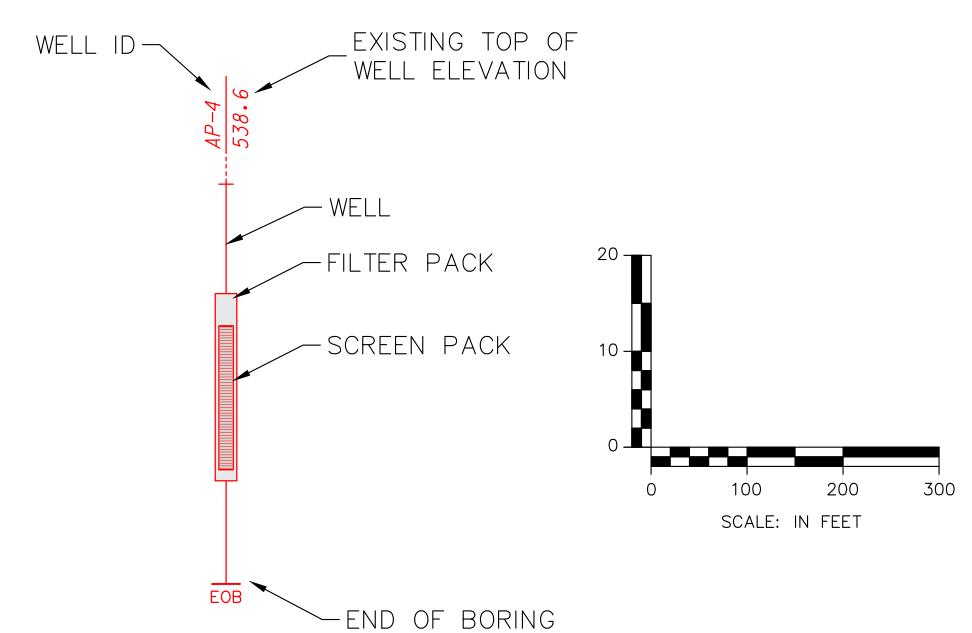

DATE:
SEPTEMBER 2025


PROJECT ID:
240338/0014

SHEET NUMBER:

G-G'


Tab: GG Last Saved: September 19, 2025, by Ben Karpus Plott

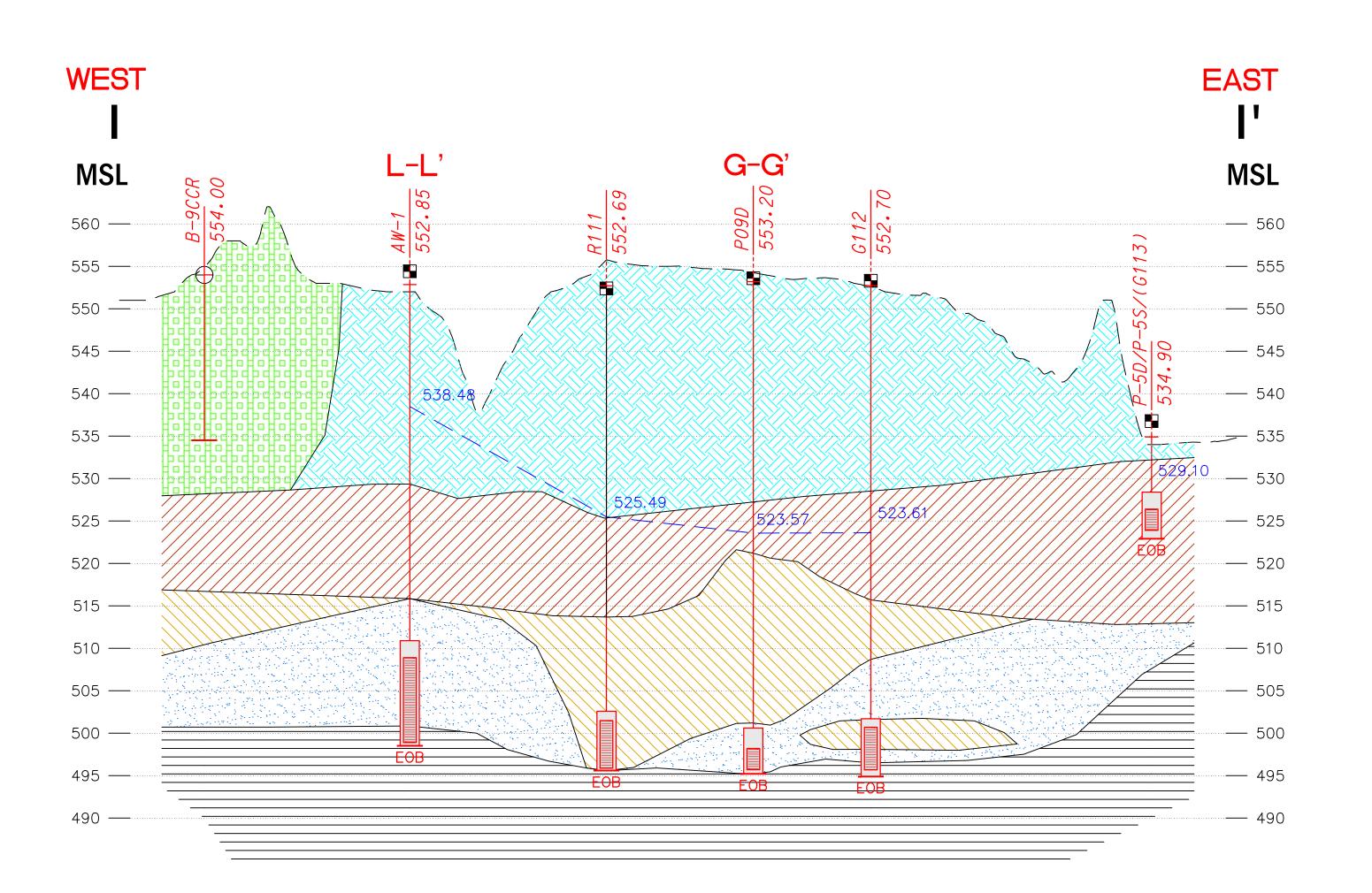


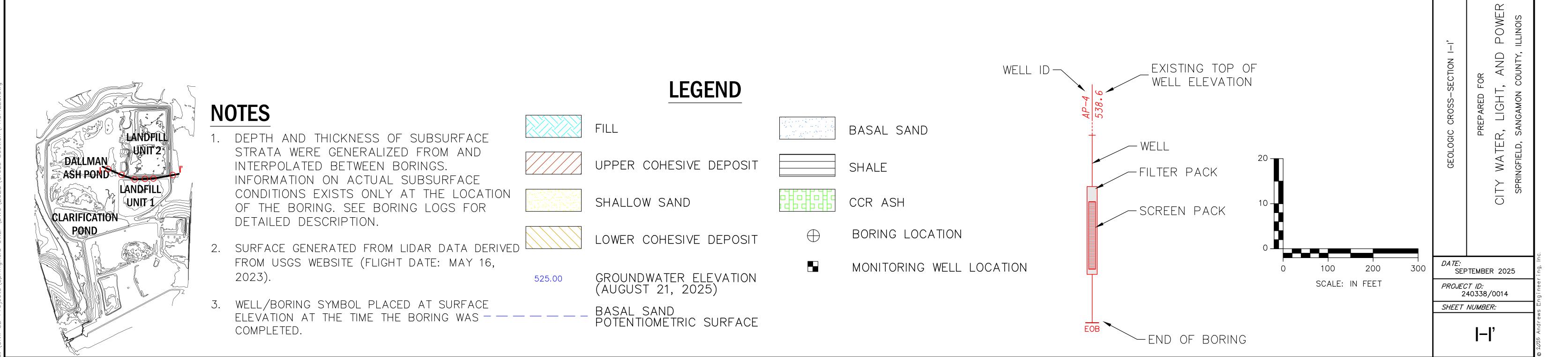
NOTES

- 1. DEPTH AND THICKNESS OF SUBSURFACE STRATA WERE GENERALIZED FROM AND INTERPOLATED BETWEEN BORINGS.
 INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE LOCATION OF THE BORING. SEE BORING LOGS FOR DETAILED DESCRIPTION.
- 2. SURFACE GENERATED FROM LIDAR DATA DERIVED FROM USGS WEBSITE (FLIGHT DATE: MAY 16, 2023).
- 3. WELL/BORING SYMBOL PLACED AT SURFACE ELEVATION AT THE TIME THE BORING WAS COMPLETED.

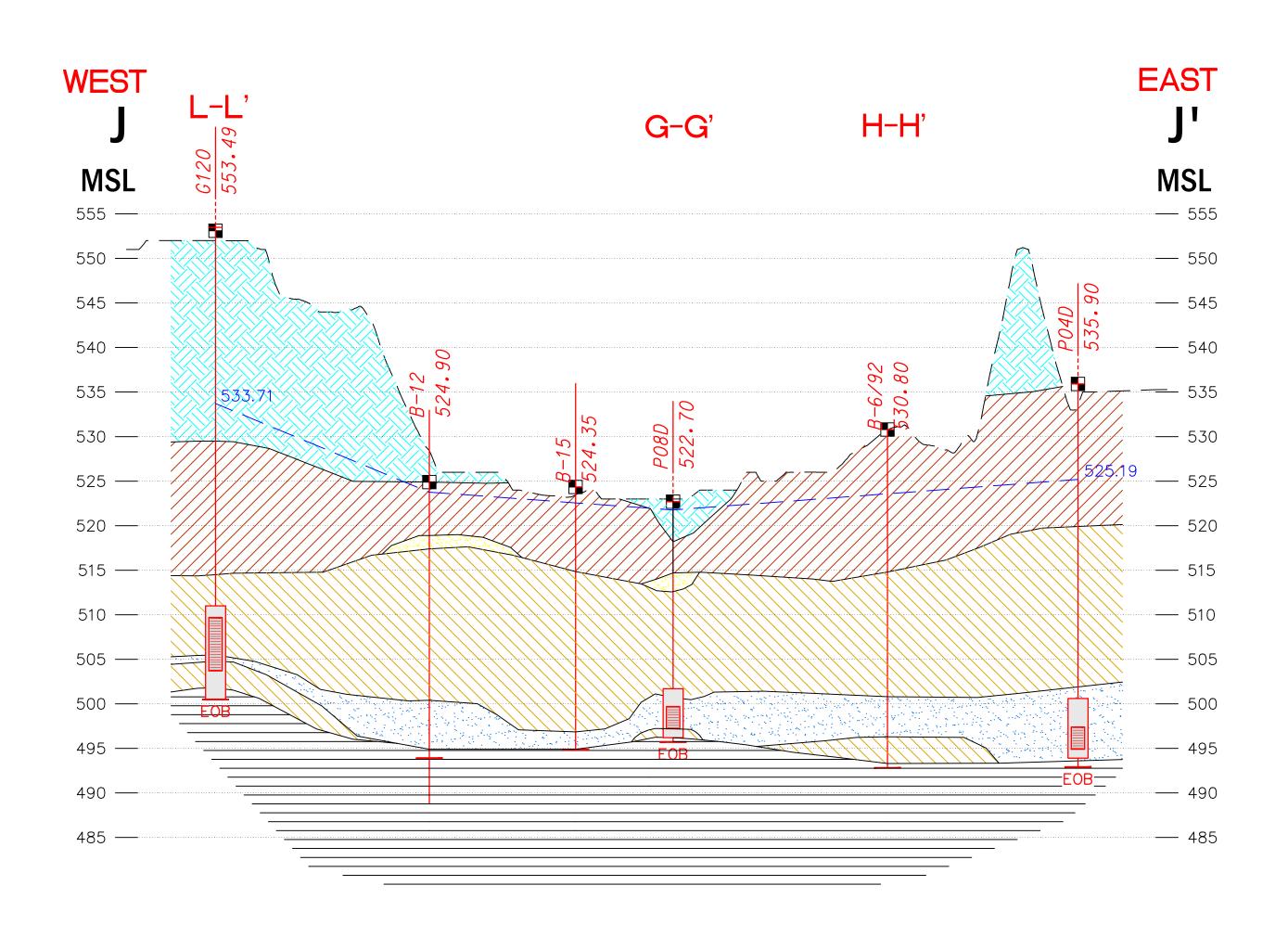
NEERING
SER CREEK DRIVE
ILLINOIS 62711-7233
44 WWW.ANDREWS-ENG.COM
POLIS, IN • WARRENTON, MO
ATH ORAWN BY: BCK
NO. DATE REVISION.

ENGINEER CREEK
3300 GINGER CREEK
SPRINGFIELD, ILLINOIS 62
PH (217) 787-2334 WWW.ANDREY
TAC, IL • LOMBARD, IL • INDIANAPOLIS, IN • WAR


PREPARED FOR ER, LIGHT, AND POWER S, SANGAMON COUNTY, ILLINOIS


PREPARED F
CITY WATER, LIGHT,
SPRINGFIELD, SANGAMON

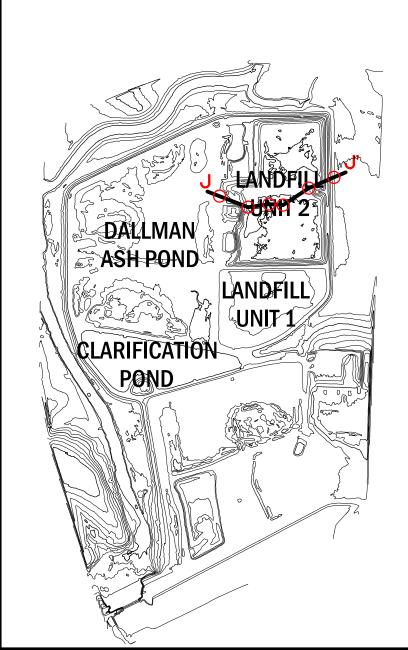
DATE:
SEPTEMBER 2025


PROJECT ID:
240338/0014

SHEET NUMBER:

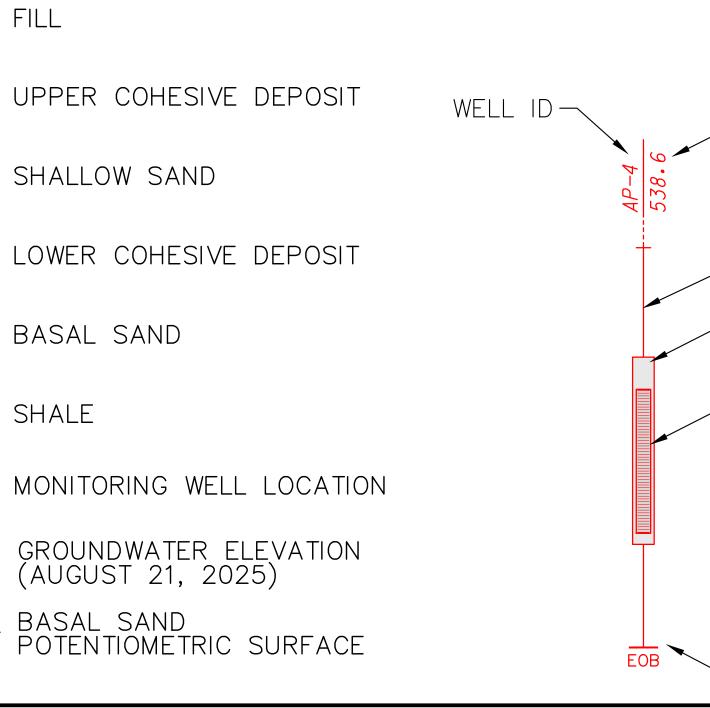
I: September 23, 2025, by Mike Nguyen — Plotted: Tuesday, September 23, 2025 10:13 Springfield CWIP\DWG\2025\Cross Section\PROFILES dwa

FILL


SHALLOW SAND

BASAL SAND

SHALE

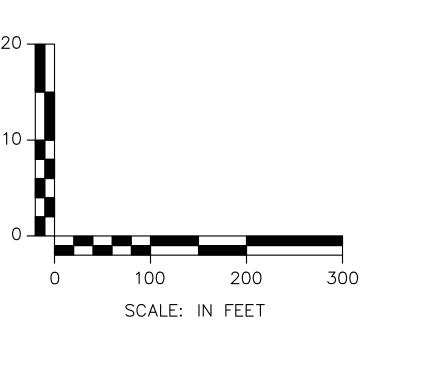

525.00

LEGEND

NOTES

- 1. DEPTH AND THICKNESS OF SUBSURFACE STRATA WERE GENERALIZED FROM AND INTERPOLATED BETWEEN BORINGS. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE LOCATION OF THE BORING. SEE BORING LOGS FOR DETAILED DESCRIPTION.
- 2. SURFACE GENERATED FROM LIDAR DATA DERIVED FROM USGS WEBSITE (FLIGHT DATE: MAY 16, 2023).
- 3. WELL/BORING SYMBOL PLACED AT SURFACE ELEVATION AT THE TIME THE BORING WAS COMPLETED.

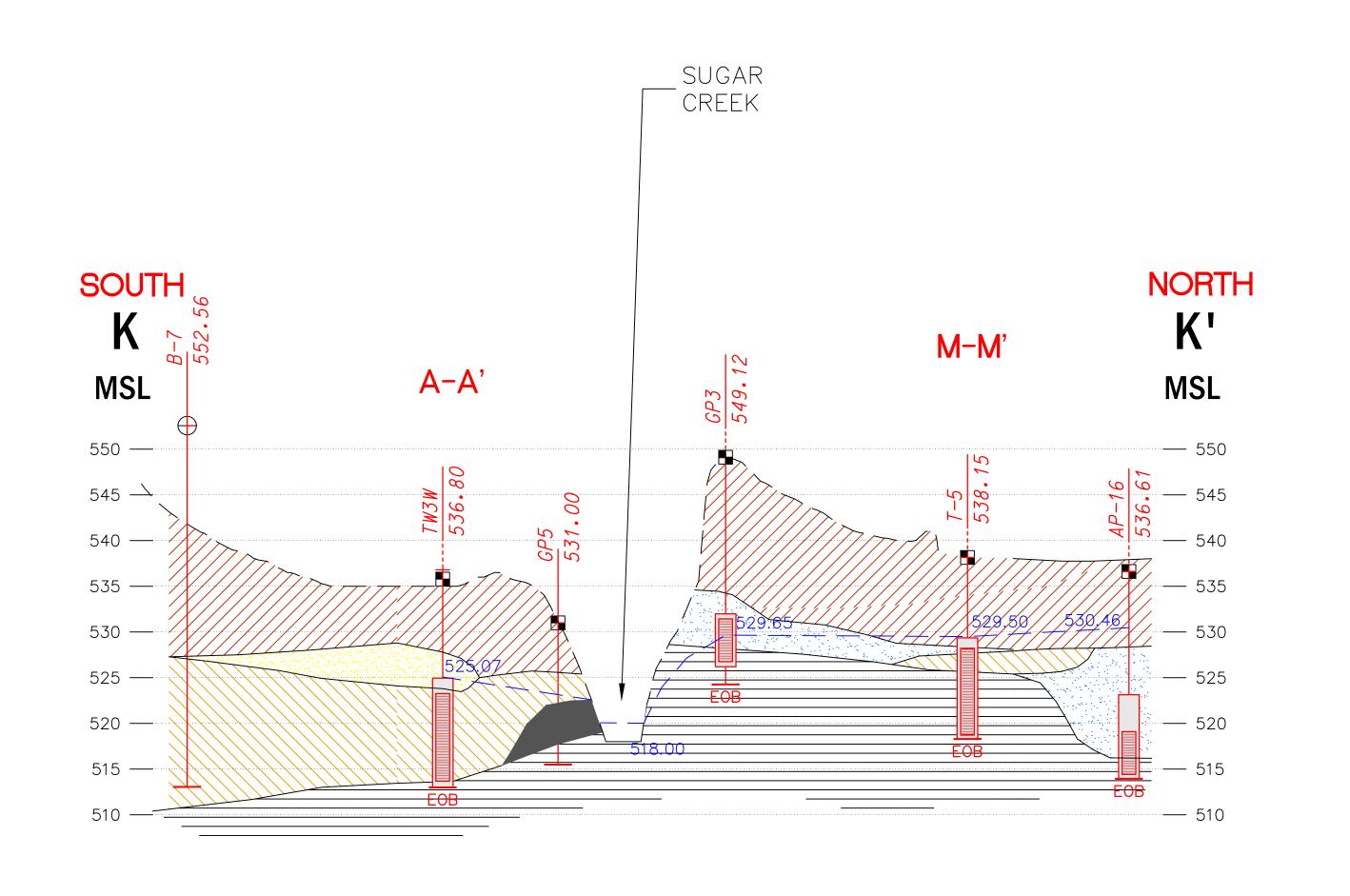
EXISTING TOP OF

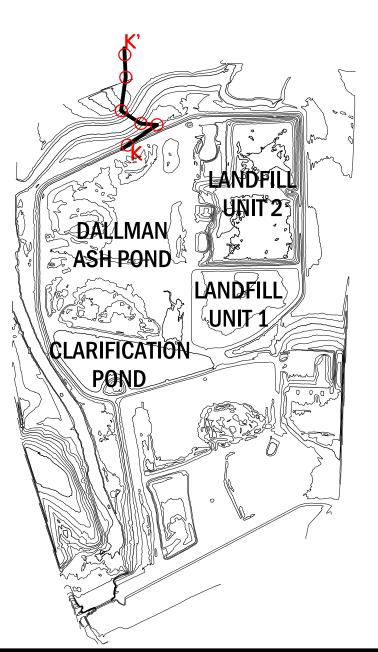

WELL ELEVATION

— WELL

FILTER PACK

-SCREEN PACK

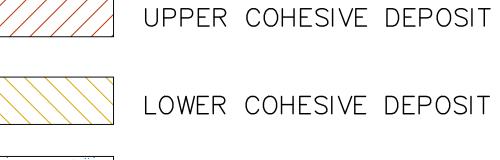

-END OF BORING



POWER WATER, LIGHT, NGFIELD, SANGAMON *DATE:*SEPTEMBER 2025 PROJECT ID: 240338/0014

SHEET NUMBER:

J-J'

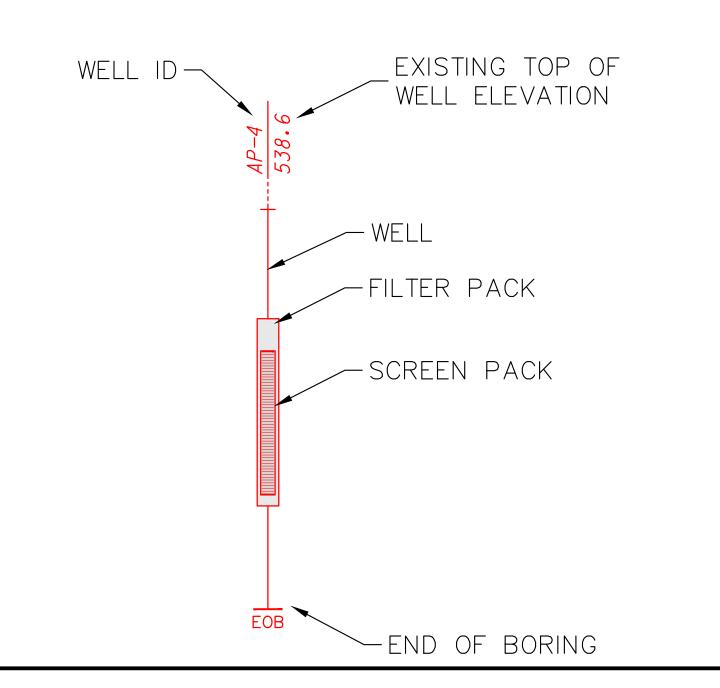


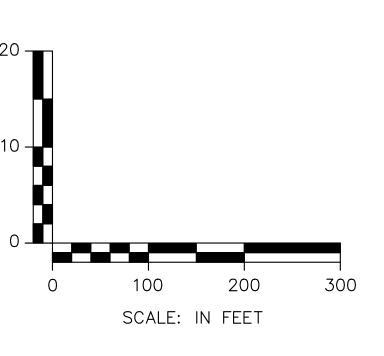
NOTES

1. DEPTH AND THICKNESS OF SUBSURFACE STRATA WERE GENERALIZED FROM AND INTERPOLATED BETWEEN BORINGS. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE LOCATION OF THE BORING. SEE BORING LOGS FOR DETAILED DESCRIPTION.

2. SURFACE GENERATED FROM LIDAR DATA DERIVED FROM USGS WEBSITE (FLIGHT DATE: MAY 16, 2023).

3. WELL/BORING SYMBOL PLACED AT SURFACE ELEVATION AT THE TIME THE BORING WAS COMPLETED.

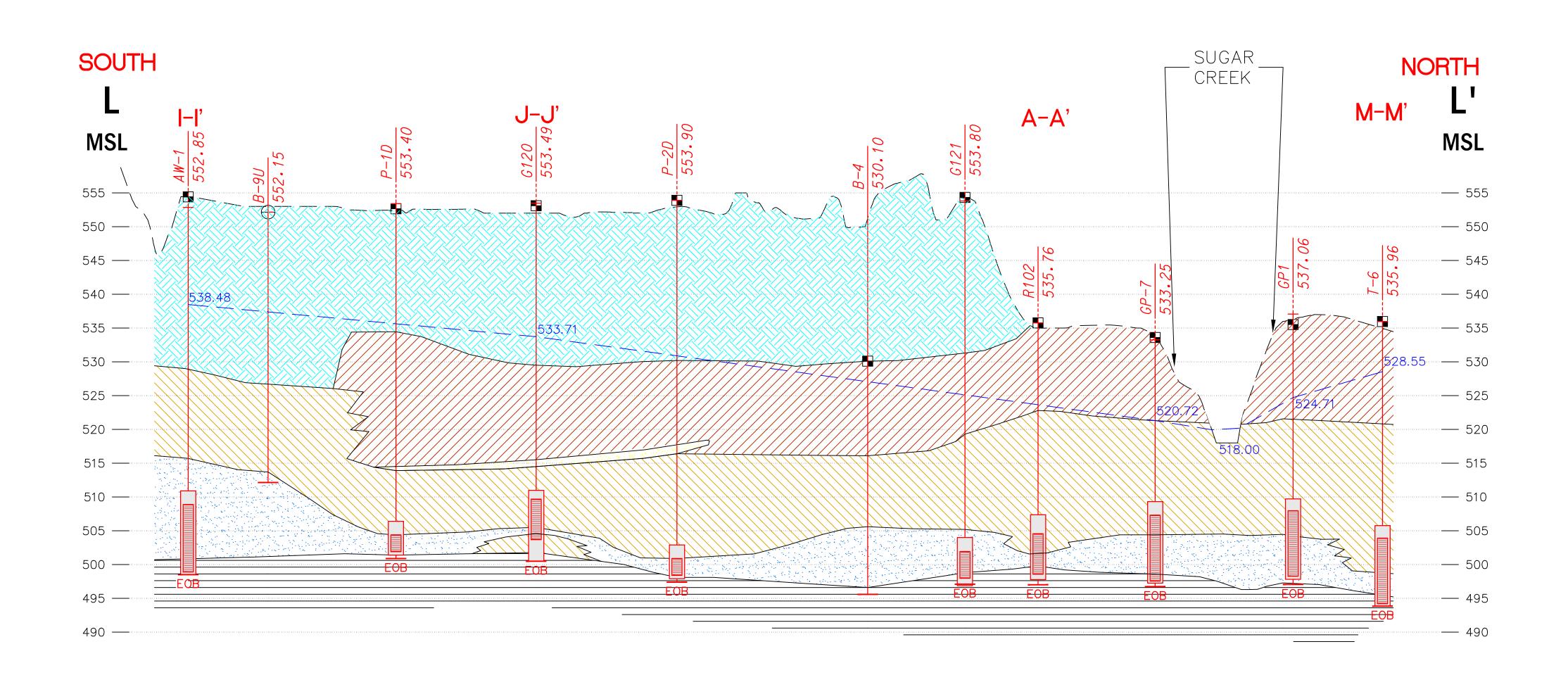

BASAL SAND

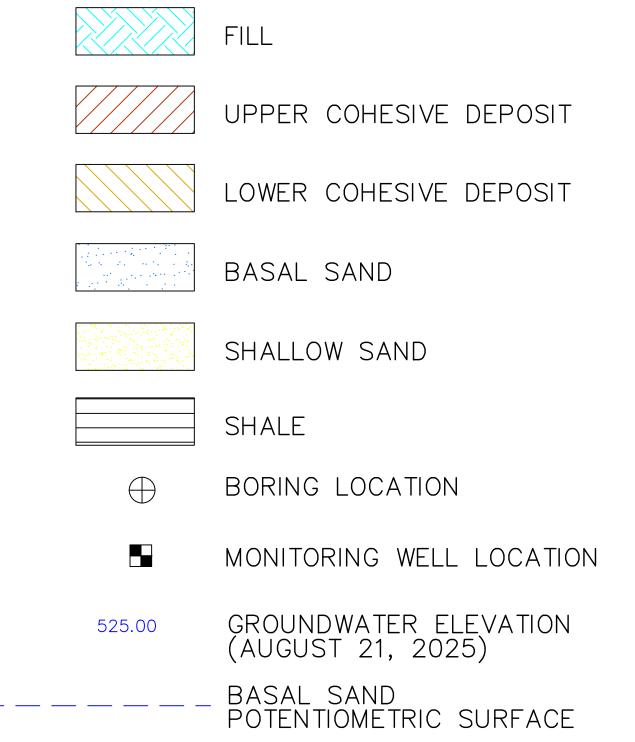

SHALE

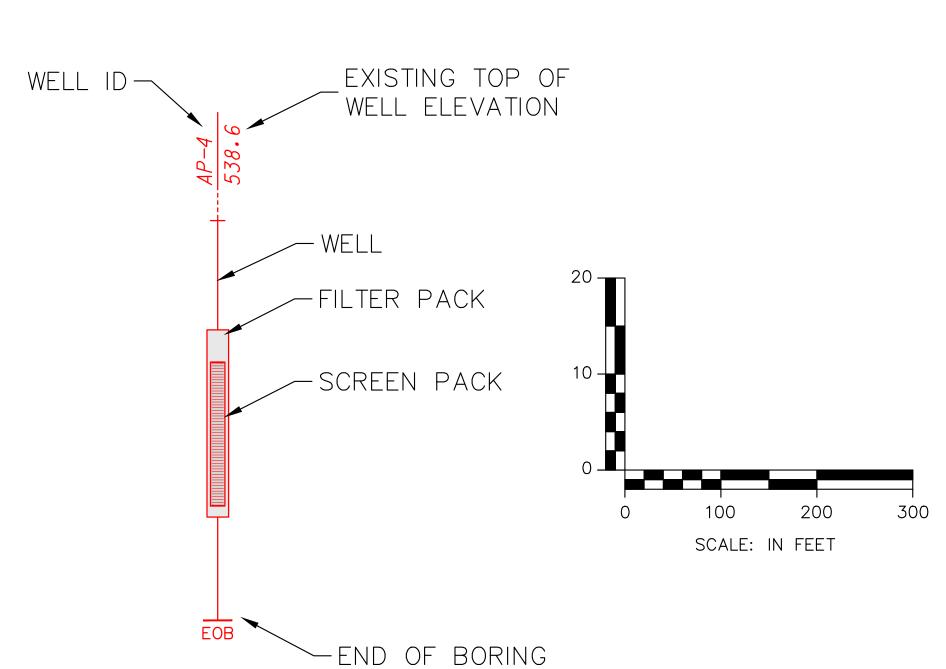
COAL

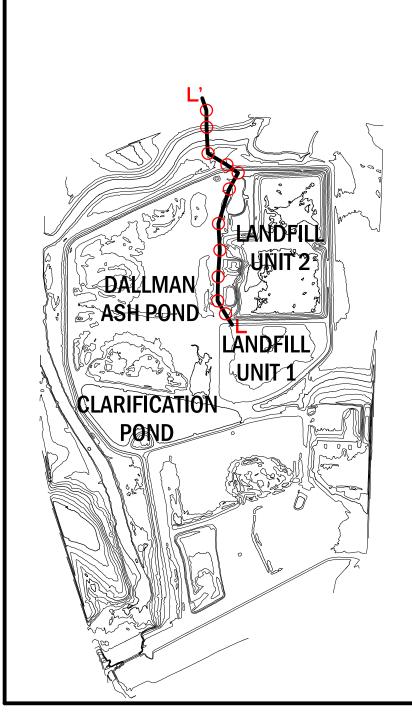
MONITORING WELL LOCATION GROUNDWATER ELEVATION (AUGUST 21, 2025) 525.00

BASAL SAND POTENTIOMETRIC SURFACE

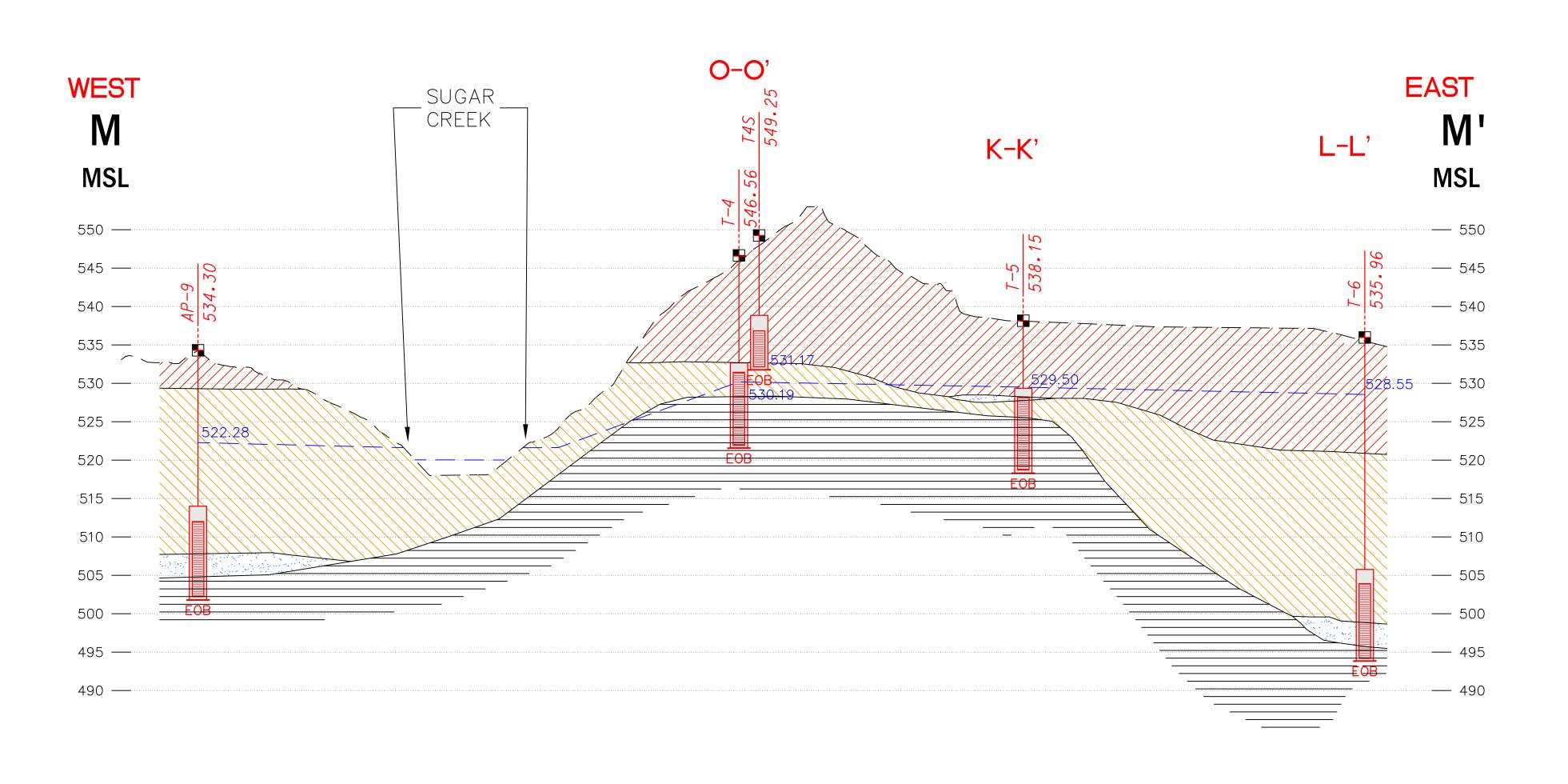





POWER WATER, LIGHT, *DATE:*SEPTEMBER 2025 PROJECT ID: 240338/0014


SHEET NUMBER:

K-K'

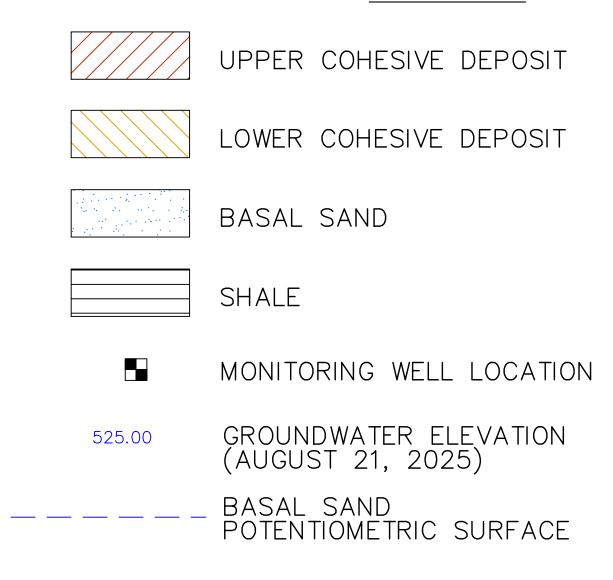

NOTES

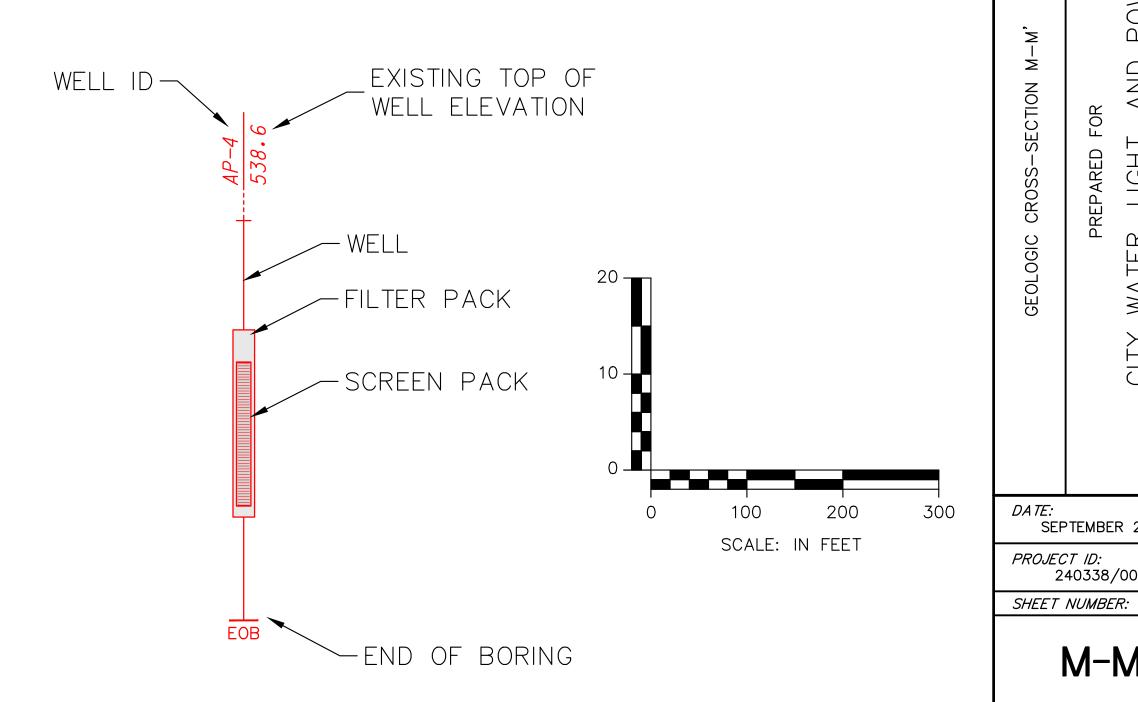
- 1. DEPTH AND THICKNESS OF SUBSURFACE STRATA WERE GENERALIZED FROM AND INTERPOLATED BETWEEN BORINGS. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE LOCATION OF THE BORING. SEE BORING LOGS FOR DETAILED DESCRIPTION.
- 2. SURFACE GENERATED FROM LIDAR DATA DERIVED FROM USGS WEBSITE (FLIGHT DATE: MAY 16, 2023).
- 3. WELL/BORING SYMBOL PLACED AT SURFACE ELEVATION AT THE TIME THE BORING WAS COMPLETED.

POWER

WATER, LIGHT, NGFIELD, SANGAMON

*DATE:*SEPTEMBER 2025 PROJECT ID: 240338/0014 SHEET NUMBER: L-L'

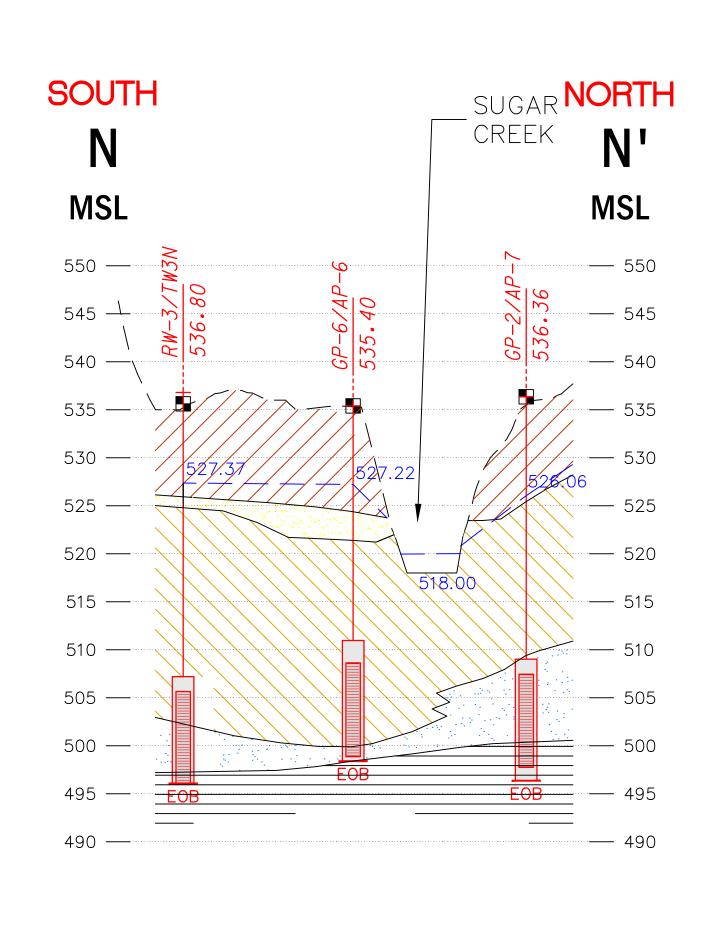


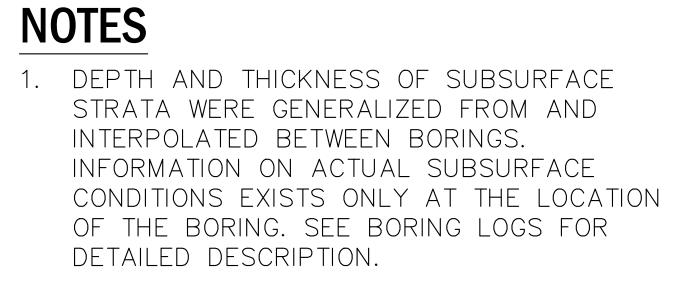


NOTES

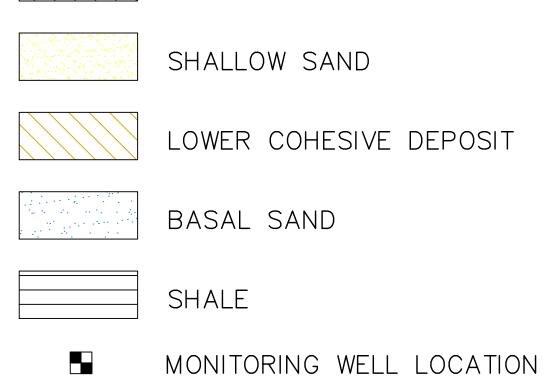
- 1. DEPTH AND THICKNESS OF SUBSURFACE STRATA WERE GENERALIZED FROM AND INTERPOLATED BETWEEN BORINGS. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE LOCATION OF THE BORING. SEE BORING LOGS FOR DETAILED DESCRIPTION.
- 2. SURFACE GENERATED FROM LIDAR DATA DERIVED FROM USGS WEBSITE (FLIGHT DATE: MAY 16, 2023).
- 3. WELL/BORING SYMBOL PLACED AT SURFACE ELEVATION AT THE TIME THE BORING WAS COMPLETED.

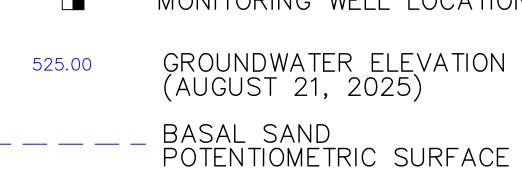
LEGEND



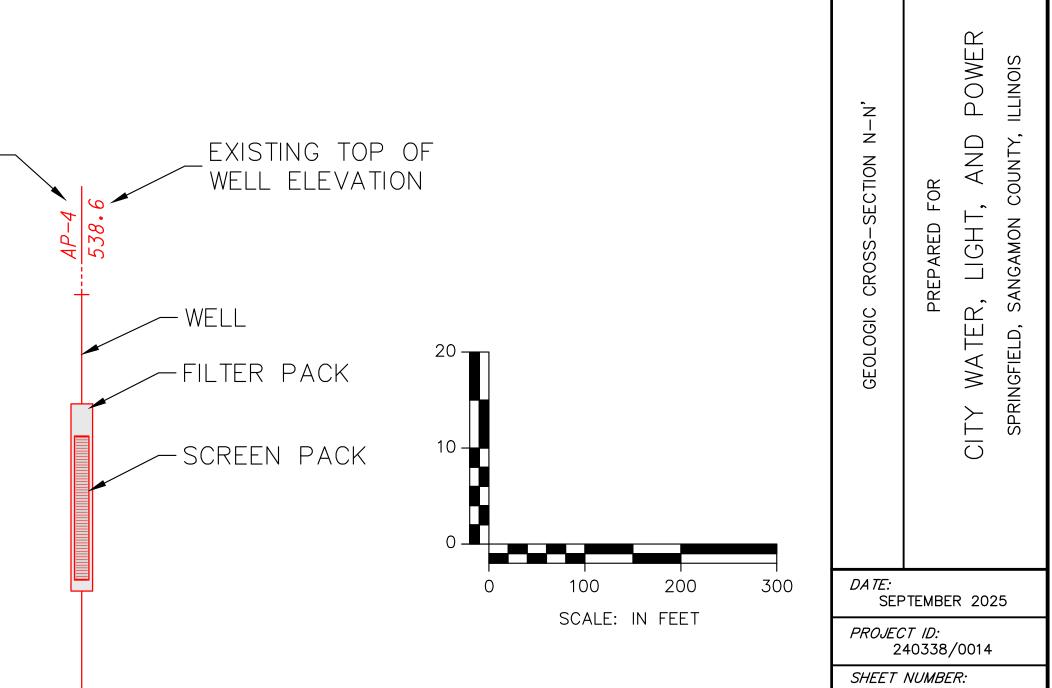

POWER WATER, LIGHT, NGFIELD, SANGAMON

*DATE:*SEPTEMBER 2025 *PROJECT ID:* 240338/0014


M-M

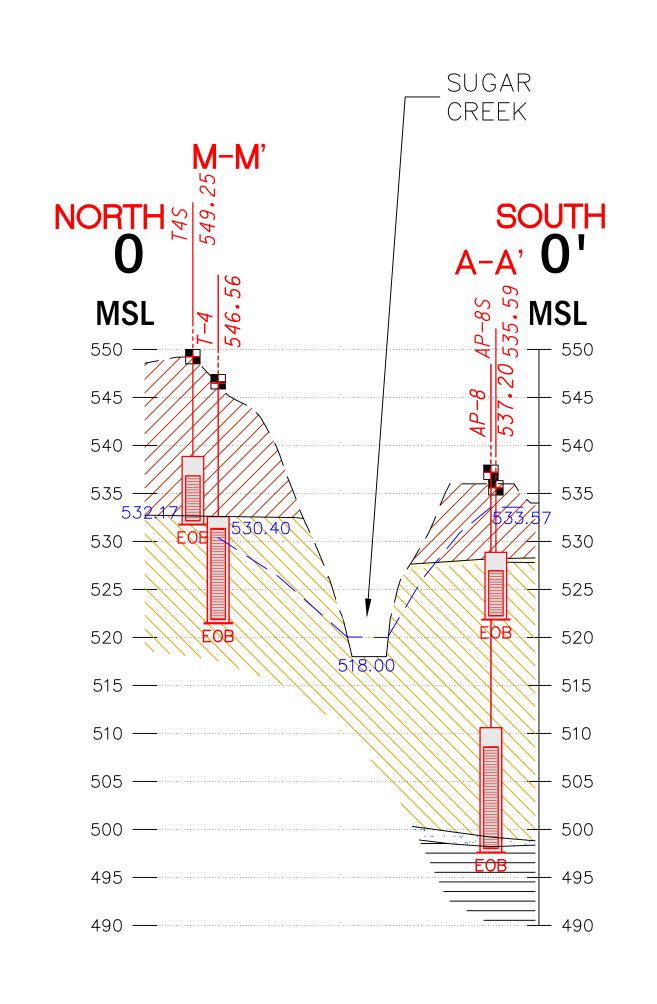


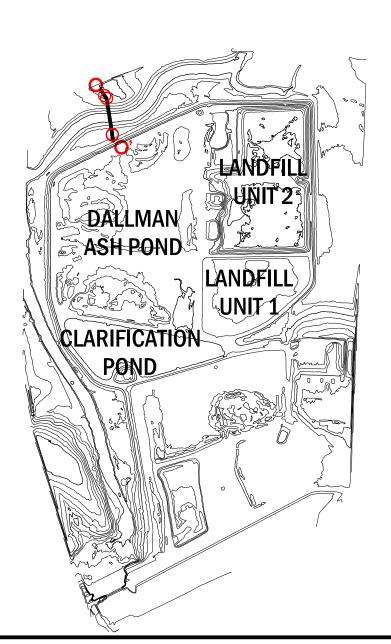
UPPER COHESIVE DEPOSIT



- 2. SURFACE GENERATED FROM LIDAR DATA DERIVED FROM USGS WEBSITE (FLIGHT DATE: MAY 16, 2023).
- WELL/BORING SYMBOL PLACED AT SURFACE ELEVATION AT THE TIME THE BORING WAS COMPLETED.

EXISTING TOP OF WELL ID -WELL ELEVATION — WELL -FILTER PACK -SCREEN PACK SCALE: IN FEET -END OF BORING

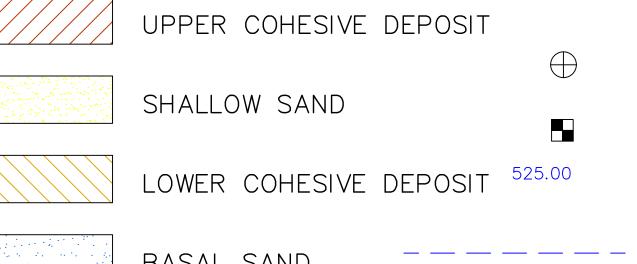

N-N'


DALLMAN ASH POND

CLARIFICATION

LANDFILL

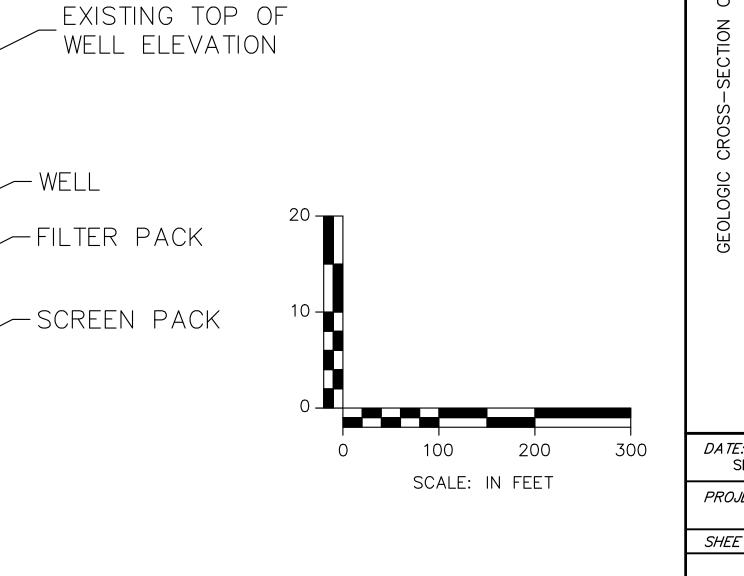
UNIT 1



NOTES

- 1. DEPTH AND THICKNESS OF SUBSURFACE STRATA WERE GENERALIZED FROM AND INTERPOLATED BETWEEN BORINGS. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE LOCATION OF THE BORING. SEE BORING LOGS FOR DETAILED DESCRIPTION.
- 2. SURFACE GENERATED FROM LIDAR DATA DERIVED FROM USGS WEBSITE (FLIGHT DATE: MAY 16, 2023).
- 3. WELL/BORING SYMBOL PLACED AT SURFACE ELEVATION AT THE TIME THE BORING WAS COMPLETED.

LEGEND

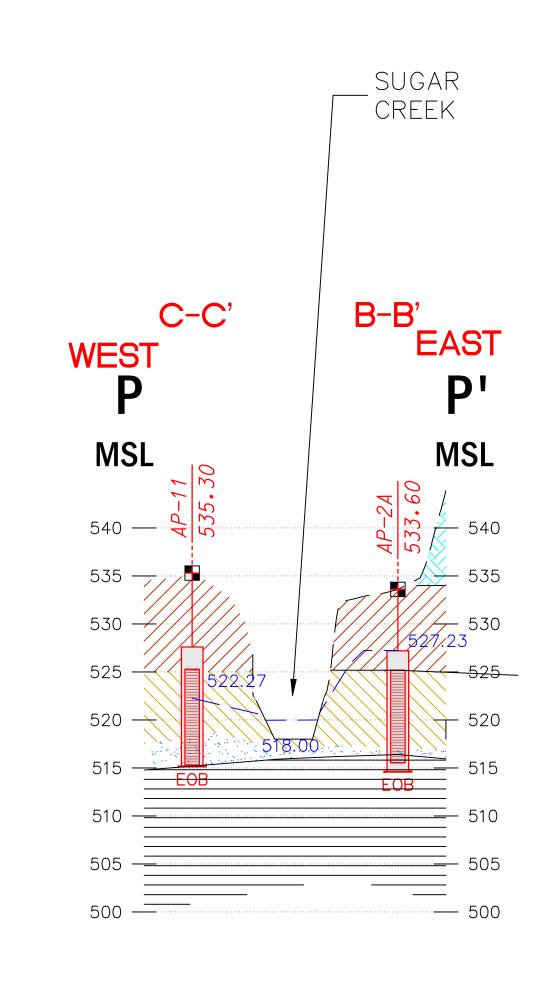

BORING LOCATION

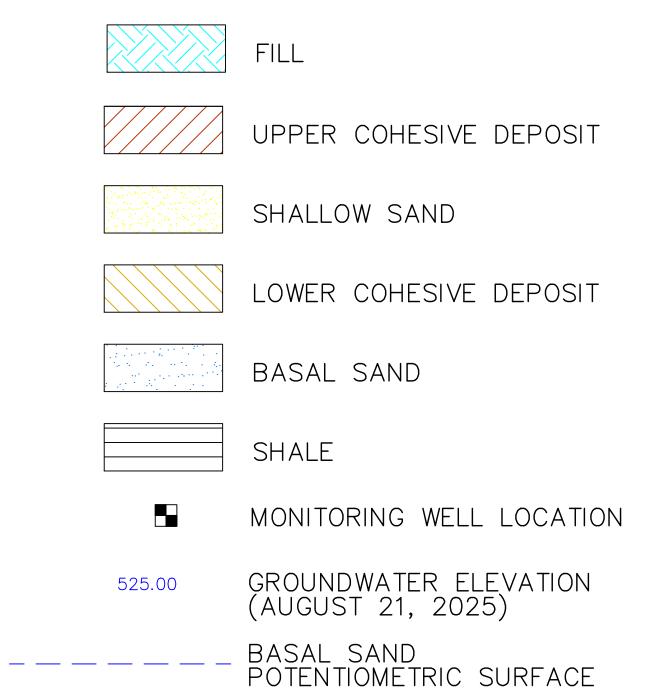
GROUNDWATER ELEVATION (AUGUST 21, 2025)

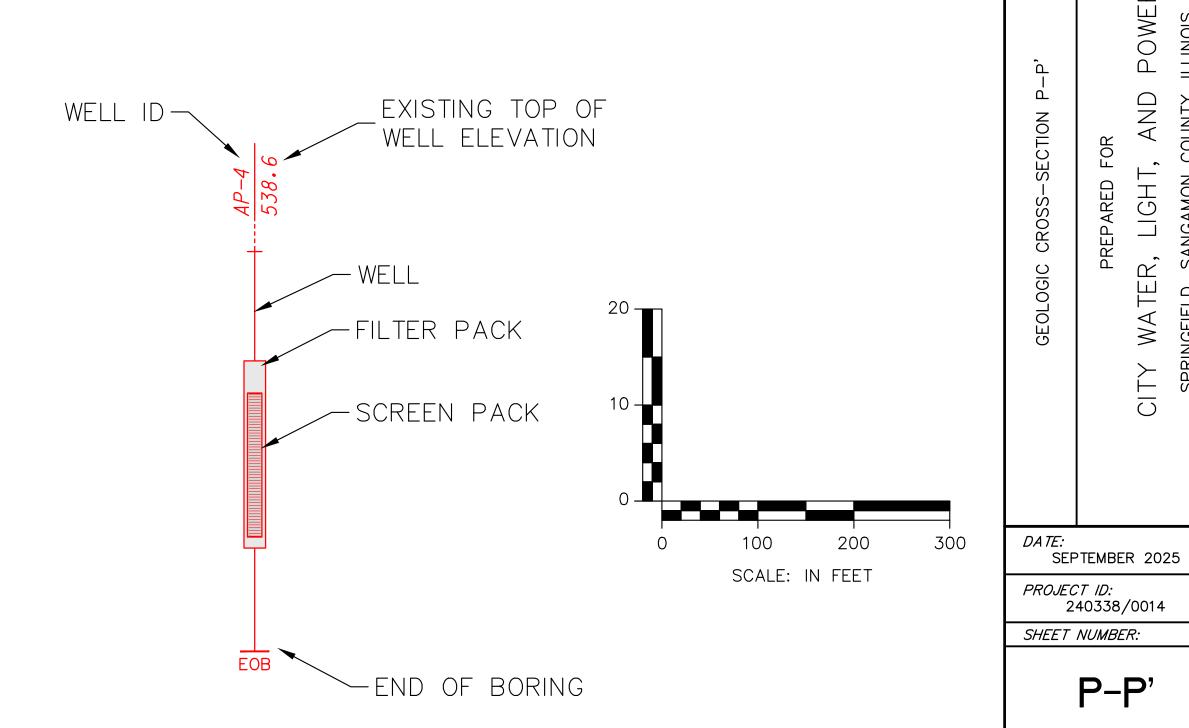
MONITORING WELL LOCATION BASAL SAND POTENTIOMETRIC SURFACE

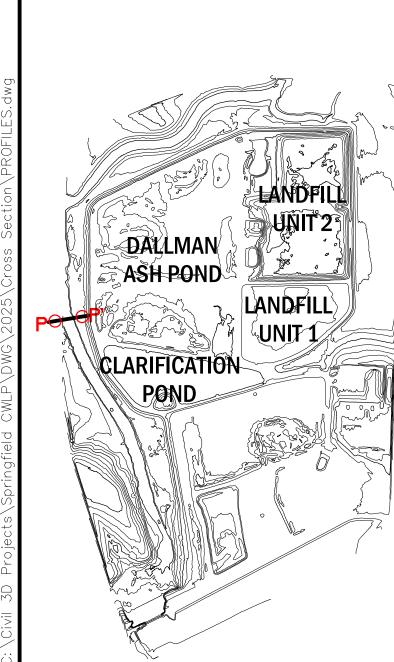
WELL ID-

-END OF BORING


POWER


WATER, LIGHT,


*DATE:*SEPTEMBER 2025 *PROJECT ID:* 240338/0014 SHEET NUMBER:


O-O'

BASAL SAND

NOTES

- 1. DEPTH AND THICKNESS OF SUBSURFACE STRATA WERE GENERALIZED FROM AND INTERPOLATED BETWEEN BORINGS. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE LOCATION OF THE BORING. SEE BORING LOGS FOR DETAILED DESCRIPTION.
- 2. SURFACE GENERATED FROM LIDAR DATA DERIVED FROM USGS WEBSITE (FLIGHT DATE: MAY 16, 2023).
- 3. WELL/BORING SYMBOL PLACED AT SURFACE ELEVATION AT THE TIME THE BORING WAS COMPLETED.

POWER

WATER, LIGHT, NGFIELD, SANGAMON

P-P'

APPENDIX D: SLUG TEST/PACKER TEST DATA

SLUG TEST DATA

PATRICK ENGINEERING INC.	Client: CITY WATER,	, LIGHT & POWER
Project No.: 496B	Location: SPRINGFIE	ELD, ILLINOIS
P-1S RI	RECOVERY	
		DATA SET:
S. =		p-1s-r.aqt 03/13/93
1.8		AQUIFER TYPE:
		SOLUTION METHOD:
		Cooper et al. TEST DATE:
1.4 =		
1.2 H H 1.	3 3	ESTIMATED PARAMETERS: T = 0.0003291 ft ² /min S = 3.3269E-05
)		TEST DATA:
0.8		HO = 1.25 ft rc = 0.083 ft
0.6		= 0.344 f
0.4		
0.8		
0.001 0.01 0.1 Time (min)	10. 100.	

5	ELD, ILLINOIS		DATA SET: p-1s-d.aqt 03/13/93 AQUIFER TYPE: Confined SOLUTION METHOD: Cooper et al. TEST DATE: 8/27/92 ESTIMATED PARAMETERS: T = 8.6963E-05 ft²/min S = 0.03305 TEST DATA: H0 = 1.25 ft rc = 0.083 ft rw = 0.344 ft	
Client: CITY WATER,	Location: SPRINGFIELD,	DRAWDOWN		10.
CK ENGINEERING INC.	Project No.: 496B	P-1S DR.		U.Ul U.I I. Time (min)

PATRICK ENGINEERING INC.	Client: CITY WATER,	R, LIGHT & POWER
Project No.: 496B	Location: SPRINGFIE	ELD, ILLINOIS
P-1D RE	RECOVERY	
2.		DATA SET: P-10-R.AQT 03/13/93
1.8		AQUIFER TYPE: Confined SOLUTION METHOD: Cooper et al. TEST DATE: 8/27/92
1.2 — OH / I	mpmmmpr	ESTIMATED PARAMETERS: T = 0.003692 ft ² /min S = 3.0237E-05
0.8 0.4 0.6 0.2		TEST DATA: H0 = 1.25 ft rc = 0.083 ft rw = 0.344 ft
0.01 0.1 1	10. 100.	

121 4 - 11

Y WATER, LIGHT & POWER PRINGFIELD, ILLINOIS		DATA SET: p-1d-d.aqt 03/13/93 AQUIFER TYPE:	SOLUTION METHOD: Cooper et al. TEST DATE: 8/27/92	ESTIMATED PARAMETERS: T = 0.006303 ft ² /min S = 1.E-08	TEST DATA: H0 = 1.25 ft rc = 0.083 ft rw = 0.344 ft
PATRICK ENGINEERING INC. Client: CITY WATE Project No.: 496B	P-1D DRAWDOWN	2. E. T. T. T. T. T. T. T. T. T. T. T. T. T.	1.6 = 1.4 = = = = = = = = = = = = = = = = = = =	1.2 HO H /	0.8

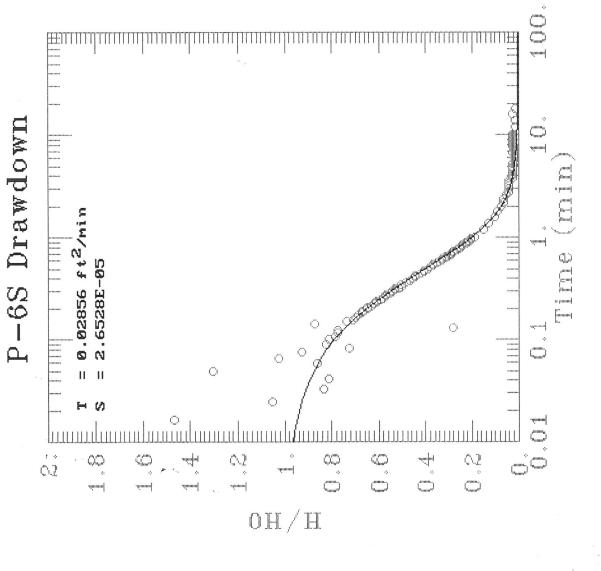
	٠.	į	¥
٦	r	١	ÿ
	•	•	۰

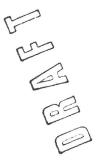
ENGINEERING INC. CITY WATER, LIGHT & POWER	496B Location: SPRINGF	P-3S RECOVERY	2. E	1.8 Econfined SOLUTION METHOD: 1.6 Econfined SOLUTION METHOD: 1.4 Ecoper et al. 1.4 Ecoper et al. 1.7 Est Date: 9/1/92	1.2 = CSTIMATED PARAMETERS: T = 0.04309 ft ² /min S = 0.0004477	0.0	4.0
PATRICK ENGINEE	Project No.: 496B		S	1.8	1.2	0.0	4.0

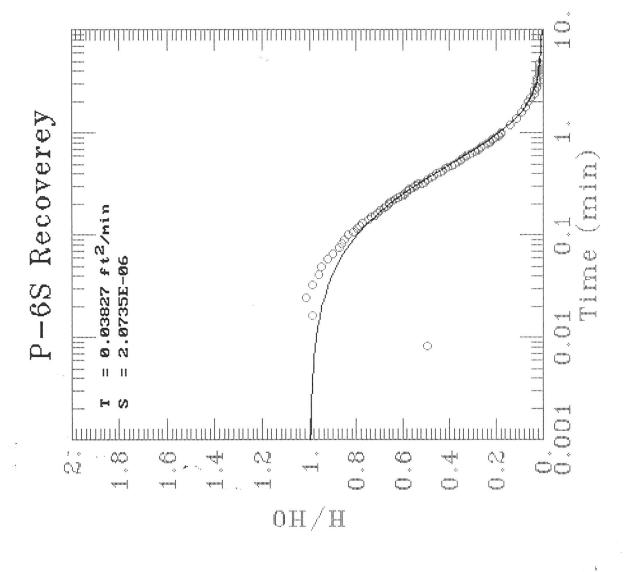
CITY WATER, LIG	ion: SPRINGFIELD, ILLINOIS		DATA SET: p-3s-d.aqt 1	AQUIFER TYPE: Confined SOLUTION METHOD: Cooper et al. TEST DATE:	ESTIMATED PARAMETERS: T = 0.119 ft ² /min S = 1.E-08	TEST DATA: H0 = 0.5 ft rc = 0.083 ft rw = 0.344 ft	
NGINEERING INC.	Ę	P-3S DRAWDOWN	8.	1.8 1.6 0	0 H / 1.2		0.001 0.01 0.1 1.

R, LIGHT & POWER IELD, ILLINOIS		DATA SET: P-3D-R.AGT 03/13/93 AQUIFER TYPE: Confined SOLUTION METHOD: Cooper et al. TEST DATE: 9/1/92 ESTIMATED PARAMETERS: T = 0.04784 ft²/min S = 0.0002658 TEST DATA: H0 = 1.25 ft rw = 0.344 ft	
Client: CITY WATER, Location: SPRINGFIE	RECOVERY		
PATRICK ENGINEERING INC. Project No.: 496B	P-3D R	1.6 1.6 1.7 1.4 0.8 0.6 0.6 0.6 0.0 0.0 0.0 0.0 0.0	

ER, LIGHT & POWER	TELD, ILLINOIS		DATA SET: P-3D-D.AQT 03/13/93	AQUIFER TYPE: Confined SOLUTION METHOD: Cooper et al. TEST DATE: 9/1/92 ESTIMATED PARAMETERS: T = 0.02173 ft ² /min S = 0.01321 TEST DATA: H0 = 1.25 ft rc = 0.083 ft rw = 0.344 ft
Client: CITY WATER,	Location: SPRINGFIE	DRAWDOWN		
ENGINEERING INC.	496B	P-3D [3.	1.8 1.6 1.7 1.8 1.8 1.4 0.8 0.6 0.6 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PATRICK E	Project No.:			UH/H


PATRICK ENGINEERING INC.	Client: CITY WATER,	N, LIGHT & POWER
Project No.: 496B	Location: SPRINGFI	FIELD, ILLINOIS
P-4 RE	RECOVERY	
		DATA SET:
3.	- III	P-4-R.AQT 03/13/93
1.8		AQUIFER TYPE:
9.7	ттр	SOLUTION METHOD:
	ПППП	Cooper et al. TEST DATE:
1.4- 		9/1/92
0H/ 1.2 1.		ESTIMATED PARAMETERS: T = 0.02555 ft ² /min S = 7.9368E-07
	ттт	TEST DATA:
8:0	ηππ	11 11
9.0		rw = 0.344 ft
0.4		
0.8		
Tim		


.


PATRICK ENGINEERING INC.	Client: CITY WATER,	R, LIGHT & POWER
ect No.: 496B	Location: SPRINGFI	IELD, ILLINOIS
P-4 DR	DRAWDOWN	
2. =	######################################	DATA SET: P-4-D.AQT 03/13/93
1.8		AQUIFER TYPE: Confined SOLUTION METHOD: Cooper et al. TEST DATE: 9/1/92
0H/ 0 1.2	3 3	ESTIMATED PARAMETERS: T = 0.03979 ft ² /min S = 1.1213E-05
0	шшшшшш	TEST DATA: H0 = 1.25 ft rc = 0.083 ft rw = 0.344 ft
0.4 0.2		
0.01 0.1 111111 1 1111111 1 1 1 1 1 1 1 1		

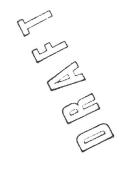
WATER, LIGHT & POWER	GFIELD, ILLINOIS		DATA SET: P-50-R.A0T 03/14/93 AQUIFER TYPE: Confined SOLUTION METHOD: Cooper et al. TEST DATE: 9/1/92 ESTIMATED PARAMETERS: T = 0.05179 ft²/min S = 2.962E-05 TEST DATA: H0 = 1.25 ft rc = 0.083 ft rw = 0.344 ft
Client: CITY WA	Location: SPRIN(-5\$ RECOVERY	0.1 1. 1. 10.
PATRICK ENGINEERING INC.	Project No.: 496B	A B	1.8 1.6 1.6 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0

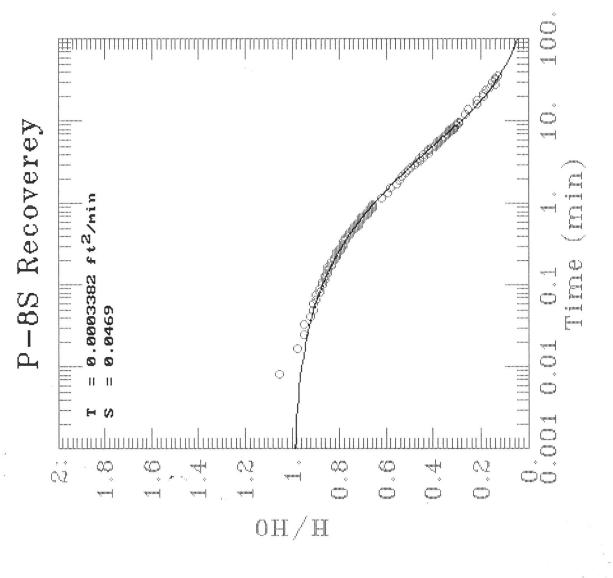
WATER, LIGHT & POWER	SPRINGFIELD, ILLINOIS		DATA SET: P-7S-R.AGT 03/14/93	AQUIFER TYPE: Confined SOLUTION METHOD: Cooper et al. TEST DATE:	10/5/92 ESTIMATED PARAMETERS: T = 0.003565 ft ² /min S = 0.001063	TEST DATA: HO = 1.25 ft rc = 0.083 ft rw = 0.344 ft	
INC. Client: CITY	Location: SPRIN	P-7S RECOVERY					1. 1111111 1. 110. 100. Time (min)
PATRICK ENGINEERING	Project No. 496B		si Luu	1.8	OH/I	H 0.8 0.6	0.2 = 0.01

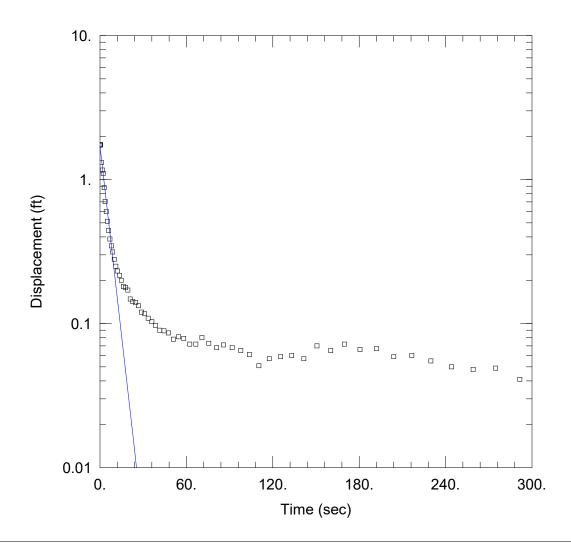
TER, LIGHT & POWER	SPRINGFIELD, ILLINOIS		DATA SET: P-7S-D.AGT 03/14/93	AQUIFER TYPE: Confined SOLUTION METHOD: Cooper et al. TEST DATE: 10/5/92		7w = 0.344 ft
Client: CITY WATER,	Location: SPRIN	-7S DRAWDOWN		muluumluumuluu		min)
PATRICK ENGINEERING INC.	Project No.: 496B	P-7	2. E. T. T. T. T. T. T. T. T. T. T. T. T. T.	1.8 = 1.6 = 1.4 = 1.4 = 1.4	0.8 0.8	0.4 0.2 0.

.....

.......


Project No.: 496B P-7D RECOVERY 2.	PATRICK ENGINEERING INC.	Client: CITY WATER,	, LIGHT & POWER
2.	t No .:		1
2.	7.0	SCOVERY	
1.6 Confined SOLUTER TY Confined SOLUTION M Cooper et al. 1.4 EST DATE: 10.5/92 1.2 ESTIMATED TEST DATE: 10.5/92 1.4 ESTIMATED TEST DATE: 10.5/92 1.6 ESTIMATED TEST DATE: 10.5/92 0.6 ESTIMATED TEST DATE: 10.5/92 0.6 ESTIMATED TEST DATE: 10.5/92 0.6 ESTIMATED TEST DATE: 10.5/92 0.0 O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.0			DATA SET: P-70-R.AGT 03/14/93
1.2 ESTIMATED 1.2 0.05223 1.4 ESTIMATED 1.5 0.05223 1.6 0.0523 1.7 = 0.05323 1.8 = 1.6 -08 1.9 = 1.25 ft 1.0 = 0.344 ft 0.2 = 0.01 1.1			AQUIFER TYPE: Confined SOLUTION METHOD: Cooper et al. TEST DATE:
0.8 Ho = 1.25 f Ho = 1.25	1.2	Titunpununununu	STIMATED = 0.05323 = 1.6-08
Time (min)	0.8 0.6 1		ST DAT. = 1.25 f = 0.083 = 0.344
E			
	.01 0.1 Time (


WATER, LIGHT & POWER	RINGFIELD, ILLINOIS		DATA SET:	B 03/14/93	AQUIFER TYPE:	SOLUTION METHOD:	12	TEST DATE:	FSTIMATED DABAMETEDS.	= 0.06182	1.E-08	TEST DATA:	HO = 1.25 ft	rw = 0.344 ft			.0.7
INC. Client: CITY	Location: SP	P-7D DRAWDOWN						1					The state of the s				Time (min)
PATRICK ENGINEERING I	Project No.: 496B			2.	1.8	d		1.4	si Tinqi		H/	ς	8. D	0.0	0.4	0.8	5


.....

TY WATER, LIGHT & POWER SPRINGFIELD, ILLINOIS		DATA SET: P-90-R.A01 03/14/93	AQUIFER TYPE: Confined SOLUTION METHOD: Cooper et al. TEST GATE: 8/31/92	ESTIMATED PARAMETERS: T = 0.007533 ft ² /min S = 1.6923E-07 TEST DATA: H0 = 1.45 ft rc = 0.083 ft rw = 0.344 ft	
PATRICK ENGINEERING INC. Client: CITY WA	P-9D RECOVERY	2. E	1.8 = 1.6 = 1.4 = 1	0.6 0.6 0.6 0.6	0.2 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

PATRICK ENGINEERING INC.	Client: CITY WATER	R, LIGHT & POWER
Project No.: 496B	Location: SPRINGFIE	ELD, ILLINOIS
P-9D DF	DRAWDOWN	
5	#### 	DATA SET: P-9D-D.AQT 03/14/93
1.8		AQUIFER TYPE: Confined SOLUTION METHOD: Cooper et al. TEST DATE: 8/31/92
OH/		ESTIMATED PARAMETERS: T = 0.005745 ft ² /min S = 0.0005814
0 0 0 0		TEST DATA: H0 = 1.5 ft rc = 0.083 ft rw = 0.344 ft
	5	

P03S DRAWDOWN

Data Set: J:\...\P03S Drawdown.aqt

Date: 09/02/25 Time: 10:09:16

PROJECT INFORMATION

Company: Andrews Engineering

Client: <u>CWLP</u>
Project: <u>240338</u>
Location: <u>CWLP</u>
Test Well: <u>P03S</u>
Test Date: <u>8-29-25</u>

AQUIFER DATA

Saturated Thickness: <u>5.64</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (P03S)

Initial Displacement: 1.75 ft

Total Well Penetration Depth: 5.26 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 5.62 ft

Screen Length: 4.67 ft Well Radius: 0.08333 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.008191 cm/sec y0 = 1.709 ft

AQTESOLV for Windows P03S Drawdown

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\P03S\P03S Drawdown.

Title: P03S Drawdown

Date: 09/02/25 Time: 10:09:28

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-29-25 Test Well: P03S

AQUIFER DATA

Saturated Thickness: 5.64 ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: P03S

X Location: 0. ft Y Location: 0. ft

Initial Displacement: 1.75 ft

Static Water Column Height: 5.62 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft Screen Length: 4.67 ft

Total Well Penetration Depth: 5.26 ft

Corrected Casing Radius (Bouwer-Rice Method): 0.06471 ft

0.279

Gravel Pack Porosity: 0.

No. of Observations: 62

9.96

Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)
0.	1.73	44.46	0.089
0.48	1.744	47.64	0.086
1.08	1.312	51.	0.078
1.68	1.164	54.6	0.081
2.28	1.103	58.2	0.079
2.94	0.879	62.4	0.072
3.66	0.703	66.6	0.072
4.44	0.599	70.8	0.08
5.22	0.513	75.6	0.073
6.06	0.443	81.	0.068
6.96	0.387	85.8	0.071
7.92	0.346	91.8	0.068
8.88	0.314	97.8	0.065

Observation Data

0.061

103.8

Time (sec) 11.1	Displacement (ft) 0.25	Time (sec) 110.4	Displacement (ft) 0.051	
12.3	0.232	117.6	0.057	
13.56	0.216	125.4	0.059	
14.88	0.2	133.2	0.06	
16.32	0.181	141.6	0.057	
17.82	0.178	150.7	0.07	
19.38	0.171	160.3	0.065	
21.06	0.148	169.9	0.072	
22.86	0.142	180.7	0.066	
24.72	0.14	192.	0.067	
26.76	0.133	204.	0.059	
28.86	0.12	216.6	0.06	
31.08	0.117	229.8	0.055	
33.48	0.109	244.2	0.05	
36.	0.103	259.2	0.048	
38.64	0.097	274.8	0.049	
41.46	0.09	291.6	0.041	

SOLUTION

Slug Test

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

In(Re/rw): 2.962

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.008191	cm/sec
y0	1.709	ft

 $T = K*b = 1.408 \text{ cm}^2/\text{sec}$

AUTOMATIC ESTIMATION RESULTS

Estimated Parameters

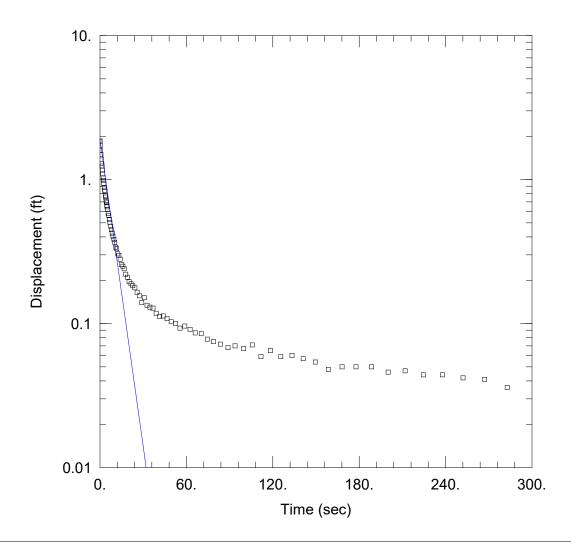
Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	
K	0.008191	0.0004615	+/- 0.0009229	17.75	cm/sec
v0	1.709	0.0534	+/- 0.1068	32.01	ft

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

 $T = K*b = 1.408 \text{ cm}^2/\text{sec}$

Parameter Correlations

K 1.00 0.65


y0 0.65 1.00

Residual Statistics

for weighted residuals

Sum of Squares... 0.4385 ft² Variance 0.007309 ft² Std. Deviation 0.08549 ft Mean 0.05952 ft

No. of Residuals . . 62 No. of Estimates . . 2

P03S RECOVERY

Data Set: J:\...\P03S Recovery.aqt

Date: 09/02/25 Time: 10:08:57

PROJECT INFORMATION

Company: Andrews Engineering

Client: <u>CWLP</u>
Project: <u>240338</u>
Location: <u>CWLP</u>
Test Well: <u>P03S</u>
Test Date: 8-15-25

AQUIFER DATA

Saturated Thickness: 6.91 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (P03S)

Initial Displacement: 1.849 ft

Total Well Penetration Depth: 6.47 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 6.91 ft

Screen Length: 4.67 ft Well Radius: 0.08333 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.006843 cm/sec y0 = 1.896 ft

AQTESOLV for Windows P03S Recovery

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\P03S\P03S Recovery.a

Title: P03S Recovery

Date: 09/02/25 Time: 10:09:04

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-15-25 Test Well: P03S

AQUIFER DATA

Saturated Thickness: 6.91 ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: P03S

X Location: 1130755.048 ft Y Location: 2457062.359 ft

Initial Displacement: 1.849 ft

Static Water Column Height: 6.91 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft Screen Length: 4.67 ft

Total Well Penetration Depth: 6.47 ft

Corrected Casing Radius (Bouwer-Rice Method): 0.06471 ft

0.843

Gravel Pack Porosity: 0.

No. of Observations: 88

3.247

Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)
0.	1.849	22.88	0.183
0.247	1.726	24.32	0.177
0.497	1.588	25.82	0.165
0.747	1.489	27.38	0.156
0.997	1.386	29.06	0.14
1.247	1.296	30.86	0.151
1.497	1.24	32.72	0.134
1.747	1.165	34.76	0.13
1.997	1.095	36.86	0.128
2.247	1.028	39.08	0.118
2.497	0.987	41.48	0.112
2.747	0.94	44.	0.113
2.997	0.884	46.64	0.108

Observation Data

0.103

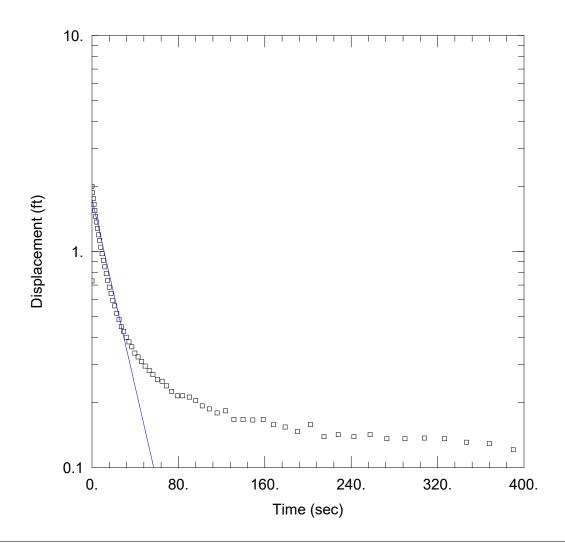
49.46

AQTESOLV for Windows P03S Recovery

Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)	
3.497	0.829	52.46	0.1	
3.747	0.778	55.64	0.093	
3.997	0.755	59.	0.096	
4.247	0.717	62.6	0.091	
4.497	0.697	66.2	0.086	
4.747	0.664	70.4	0.085	
4.997	0.646	74.6	0.078	
5.357	0.619	78.8	0.075	
5.717	0.582	83.6	0.072	
6.137	0.561	89.	0.068	
6.557	0.529	93.8	0.07	
6.977	0.505	99.8	0.067	
7.457	0.474	105.8	0.071	
7.997	0.448	111.8	0.059	
8.477	0.425	118.4	0.065	
9.077	0.405	125.6	0.059	
9.677	0.385	133.4	0.06	
10.28	0.365	141.2	0.057	
10.94	0.339	149.6	0.054	
11.66	0.331	158.6	0.048	
12.44	0.305	168.2	0.05	
13.22	0.298	177.8	0.05	
14.06	0.28	188.6	0.05	
14.96	0.257	200.1	0.046	
15.92	0.25	212.	0.047	
16.88	0.24	224.6	0.044	
17.96	0.22	237.8	0.044	
19.1	0.21	252.2	0.042	
20.3	0.195	267.2	0.041	
21.56	0.189	282.8	0.036	

SOLUTION

Slug Test Aquifer Model: Unconfined Solution Method: Bouwer-Rice


In(Re/rw): 3.064

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.006843	cm/sec
ν0	1.896	ft

 $T = K*b = 1.441 \text{ cm}^2/\text{sec}$

P03D DRAWDOWN

Data Set: J:\...\P03D Drawdown.aqt

Date: 09/02/25 Time: 10:06:41

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP
Project: 240338
Location: CWLP
Test Well: P03D
Test Date: 8-20-25

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (P03D)

Initial Displacement: 0.731 ft

Total Well Penetration Depth: 29.02 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 23.25 ft

Screen Length: 4.7 ft Well Radius: 0.08333 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.00405 cm/sec y0 = 1.754 ft

AQTESOLV for Windows P03D Drawdown

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\P03D\P03D Drawdown.

Title: P03D Drawdown

Date: 09/02/25 Time: 10:06:51

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-20-25 Test Well: P03D

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: P03D

X Location: 1130755.616 ft Y Location: 2457066.455 ft

Initial Displacement: 0.731 ft

Static Water Column Height: 23.25 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft

Screen Length: 4.7 ft

Total Well Penetration Depth: 29.02 ft

Corrected Casing Radius (Bouwer-Rice Method): 0.07715 ft

Gravel Pack Porosity: 0.

No. of Observations: 64

Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)
0.	2.001	56.52	0.269
0.6	1.873	60.72	0.256
1.26	1.76	64.92	0.251
1.98	1.656	69.12	0.239
2.76	1.548	73.92	0.225
3.54	1.455	79.32	0.215
4.38	1.369	84.12	0.215
5.28	1.281	90.24	0.212
6.24	1.196	96.12	0.204
7.2	1.126	102.1	0.193
8.28	1.048	108.7	0.187
9.42	0.978	115.9	0.179
10.62	0.911	123.7	0.183
11.88	0.85	131.5	0.167

Observation Data

Time (sec) 13.2 14.64 16.14 17.7 19.38 21.18 23.04 25.08 27.18 29.4 31.8 34.32 36.96 39.78 42.78 45.96	Displacement (ft) 0.789 0.736 0.684 0.64 0.595 0.56 0.517 0.484 0.449 0.427 0.401 0.382 0.362 0.339 0.325 0.31	Time (sec) 139.9 148.9 158.5 168.1 178.9 190.3 202.3 214.9 228.1 242.5 257.5 273.1 289.9 307.9 326.5	Displacement (ft) 0.167 0.166 0.167 0.158 0.154 0.147 0.158 0.139 0.142 0.139 0.142 0.136 0.136 0.137 0.136 0.131	

SOLUTION

Slug Test

Aquifer Model: Confined

Solution Method: Bouwer-Rice

In(Re/rw): 4.189

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.00405	cm/sec
y0	1.754	ft

 $T = K*b = 0.6172 \text{ cm}^2/\text{sec}$

AUTOMATIC ESTIMATION RESULTS

Estimated Parameters

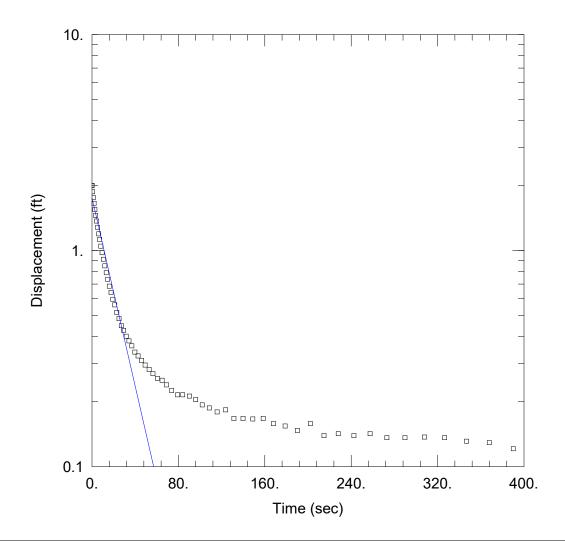
Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	
K	0.00405	0.0002678	+/- 0.0005353	15.12	cm/sec
v0	1.754	0.05678	+/- 0.1135	30.89	ft

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

 $T = K*b = 0.6172 \text{ cm}^2/\text{sec}$

Parameter Correlations

K y0


K 1.00 0.66 y0 0.66 1.00

Residual Statistics

for weighted residuals

Sum of Squares... 1.172 ft² Variance 0.0189 ft² Std. Deviation 0.1375 ft Mean 0.08258 ft

No. of Residuals . . 64 No. of Estimates . . 2

P03D RECOVERY

Data Set: J:\...\P03D Recovery.aqt

Date: 09/02/25 Time: 10:06:23

PROJECT INFORMATION

Company: Andrews Engineering

Client: <u>CWLP</u>
Project: <u>240338</u>
Location: <u>CWLP</u>
Test Well: <u>P03D</u>
Test Date: <u>8-15-25</u>

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (P03D)

Initial Displacement: 2.001 ft

1. 2.001

Static Water Column Height: 23.25 ft

Total Well Penetration Depth: 29.02 ft Casing Radius: 0.08333 ft

Screen Length: 4.7 ft Well Radius: 0.08333 ft

Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.004059 cm/sec y0 = 1.755 ft

AQTESOLV for Windows P03D Recovery

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\P03D\P03D Recovery.a

Title: P03D Recovery

Date: 09/02/25 Time: 10:06:33

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-15-25 Test Well: P03D

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: P03D

X Location: 1130755.347 ft Y Location: 2457066.36 ft

Initial Displacement: 2.001 ft

Static Water Column Height: 23.25 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft

Screen Length: 4.7 ft

Total Well Penetration Depth: 29.02 ft

Corrected Casing Radius (Bouwer-Rice Method): 0.07715 ft

Gravel Pack Porosity: 0.

No. of Observations: 64

Observation Data

	0.000.000.00		
Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)
0.	2.001	56.52	0.269
0.6	1.873	60.72	0.256
1.26	1.76	64.92	0.251
1.98	1.656	69.12	0.239
2.76	1.548	73.92	0.225
3.54	1.455	79.32	0.215
4.38	1.369	84.12	0.215
5.28	1.281	90.24	0.212
6.24	1.196	96.12	0.204
7.2	1.126	102.1	0.193
8.28	1.048	108.7	0.187
9.42	0.978	115.9	0.179
10.62	0.911	123.7	0.183
11.88	0.85	131.5	0.167

Time (sec) 13.2 14.64 16.14 17.7 19.38 21.18 23.04 25.08 27.18 29.4 31.8 34.32 36.96 39.78 42.78 45.96	Displacement (ft) 0.789 0.736 0.684 0.64 0.595 0.56 0.517 0.484 0.449 0.427 0.401 0.382 0.362 0.339 0.325 0.31	Time (sec) 139.9 148.9 158.5 168.1 178.9 190.3 202.3 214.9 228.1 242.5 257.5 273.1 289.9 307.9 326.5	Displacement (ft) 0.167 0.166 0.167 0.158 0.154 0.147 0.158 0.139 0.142 0.139 0.142 0.136 0.136 0.137 0.136 0.131	

SOLUTION

Slug Test

Aquifer Model: Confined

Solution Method: Bouwer-Rice

In(Re/rw): 4.189

VISUAL ESTIMATION RESULTS

Estimated Parameters

 Parameter
 Estimate

 K
 0.004059 cm/sec

 y0
 1.755 ft

 $T = K*b = 0.6186 \text{ cm}^2/\text{sec}$

AUTOMATIC ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	
K	0.004059	0.0002683	+/- 0.0005364	15.13	cm/sec
v0	1.755	0.05682	+/- 0.1136	30.89	ft

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

 $T = K*b = 0.6186 \text{ cm}^2/\text{sec}$

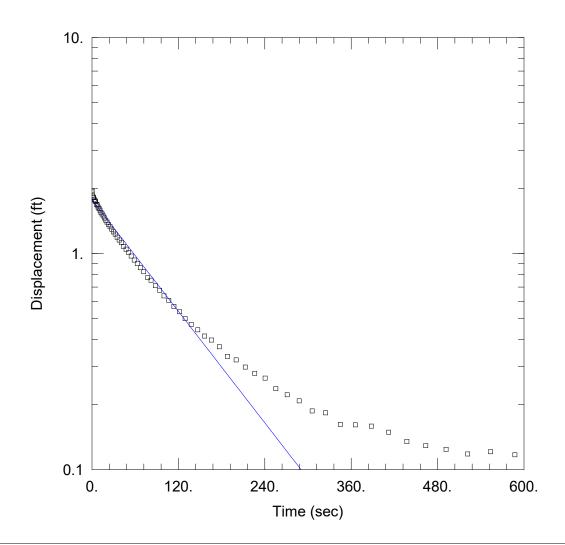
Parameter Correlations

K y0

K 1.00 0.66 y0 0.66 1.00

Residual Statistics

for weighted residuals


 Sum of Squares...
 1.172 ft²

 Variance.......
 0.0189 ft²

 Std. Deviation.....
 0.1375 ft

 Mean.......
 0.08283 ft

No. of Residuals . . 64 No. of Estimates . . 2

R103S DRAWDOWN

Data Set: J:\...\R103S Drawdown.aqt

Date: 09/02/25 Time: 10:09:55

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP
Project: 240338
Location: CWLP
Test Well: R103S
Test Date: 8-20-25

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (R103S)

Initial Displacement: 1.946 ft

i. 1.540 it

Total Well Penetration Depth: 14.88 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 9.81 ft

Screen Length: 4.67 ft Well Radius: 0.08333 ft

SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: Bouwer-Rice

K = 0.0005147 cm/sec y0 = 1.774 ft

AQTESOLV for Windows R103S Drawdown

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\R103S\R103S Drawdov

Title: R103S Drawdown

Date: 09/02/25 Time: 10:10:04

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-20-25 Test Well: R103S

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: R103S

X Location: 1130717.534 ft Y Location: 2457299.138 ft

Initial Displacement: 1.946 ft

Static Water Column Height: 9.81 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft Screen Length: 4.67 ft

Total Well Penetration Depth: 14.88 ft

No. of Observations: 68

Observation Data

	0.000.104.0		
Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)
0.	1.946	77.34	0.773
0.78	1.866	82.14	0.753
1.56	1.827	88.14	0.71
2.4	1.816	94.14	0.676
3.3	1.782	100.1	0.637
4.26	1.755	106.7	0.607
5.22	1.738	113.9	0.569
6.3	1.691	121.7	0.538
7.44	1.677	129.5	0.5
8.64	1.64	137.9	0.47
9.9	1.615	146.9	0.444
11.22	1.588	156.5	0.415
12.66	1.55	166.1	0.398
14.16	1.524	176.9	0.37
15.72	1.494	188.3	0.334
17.4	1.462	200.3	0.322

Time (sec) 19.2 21.06 23.1 25.2 27.42 29.82 32.34 34.98 37.8 40.8 43.98 47.34 50.94	Displacement (ft) 1.426 1.398 1.363 1.33 1.296 1.259 1.23 1.192 1.156 1.123 1.079 1.048 1.013	Time (sec) 212.9 226.1 240.5 255.5 271.1 287.9 305.9 324.5 344.9 365.9 388.1 412.1 437.3	Displacement (ft) 0.298 0.279 0.265 0.237 0.222 0.208 0.187 0.183 0.162 0.161 0.159 0.149 0.135	
47.34	1.048	412.1	0.149	
54.54 58.74 62.94	0.974 0.933 0.899	463.7 491.9 521.9	0.129 0.124 0.118	
62.94 67.14 71.94	0.899 0.86 0.824	553.7 587.3	0.116 0.121 0.117	

SOLUTION

Slug Test

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

In(Re/rw): 3.802

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.0005147	cm/sec
y0	1.774	ft

 $T = K*b = 0.07844 \text{ cm}^2/\text{sec}$

AUTOMATIC ESTIMATION RESULTS

Estimated Parameters

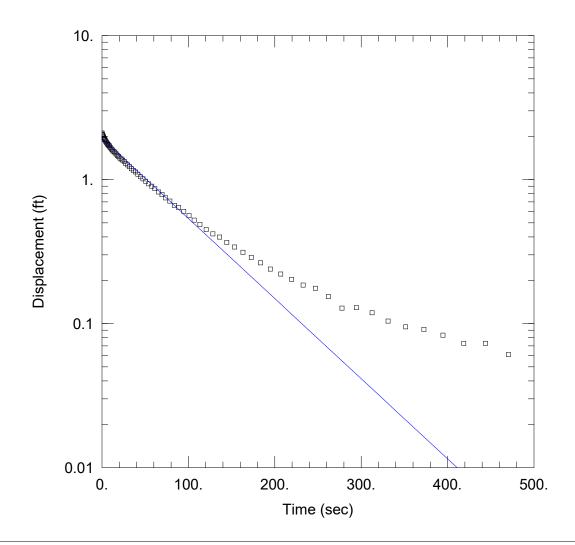
Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	
K	0.0005147	1.44E-5	+/- 2.875E-5	35.75	cm/sec
v0	1.774	0.01927	+/- 0.03848	92.05	ft

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

 $T = K*b = 0.07844 \text{ cm}^2/\text{sec}$

Parameter Correlations

K y0


K 1.00 0.62 y0 0.62 1.00

Residual Statistics

for weighted residuals

Sum of Squares... 0.3552 ft² Variance 0.005381 ft² Std. Deviation 0.07336 ft Mean 0.02506 ft

No. of Residuals . . 68 No. of Estimates . . 2

R103S RECOVERY

Data Set: J:\...\R103S Recovery.aqt

Date: 09/02/25 Time: 10:10:17

PROJECT INFORMATION

Company: Andrews Engineering

Client: <u>CWLP</u>
Project: <u>240338</u>
Location: <u>CWLP</u>
Test Well: <u>R103S</u>
Test Date: 8-20-25

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (R103S)

Initial Displacement: 2.101 ft

Total Well Penetration Depth: 14.88 ft

Total Well Terletiation Depth. _

Casing Radius: 0.08333 ft

Static Water Column Height: 9.81 ft

Screen Length: 4.67 ft Well Radius: 0.08333 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0006657 cm/sec y0 = 1.934 ft

AQTESOLV for Windows R103S Recovery

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\R103S\R103S Recover

Title: R103S Recovery

Date: 09/02/25 Time: 10:10:28

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-20-25 Test Well: R103S

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: R103S

X Location: 1130717.534 ft Y Location: 2457299.138 ft

Initial Displacement: 2.101 ft

Static Water Column Height: 9.81 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft Screen Length: 4.67 ft

Total Well Penetration Depth: 14.88 ft

No. of Observations: 77

Observation Data

Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)
0.	2.101	50.64	0.974
0.359	2.061	54.	0.934
0.72	2.049	57.6	0.899
1.14	2.016	61.2	0.865
1.559	1.985	65.4	0.821
1.979	1.971	69.6	0.787
2.46	1.934	73.8	0.746
2.999	1.908	78.6	0.708
3.479	1.892	84.	0.662
4.079	1.861	88.8	0.64
4.68	1.835	94.8	0.602
5.279	1.815	100.8	0.561
5.94	1.784	106.8	0.523
6.66	1.76	113.4	0.488
7.44	1.739	120.6	0.45
8.22	1.721	128.4	0.42

Time (sec) 9.06 9.96 10.92 11.88 12.96 14.1 15.3 16.56 17.88 19.32 20.82 22.38 24.06 25.86 27.72	Displacement (ft) 1.687 1.66 1.633 1.607 1.579 1.559 1.531 1.503 1.471 1.447 1.447 1.409 1.388 1.363 1.336 1.289	Time (sec) 136.2 144.6 153.6 163.2 172.8 183.6 195. 207. 219.6 232.8 247.2 262.2 277.8 294.6 312.6	Displacement (ft) 0.399 0.366 0.34 0.313 0.288 0.264 0.239 0.221 0.203 0.185 0.176 0.154 0.128 0.129 0.119	
29.76	1.263	331.2	0.104	
31.86	1.23	351.6	0.095	
34.08	1.19	372.6	0.091	
36.48	1.158	394.8	0.083	
39.	1.129	418.8	0.073	
41.64	1.089	444.	0.073	
44.46	1.046	470.4	0.061	
47.46	1.012			

SOLUTION

Slug Test

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

In(Re/rw): 3.802

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.0006657	cm/sec
v0	1.934	ft

 $T = K*b = 0.1015 \text{ cm}^2/\text{sec}$

AUTOMATIC ESTIMATION RESULTS

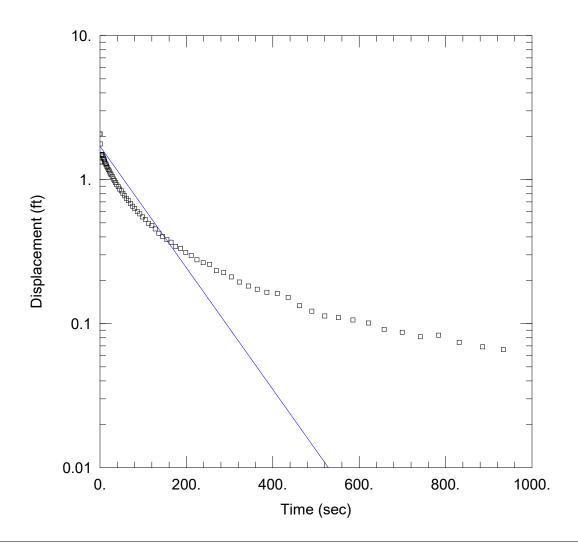
Estimated Parameters

Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	
K	0.0006657	1.427E-5	+/- 2.843E-5	46.64	cm/sec
v0	1.934	0.01484	+/- 0.02955	130.3	ft

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

$T = K*b = 0.1015 \text{ cm}^2/\text{sec}$

Parameter Correlations


 $\begin{array}{ccc} & \underline{K} & \underline{y0} \\ K & 1.00 & 0.60 \\ y0 & 0.60 & 1.00 \end{array}$

Residual Statistics

for weighted residuals

Sum of Squares... 0.3124 ft² Variance 0.004165 ft² Std. Deviation 0.06454 ft Mean 0.01767 ft

No. of Residuals . . 77 No. of Estimates . . 2

G104S

Data Set: J:\...\G104S Drawdown.aqt

Date: 09/02/25 Time: 10:05:35

PROJECT INFORMATION

Company: Andrews Engineering

Client: <u>CWLP</u>
Project: <u>240338</u>
Location: <u>CWLP</u>
Test Well: <u>G104S</u>
Test Date: 8-20-25

AQUIFER DATA

Saturated Thickness: 10.7 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (G104S)

Initial Displacement: 2.072 ft

Total Well Penetration Depth: 16.27 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 10.7 ft

Screen Length: 4.7 ft Well Radius: 0.08333 ft Gravel Pack Porosity: 0.

SOLUTION

Aguifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0005092 cm/sec y0 = 1.707 ft

AQTESOLV for Windows G104S

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\G104S\G104S Drawdov

Title: G104S Date: 09/02/25 Time: 10:05:43

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-20-25 Test Well: G104S

AQUIFER DATA

Saturated Thickness: 10.7 ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: G104S

X Location: 1130745.859 ft Y Location: 2456717.96 ft

Initial Displacement: 2.072 ft

Static Water Column Height: 10.7 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft

Screen Length: 4.7 ft

Total Well Penetration Depth: 16.27 ft

Corrected Casing Radius (Bouwer-Rice Method): 0.06471 ft

Gravel Pack Porosity: 0.

No. of Observations: 74

Observation Data

Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)
0.	2.072	105.2	0.53
0.84	1.768	112.4	0.497
1.74	1.325	120.2	0.479
2.7	1.326	128.	0.454
3.66	1.486	136.4	0.424
4.74	1.498	145.4	0.403
5.88	1.465	155.	0.383
7.08	1.435	164.6	0.367
8.34	1.401	175.4	0.344
9.676	1.378	186.8	0.332
11.1	1.338	198.8	0.312
12.6	1.3	211.4	0.297
14.16	1.276	224.6	0.277
15.84	1.237	239.	0.265

AQTESOLV for Windows G104S

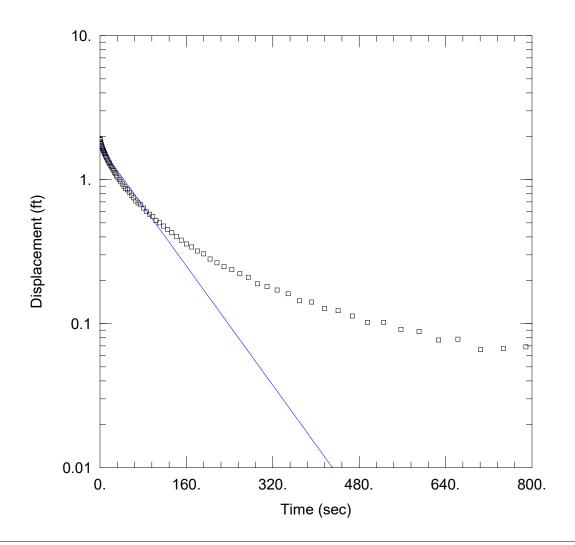
Time (sec) 17.64 19.5 21.54 23.64 25.86 28.26 30.78 33.42 36.24 39.24 42.42 45.78 49.38 52.98 57.18	Displacement (ft) 1.207 1.173 1.146 1.109 1.08 1.05 1.01 0.982 0.954 0.921 0.892 0.859 0.859 0.834 0.803 0.772	Time (sec) 254. 269.6 286.4 304.4 323. 343.4 364.4 386.6 410.6 435.8 462.2 490.4 520.4 552.2 585.8	Displacement (ft) 0.258 0.233 0.226 0.211 0.194 0.182 0.173 0.165 0.162 0.152 0.133 0.122 0.113 0.11	
30.78	1.01	364.4	0.173	
33.42	0.982	386.6	0.165	
36.24	0.954	410.6	0.162	
39.24	0.921	435.8	0.152	
42.42	0.892	462.2	0.133	
45.78	0.859	490.4	0.122	
49.38	0.834	520.4	0.113	
52.98	0.803	552.2	0.11	
57.18	0.772	585.8	0.106	
61.38	0.739	621.8	0.101	
65.58	0.714	657.8	0.091	
70.38	0.683	699.8	0.087	
75.78	0.653	741.8	0.081	
80.58	0.63	783.8	0.083	
86.58	0.601	831.8	0.074	
92.58	0.577	885.8	0.069	
98.58	0.55	933.8	0.066	

SOLUTION

Slug Test

Aquifer Model: Confined

Solution Method: Bouwer-Rice


In(Re/rw): 3.856

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.0005092	cm/sec
v0	1.707	ft

 $T = K*b = 0.1661 \text{ cm}^2/\text{sec}$

G104S RECOVERY

Data Set: J:\...\G104S Recovery.aqt

Date: 09/02/25 Time: 10:05:51

PROJECT INFORMATION

Company: Andrews Engineering

Client: <u>CWLP</u>
Project: <u>240338</u>
Location: <u>CWLP</u>
Test Well: <u>G104S</u>
Test Date: 8-20-25

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (G104S)

Initial Displacement: 1.906 ft

Total Well Penetration Depth: 16.27 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 10.7 ft

Screen Length: 4.7 ft Well Radius: 0.08333 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0006243 cm/sec y0 = 1.692 ft

AQTESOLV for Windows G104S Recovery

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\G104S\G104S Recover

Title: G104S Recovery

Date: 09/02/25 Time: 10:05:59

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-20-25 Test Well: G104S

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: G104S

X Location: 1130745.859 ft Y Location: 2456717.96 ft

Initial Displacement: 1.906 ft

Static Water Column Height: 10.7 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft Seroon Longth: 4.7 ft

Screen Length: 4.7 ft

Total Well Penetration Depth: 16.27 ft

Corrected Casing Radius (Bouwer-Rice Method): 0.06471 ft

Gravel Pack Porosity: 0.

No. of Observations: 79

Observation Data				
Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)	
0.	1.906	81.	0.634	
0.48	1.89	85.8	0.602	
1.08	1.833	91.8	0.574	
1.68	1.81	97.8	0.553	
2.28	1.766	103.8	0.519	
2.94	1.734	110.4	0.5	
3.66	1.693	117.6	0.475	
4.44	1.667	125.4	0.451	
5.22	1.635	133.2	0.427	
6.06	1.6	141.6	0.404	
6.96	1.578	150.6	0.38	
7.92	1.542	160.2	0.357	
8.88	1.516	169.8	0.34	
9.96	1.484	180.6	0.319	

Observation Data

AQTESOLV for Windows G104S Recovery

Time (sec) 11.1	Displacement (ft)	Time (sec) 192.	Displacement (ft) 0.305	
12.3	1.417	204.	0.281	
13.56	1.388	216.6	0.264	
14.88	1.354	229.8	0.248	
16.32	1.319	244.2	0.237	
17.82	1.292	259.2	0.222	
19.38	1.253	274.8	0.21	
21.06	1.225	291.6	0.189	
22.86	1.196	309.6	0.181	
24.72	1.158	328.2	0.171	
26.76	1.123	348.6	0.161	
28.86	1.098	369.6	0.144	
31.08	1.058	391.8	0.141	
33.48	1.028	415.8	0.127	
36.	0.998	441.	0.123	
38.64	0.967	467.4	0.113	
41.46	0.932	495.6	0.102	
44.46	0.899	525.6	0.102	
47.64	0.865	557.4	0.091	
51.	0.847	591.	0.088	
54.6	0.815	627.	0.077	
58.2	0.779	663.	0.078	
62.4	0.747	705.	0.066	
66.6	0.71	747.	0.067	
70.8	0.687	789.	0.069	
75.6	0.668			

SOLUTION

Slug Test

Aquifer Model: Confined Solution Method: Bouwer-Rice

In(Re/rw): 3.856

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.0006243	cm/sec
ν0	1.692	ft

 $T = K*b = 0.09514 \text{ cm}^2/\text{sec}$

AUTOMATIC ESTIMATION RESULTS

Estimated Parameters

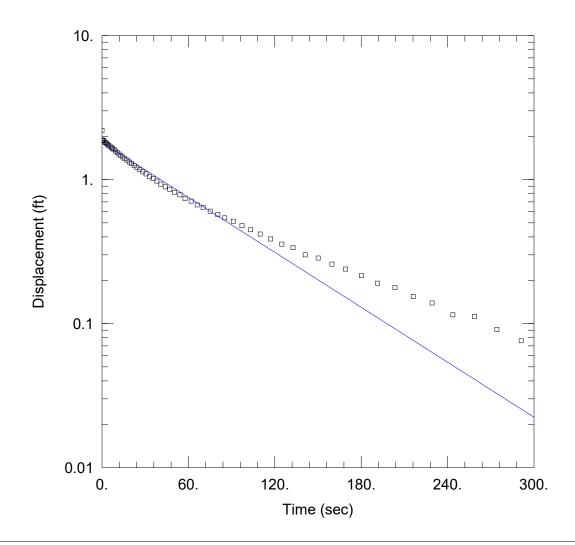
Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	
K	0.0006243	2.442E-5	+/- 4.862E-5	25.56	cm/sec
v0	1.692	0.02502	+/- 0.04981	67.65	ft

C.I. is approximate 95% confidence interval for parameter

t-ratio = estimate/std. error No estimation window

 $T = K*b = 0.09514 \text{ cm}^2/\text{sec}$

Parameter Correlations


 $\begin{array}{ccc} & \underline{K} & \underline{y0} \\ K & 1.00 & 0.62 \\ y0 & 0.62 & 1.00 \end{array}$

Residual Statistics

for weighted residuals

Sum of Squares... 0.7656 ft²
Variance 0.009943 ft²
Std. Deviation 0.09971 ft
Mean 0.03548 ft

No. of Residuals . . 79 No. of Estimates . . 2

RW3S DRAWDOWN

Data Set: J:\...\RW3S Drawdown.aqt

Date: 09/02/25 Time: 10:11:43

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP
Project: 240338
Location: CWLP
Test Well: RW3S
Test Date: 8-19-25

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (RW3S)

Initial Displacement: 2.197 ft

Total Well Penetration Depth: 6.29 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 6.65 ft

Screen Length: 4.7 ft Well Radius: 0.08333 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0006517 cm/sec y0 = 1.811 ft

AQTESOLV for Windows RW3S Drawdown

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\RW3S\RW3S Drawdow

Title: RW3S Drawdown

Date: 09/02/25 Time: 10:11:57

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-19-25 Test Well: RW3S

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: RW3S

X Location: 1130653.064 ft Y Location: 2456148.635 ft

Initial Displacement: 2.197 ft

Static Water Column Height: 6.65 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft

Screen Length: 4.7 ft

Total Well Penetration Depth: 6.29 ft

Corrected Casing Radius (Bouwer-Rice Method): 0.06471 ft

Gravel Pack Porosity: 0.

No. of Observations: 61

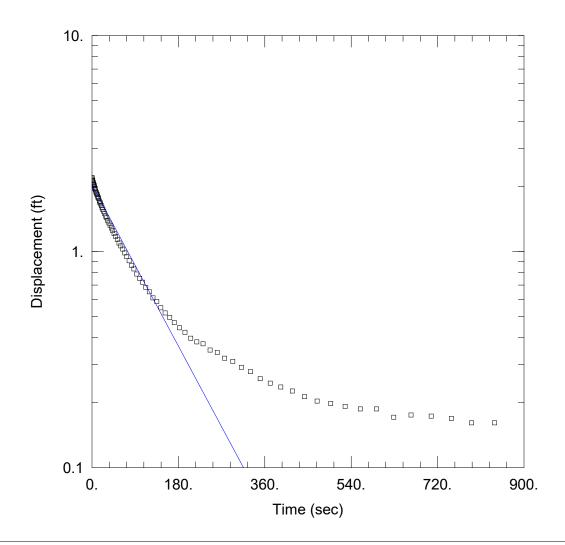
Observation Data					
Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)		
0.	1.884	47.16	0.856		
0.6	1.87	50.52	0.817		
1.2	1.865	54.12	0.784		
1.8	1.823	57.72	0.74		
2.46	1.809	61.92	0.709		
3.18	1.784	66.12	0.666		
3.96	1.756	70.32	0.641		
4.74	1.728	75.12	0.604		
5.58	1.706	80.52	0.572		
6.48	1.673	85.32	0.542		
7.44	1.64	91.32	0.514		
8.4	1.611	97.32	0.478		
9.48	1.577	103.3	0.448		
10.62	1.537	109.9	0.419		

RW3S Drawdown **AQTESOLV** for Windows

Time (sec) 11.82 13.1 14.4 15.84 17.34 18.9 20.58 22.38 24.24 26.28 28.38 30.6 33. 35.52 38.16 40.98	Displacement (ft) 1.503 1.467 1.437 1.396 1.364 1.324 1.289 1.247 1.21 1.17 1.131 1.095 1.045 1.015 0.975 0.93	Time (sec) 117.1 124.9 132.7 141.1 150.1 159.7 169.3 180.1 191.5 203.5 216.1 229.3 243.7 258.7 274.3 291.1	Displacement (ft) 0.387 0.356 0.337 0.3 0.285 0.259 0.239 0.215 0.191 0.178 0.154 0.139 0.115 0.112 0.091 0.076	

SOLUTION

Slug Test Aquifer Model: Unconfined Solution Method: Bouwer-Rice


In(Re/rw): 3.277

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.0006517	cm/sec
v0	1.811	ft

 $T = K*b = 0.09932 \text{ cm}^2/\text{sec}$

RW3S RECOVERY

Data Set: J:\...\RW3S Recovery.aqt

Date: 09/02/25 Time: 10:12:10

PROJECT INFORMATION

Company: Andrews Engineering

Client: <u>CWLP</u>
Project: <u>240338</u>
Location: <u>CWLP</u>
Test Well: <u>RW3S</u>
Test Date: <u>8-19-25</u>

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (RW3S)

Initial Displacement: 2.197 ft

Total Well Penetration Depth: 6.66 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 6.65 ft

Screen Length: 4.7 ft Well Radius: 0.08333 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0004298 cm/sec y0 = 2.038 ft

AQTESOLV for Windows RW3S Recovery

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\RW3S\RW3S Recovery

Title: RW3S Recovery

Date: 09/02/25 Time: 10:12:18

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-19-25 Test Well: RW3S

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: RW3S

X Location: 1130652.179 ft Y Location: 2456148.818 ft

Initial Displacement: 2.197 ft

Static Water Column Height: 6.65 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft Seroon Longth: 4.7 ft

Screen Length: 4.7 ft

Total Well Penetration Depth: 6.66 ft

Corrected Casing Radius (Bouwer-Rice Method): 0.06471 ft

Gravel Pack Porosity: 0.

No. of Observations: 84

Observation Data					
Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)		
0.	2.197	72.66	0.947		
0.42	2.164	77.46	0.907		
0.84	2.162	82.86	0.861		
1.32	2.135	87.66	0.831		
1.86	2.122	93.66	0.787		
2.34	2.096	99.66	0.751		
2.94	2.074	105.7	0.721		
3.54	2.051	112.3	0.683		
4.14	2.034	119.5	0.651		
4.8	2.022	127.3	0.61		
5.52	1.991	135.1	0.588		
6.3	1.954	143.5	0.549		
7.08	1.932	152.5	0.52		
7.92	1.904	162.1	0.496		

AQTESOLV for Windows RW3S Recovery

Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)	
8.82	1.882	171.7	0.469	
9.78	1.85	182.5	0.444	
10.74	1.838	193.9	0.423	
11.82	1.804	205.9	0.397	
12.96	1.78	218.5	0.382	
14.16	1.757	231.7	0.374	
15.42	1.713	246.1	0.35	
16.74	1.686	261.1	0.341	
18.18	1.661	276.7	0.321	
19.68	1.63	293.5	0.31	
21.24	1.595	311.5	0.291	
22.92	1.566	330.1	0.278	
24.72	1.532	350.5	0.258	
26.58	1.497	371.5	0.246	
28.62	1.46	393.7	0.236	
30.72	1.431	417.7	0.226	
32.94	1.389	442.9	0.213	
35.34	1.357	469.3	0.203	
37.86	1.325	497.5	0.198	
40.5	1.287	527.5	0.192	
43.32	1.252	559.3	0.187	
46.32	1.211	592.9	0.187	
49.5	1.175	628.9	0.171	
52.86	1.138	664.9	0.175	
56.46	1.096	706.9	0.173	
60.06	1.062	748.9	0.169	
64.26	1.027	790.9	0.161	
68.46	0.986	838.9	0.161	

SOLUTION

Slug Test

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

In(Re/rw): 3.313

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.0004298	cm/sec
v0	2.038	ft

 $T = K*b = 0.0655 \text{ cm}^2/\text{sec}$

AUTOMATIC ESTIMATION RESULTS

Estimated Parameters

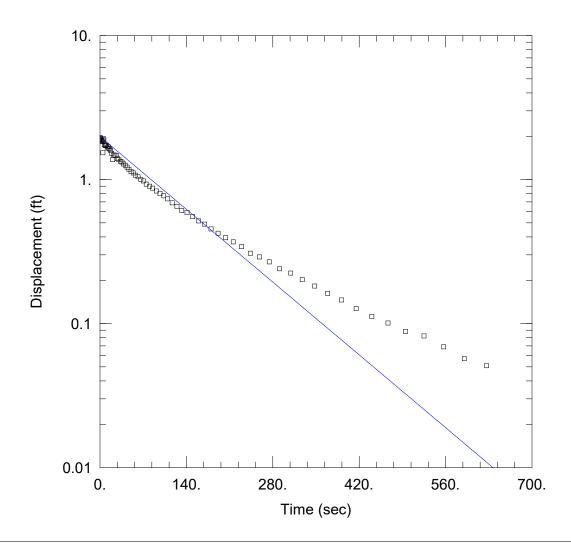
Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	
K	0.0004298	1.54E-5	+/- 3.062E-5	27.92	cm/sec
y0	2.038	0.0256	+/- 0.05092	79.59	ft

AQTESOLV for Windows RW3S Recovery

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

 $T = K*b = 0.0655 \text{ cm}^2/\text{sec}$

Parameter Correlations


 $\begin{array}{ccc} & \underline{K} & \underline{y0} \\ K & 1.\overline{00} & 0.60 \\ y0 & 0.60 & 1.00 \end{array}$

Residual Statistics

for weighted residuals

Sum of Squares... 1.082 ft² Variance 0.0132 ft² Std. Deviation 0.1149 ft Mean 0.04488 ft No. of Residuals ... 84

No. of Estimates . . 2

AP-6S DRAWDOWN

Data Set: J:\...\AP-6S Drawdown.aqt

Date: 09/02/25 Time: 09:54:02

PROJECT INFORMATION

Company: Andrews Engineering

Client: <u>CWLP</u>
Project: <u>240338</u>
Location: <u>CWLP</u>
Test Well: <u>AP-6S</u>
Test Date: <u>8-19-25</u>

AQUIFER DATA

Saturated Thickness: 6.36 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (AP-6S)

Initial Displacement: 1.94 ft

Total Well Penetration Depth: 5.96 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 5.933 ft

Screen Length: 4.7 ft Well Radius: 0.08333 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0004859 cm/sec y0 = 1.99 ft

AQTESOLV for Windows AP-6S Drawdown

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\AP-6S\AP-6S Drawdow

Title: AP-6S Drawdown

Date: 09/02/25 Time: 09:54:11

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-19-25 Test Well: AP-6S

AQUIFER DATA

Saturated Thickness: 6.36 ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: AP-6S

X Location: 1130735.938 ft Y Location: 2456104.086 ft

Initial Displacement: 1.94 ft

Static Water Column Height: 5.933 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft

Screen Length: 4.7 ft

Total Well Penetration Depth: 5.96 ft

Corrected Casing Radius (Bouwer-Rice Method): 0.07715 ft

Gravel Pack Porosity: 0.

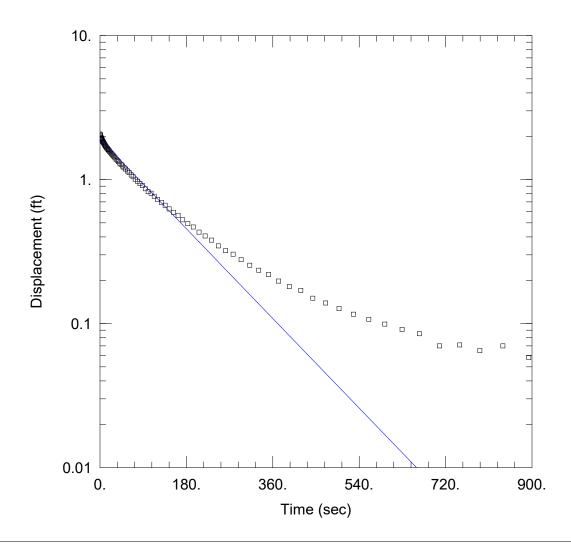
No. of Observations: 74

Observation Data				
Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)	
0.	1.956	70.32	0.979	
0.6	1.932	75.12	0.93	
1.2	1.909	80.52	0.899	
1.8	1.897	85.32	0.871	
2.46	1.873	91.32	0.832	
3.18	1.856	97.32	0.799	
3.96	1.833	103.3	0.771	
4.74	1.534	109.9	0.734	
5.58	1.853	117.1	0.689	
6.48	1.897	124.9	0.651	
7.44	1.745	132.7	0.609	
8.4	1.725	141.1	0.59	
9.48	1.723	150.1	0.553	
10.62	1.733	159.7	0.516	

Time (sec) 11.82 13.08	Displacement (ft) 1.659 1.693	Time (sec) 169.3 180.1	Displacement (ft) 0.49 0.454	
14.4	1.648	191.5	0.424	
15.84	1.63	203.5	0.395	
17.34	1.597	216.1	0.369	
18.9	1.522	229.3	0.342	
20.58	1.374	243.7	0.308	
22.38	1.482	258.7	0.29	
24.24	1.477	274.3	0.268	
26.28	1.473	291.1	0.24	
28.38	1.396	309.1	0.224	
30.6	1.375	327.7	0.202	
33.	1.341	348.1	0.182	
35.52	1.322	369.1	0.162	
38.16	1.283	391.3	0.146	
40.98	1.257	415.3	0.127	
43.98	1.218	440.5	0.112	
47.16	1.178	466.9	0.101	
50.52	1.136	495.1	0.088	
54.12	1.112	525.1	0.082	
57.72	1.072	556.9	0.069	
61.92	1.047	590.5	0.057	
66.12	1.004	626.5	0.051	

SOLUTION

Slug Test Aquifer Model: Unconfined Solution Method: Bouwer-Rice


In(Re/rw): 3.029

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.0004859	cm/sec
ν0	1.99	ft

 $T = K*b = 0.0942 \text{ cm}^2/\text{sec}$

AP-6S RECOVERY

Data Set: J:\...\AP-6S Recovery.aqt

Date: 09/02/25 Time: 09:54:19

PROJECT INFORMATION

Company: Andrews Engineering

Client: <u>CWLP</u>
Project: <u>240338</u>
Location: <u>CWLP</u>
Test Well: <u>AP-6S</u>
Test Date: <u>8-19-25</u>

AQUIFER DATA

Saturated Thickness: 6.36 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (AP-6S)

Initial Displacement: 1.94 ft

Total Well Penetration Depth: 6.66 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 5.93 ft

Screen Length: 4.7 ft Well Radius: 0.08333 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.000509 cm/sec y0 = 1.907 ft

AQTESOLV for Windows AP-6S Recovery

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\AP-6S\AP-6S Recovery

Title: AP-6S Recovery

Date: 09/02/25 Time: 09:54:40

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-19-25 Test Well: AP-6S

AQUIFER DATA

Saturated Thickness: 6.36 ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: AP-6S

X Location: 1130735.938 ft Y Location: 2456104.086 ft

Initial Displacement: 1.94 ft

Static Water Column Height: 5.93 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft

Screen Length: 4.7 ft

Total Well Penetration Depth: 6.66 ft

Corrected Casing Radius (Bouwer-Rice Method): 0.07715 ft

Gravel Pack Porosity: 0.

No. of Observations: 87

Observation Data					
Displacement (ft)	Time (sec)	Displacement (ft)			
2.072	73.44	1.005			
2.054	78.24	0.973			
2.028	83.64	0.936			
2.03	88.44	0.908			
1.976	94.44	0.864			
1.929	100.4	0.824			
1.956	106.4	0.803			
1.934	113.	0.766			
1.912	120.2	0.728			
1.895	128.	0.694			
1.882	135.8	0.664			
1.855	144.2	0.625			
1.831	153.2	0.592			
1.817	162.8	0.564			
	Displacement (ft) 2.072 2.054 2.028 2.03 1.976 1.929 1.956 1.934 1.912 1.895 1.882 1.855 1.831	2.072 73.44 2.054 78.24 2.028 83.64 2.03 88.44 1.976 94.44 1.929 100.4 1.956 106.4 1.934 113. 1.912 120.2 1.895 128. 1.882 135.8 1.855 144.2 1.831 153.2			

AQTESOLV for Windows AP-6S Recovery

31.5 1.416 470. 0.139 33.72 1.386 498.2 0.127 36.12 1.361 528.2 0.116 38.64 1.332 560. 0.107 41.28 1.3 593.6 0.099 44.1 1.274 629.6 0.091 47.1 1.241 665.6 0.085 50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058 69.24 1.046	Time (sec) 7.86 8.7 9.6 10.56 11.52 12.6 13.74 14.94 16.2 17.52 18.96 20.46 22.02 23.7 25.5 27.36 29.41	Displacement (ft) 1.797 1.778 1.754 1.735 1.711 1.697 1.668 1.651 1.63 1.61 1.59 1.564 1.537 1.52 1.494 1.469 1.441	Time (sec) 172.4 183.2 194.6 206.6 219.2 232.4 246.8 261.8 277.4 294.2 312.2 330.8 351.2 372.2 394.4 418.4 443.6	Displacement (ft) 0.525 0.494 0.468 0.431 0.406 0.38 0.346 0.321 0.303 0.278 0.254 0.235 0.219 0.197 0.181 0.17 0.15	
18.96 1.59 312.2 0.254 20.46 1.564 330.8 0.235 22.02 1.537 351.2 0.219 23.7 1.52 372.2 0.197 25.5 1.494 394.4 0.181 27.36 1.469 418.4 0.17 29.41 1.441 443.6 0.15 31.5 1.416 470. 0.139 33.72 1.386 498.2 0.127 36.12 1.361 528.2 0.116 38.64 1.332 560. 0.107 41.28 1.3 593.6 0.099 44.1 1.274 629.6 0.091 47.1 1.241 665.6 0.085 50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
20.46 1.564 330.8 0.235 22.02 1.537 351.2 0.219 23.7 1.52 372.2 0.197 25.5 1.494 394.4 0.181 27.36 1.469 418.4 0.17 29.41 1.441 443.6 0.15 31.5 1.416 470. 0.139 33.72 1.386 498.2 0.127 36.12 1.361 528.2 0.116 38.64 1.332 560. 0.107 41.28 1.3 593.6 0.099 44.1 1.274 629.6 0.091 47.1 1.241 665.6 0.085 50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
22.02 1.537 351.2 0.219 23.7 1.52 372.2 0.197 25.5 1.494 394.4 0.181 27.36 1.469 418.4 0.17 29.41 1.441 443.6 0.15 31.5 1.416 470. 0.139 33.72 1.386 498.2 0.127 36.12 1.361 528.2 0.116 38.64 1.332 560. 0.107 41.28 1.3 593.6 0.099 44.1 1.274 629.6 0.091 47.1 1.241 665.6 0.085 50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
23.7 1.52 372.2 0.197 25.5 1.494 394.4 0.181 27.36 1.469 418.4 0.17 29.41 1.441 443.6 0.15 31.5 1.416 470. 0.139 33.72 1.386 498.2 0.127 36.12 1.361 528.2 0.116 38.64 1.332 560. 0.107 41.28 1.3 593.6 0.099 44.1 1.274 629.6 0.091 47.1 1.241 665.6 0.085 50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
25.5 1.494 394.4 0.181 27.36 1.469 418.4 0.17 29.41 1.441 443.6 0.15 31.5 1.416 470. 0.139 33.72 1.386 498.2 0.127 36.12 1.361 528.2 0.116 38.64 1.332 560. 0.107 41.28 1.3 593.6 0.099 44.1 1.274 629.6 0.091 47.1 1.241 665.6 0.085 50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
27.36 1.469 418.4 0.17 29.41 1.441 443.6 0.15 31.5 1.416 470. 0.139 33.72 1.386 498.2 0.127 36.12 1.361 528.2 0.116 38.64 1.332 560. 0.107 41.28 1.3 593.6 0.099 44.1 1.274 629.6 0.091 47.1 1.241 665.6 0.085 50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058	-				
29.41 1.441 443.6 0.15 31.5 1.416 470. 0.139 33.72 1.386 498.2 0.127 36.12 1.361 528.2 0.116 38.64 1.332 560. 0.107 41.28 1.3 593.6 0.099 44.1 1.274 629.6 0.091 47.1 1.241 665.6 0.085 50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
31.5 1.416 470. 0.139 33.72 1.386 498.2 0.127 36.12 1.361 528.2 0.116 38.64 1.332 560. 0.107 41.28 1.3 593.6 0.099 44.1 1.274 629.6 0.091 47.1 1.241 665.6 0.085 50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
33.72 1.386 498.2 0.127 36.12 1.361 528.2 0.116 38.64 1.332 560. 0.107 41.28 1.3 593.6 0.099 44.1 1.274 629.6 0.091 47.1 1.241 665.6 0.085 50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
36.12 1.361 528.2 0.116 38.64 1.332 560. 0.107 41.28 1.3 593.6 0.099 44.1 1.274 629.6 0.091 47.1 1.241 665.6 0.085 50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
38.64 1.332 560. 0.107 41.28 1.3 593.6 0.099 44.1 1.274 629.6 0.091 47.1 1.241 665.6 0.085 50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
41.28 1.3 593.6 0.099 44.1 1.274 629.6 0.091 47.1 1.241 665.6 0.085 50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
44.1 1.274 629.6 0.091 47.1 1.241 665.6 0.085 50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
47.1 1.241 665.6 0.085 50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
50.28 1.206 707.6 0.07 53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
53.64 1.181 749.6 0.071 57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
57.24 1.146 791.6 0.065 60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
60.84 1.118 839.6 0.07 65.04 1.076 893.6 0.058					
65.04 1.076 893.6 0.058					
69.24 1.046			893.6	0.058	
	69.24	1.046			

SOLUTION

Slug Test

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

In(Re/rw): 3.313

VISUAL ESTIMATION RESULTS

Estimated Parameters

 Parameter
 Estimate

 K
 0.000509
 cm/sec

 y0
 1.907
 ft

 $T = K*b = 0.09868 \text{ cm}^2/\text{sec}$

AUTOMATIC ESTIMATION RESULTS

Estimated Parameters

Parameter Estimate Std. Error Approx. C.I. t-Ratio

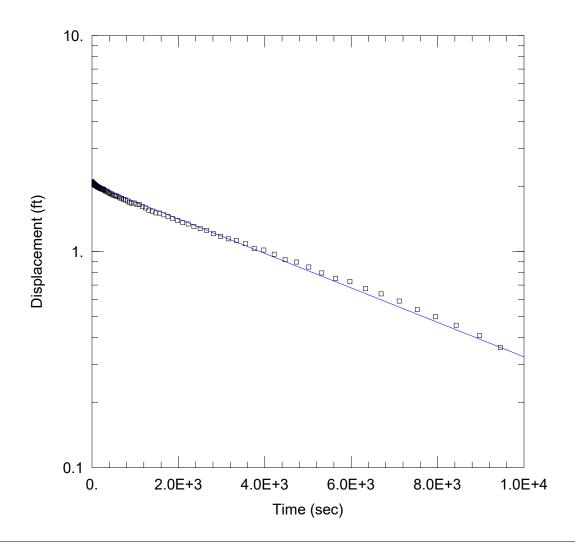
AQTESOLV for Windows AP-6S Recovery

K	0.000509	1.17E-5	+/- 2.325E-5	43.52	cm/sec
y0	1.907	0.01465	+/- 0.02912	130.2	ft

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

 $T = K*b = 0.09868 \text{ cm}^2/\text{sec}$

Parameter Correlations


<u>K</u> <u>y0</u> K 1.00 0.58 y0 0.58 1.00

Residual Statistics

for weighted residuals

Sum of Squares... 0.4247 ft²
Variance 0.004996 ft²
Std. Deviation 0.07068 ft
Mean 0.02013 ft

No. of Residuals . . 87 No. of Estimates . . 2

AP-15D DRAWDOWN

Data Set: J:\...\AP-15D Drawdown.aqt

Date: 09/02/25 Time: 10:03:03

PROJECT INFORMATION

Company: Andrews Engineering

Client: <u>CWLP</u>
Project: <u>240338</u>
Location: <u>CWLP</u>
Test Well: <u>AP-15D</u>
Test Date: <u>8-19-25</u>

AQUIFER DATA

Saturated Thickness: 2. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (AP-15D)

Initial Displacement: 2.107 ft Static Water Column Height: 23.3 ft

Total Well Penetration Depth: 29.85 ft Screen Length: 2.4 ft Casing Radius: 0.08333 ft Well Radius: 0.08333 ft

Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 3.189E-5 cm/sec y0 = 2.044 ft

AQTESOLV for Windows AP-15D Drawdown

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\AP-15D\AP-15D Drawd

Title: AP-15D Drawdown

Date: 09/02/25 Time: 10:02:54

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-19-25 Test Well: AP-15D

AQUIFER DATA

Saturated Thickness: 2. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: AP-15D

X Location: 1127956.648 ft Y Location: 2455904.286 ft

Initial Displacement: 2.107 ft

Static Water Column Height: 23.3 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft

Screen Length: 2.4 ft

Total Well Penetration Depth: 29.85 ft

Corrected Casing Radius (Bouwer-Rice Method): 0.07715 ft

Gravel Pack Porosity: 0.

No. of Observations: 103

Observation Data					
Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)		
0.	2.107	507.8	1.825		
1.559	2.096	539.6	1.813		
3.24	2.099	573.2	1.809		
5.039	2.098	609.2	1.794		
6.899	2.093	645.2	1.771		
8.939	2.093	687.2	1.762		
11.04	2.083	729.2	1.745		
13.26	2.088	771.2	1.733		
15.66	2.083	819.2	1.717		
18.18	2.074	873.2	1.687		
20.82	2.072	921.2	1.675		
23.64	2.068	981.2	1.678		
26.64	2.069	1041.2	1.651		
29.82	2.07	1101.2	1.649		

Time (sec) 33.18	Displacement (ft)	Time (sec) 1167.2	Displacement (ft)	
36.78	2.059	1239.2	1.592	
40.38	2.061	1317.2	1.553	
44.58	2.057	1395.2	1.539	
48.78	2.046	1479.2	1.509	
52.98	2.052	1569.2	1.508	
57.78	2.044	1665.2	1.479	
63.18	2.039	1761.2	1.453	
67.98	2.04	1869.2	1.422	
73.98	2.029	1983.2	1.394	
79.98	2.027	2103.2	1.361	
85.98	2.02	2229.2	1.341	
92.58	2.019	2361.2	1.309	
99.78	2.02	2505.2	1.279	
107.6	2.009	2655.2	1.253	
115.4	2.004	2811.2	1.21	
123.8	1.997	2979.2	1.176	
132.8	1.993	3159.2	1.145	
142.4	1.988	3345.2	1.126	
152.	1.984	3549.2	1.089	
162.8	1.977	3759.2	1.032	
174.2	1.972	3981.2	1.017	
186.2	1.968	4221.2	0.972	
198.8	1.957	4473.2	0.918	
212.	1.957	4737.2	0.895	
226.4	1.945	5019.2	0.848	
241.4	1.949	5319.2	0.797	
257.	1.943	5637.2	0.75	
273.8	1.938	5973.2	0.726	
291.8	1.92	6333.2	0.674	
310.4	1.906	6693.2	0.637	
330.8	1.907	7113.2	0.59	
351.8	1.901	7533.2	0.539	
374.	1.879	7953.2	0.499	
398.	1.868	8433.2	0.456	
423.2	1.854	8973.2	0.408	
449.6	1.848	9453.2	0.36	
477.8	1.832			

SOLUTION

Slug Test Aquifer Model: Confined Solution Method: Bouwer-Rice

In(Re/rw): 3.936

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	3.189E-5	cm/sec
γ0	2.044	ft

$T = K*b = 0.001944 \text{ cm}^2/\text{sec}$

AUTOMATIC ESTIMATION RESULTS

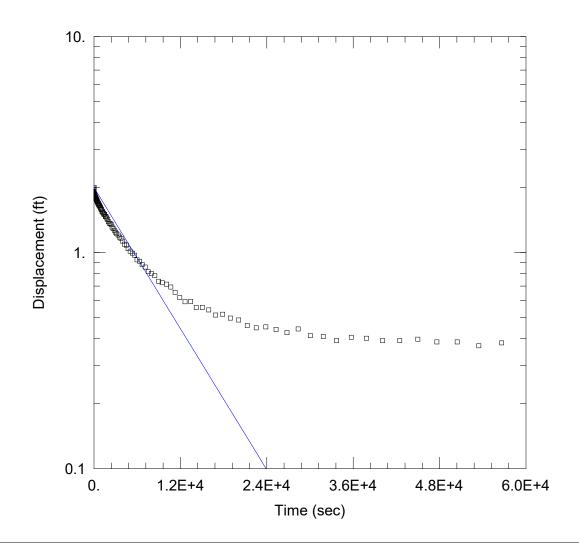
Estimated Parameters

Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	
K	3.189E-5	2.9E-7	+/- 5.754E-7	109.9	cm/sec
y0	2.044	0.004242	+/- 0.008417	481.9	ft

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error
No estimation window

 $T = K*b = 0.001944 \text{ cm}^2/\text{sec}$

Parameter Correlations


<u>K</u> <u>y0</u> K 1.00 0.50 y0 0.50 1.00

Residual Statistics

for weighted residuals

Sum of Squares... 0.09811 ft² Variance 0.0009714 ft² Std. Deviation 0.03117 ft Mean 0.001176 ft No. of Residuals .. 103

No. of Estimates . . 2

AP-15D RECOVERY

Data Set: J:\...\AP-15D Recovery.aqt

Date: 09/02/25 Time: 10:03:13

PROJECT INFORMATION

Company: Andrews Engineering

Client: <u>CWLP</u>
Project: <u>240338</u>
Location: <u>CWLP</u>
Test Well: <u>AP-15D</u>
Test Date: 8-19-25

AQUIFER DATA

Saturated Thickness: 2. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (AP-15D)

Initial Displacement: 2.004 ft Static Water Column Height: 23.3 ft

Total Well Penetration Depth: 29.85 ft Screen Length: 2.4 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 2.175E-5 cm/sec y0 = 2. ft

AQTESOLV for Windows AP-15D Recovery

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\AP-15D\AP-15D Recov

Title: AP-15D Recovery

Date: 09/02/25 Time: 10:03:22

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-19-25 Test Well: AP-15D

AQUIFER DATA

Saturated Thickness: 2. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: AP-15D

X Location: 1127956.057 ft Y Location: 2455904.276 ft

Initial Displacement: 2.004 ft

Static Water Column Height: 23.3 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft

Screen Length: 2.4 ft

Total Well Penetration Depth: 29.85 ft

No. of Observations: 152

Observation Data

Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)
0.	2.004	746.5	1.662
0.6	1.965	788.5	1.646
1.2	1.953	836.5	1.632
1.8	1.914	890.5	1.621
2.46	1.923	938.5	1.606
3.18	1.92	998.5	1.59
3.96	1.924	1058.5	1.584
4.741	1.915	1118.5	1.551
5.581	1.91	1184.5	1.553
6.481	1.907	1256.5	1.531
7.44	1.903	1334.5	1.518
8.4	1.908	1412.5	1.502
9.481	1.901	1496.5	1.505
10.62	1.902	1586.5	1.468
11.82	1.911	1682.5	1.467
13.08	1.897	1778.5	1.443

AQTESOLV for Windows AP-15D Recovery

Time (sec) 14.4	Displacement (ft) 1.893	Time (sec) 1886.5	Displacement (ft) 1.423
15.84	1.894	2000.5	1.392
17.34	1.89	2120.5	1.367
18.9	1.892	2246.5	1.362
20.58	1.892	2378.5	1.35
22.38	1.89	2522.5	1.313
24.24	1.89	2672.5	1.291
26.28	1.883	2828.5	1.268
28.38	1.879	2996.5	1.243
30.6	1.88	3176.5	1.222
33.	1.88	3362.5	1.205
35.52	1.877	3566.5	1.178
38.16	1.872	3776.5	1.163
40.98	1.871	3998.5	1.13
43.98	1.868	4238.5	1.093
47.16	1.869	4490.5	1.083
50.52 54.12	1.865	4754.5 5036.5	1.043 1.015
57.72	1.86 1.868	5336.5	0.994
61.92	1.86	5654.5	0.972
66.12	1.86	5990.5	0.925
70.32	1.857	6350.5	0.912
75.12	1.848	6710.5	0.881
80.52	1.851	7130.5	0.857
85.32	1.85	7550.5	0.815
91.32	1.847	7970.5	8.0
97.32	1.841	8450.5	0.782
103.3	1.843	8990.5	0.736
109.9	1.844	9470.5	0.725
117.1	1.835	1.007E+4	0.714
124.9	1.838	1.067E+4	0.692
132.7	1.837	1.127E+4	0.654
141.1	1.829	1.193E+4	0.619
150.1	1.826	1.265E+4	0.592
159.7 169.3	1.827 1.818	1.343E+4 1.421E+4	0.594 0.557
180.1	1.809	1.505E+4	0.558
191.5	1.806	1.595E+4	0.543
203.5	1.8	1.691E+4	0.514
216.1	1.802	1.787E+4	0.518
229.3	1.8	1.895E+4	0.497
243.7	1.797	2.009E+4	0.487
258.7	1.791	2.129E+4	0.46
274.3	1.783	2.255E+4	0.448
291.1	1.777	2.387E+4	0.453
309.1	1.775	2.531E+4	0.441
327.7	1.771	2.681E+4	0.426
348.1	1.762	2.837E+4	0.443
369.1	1.752	3.005E+4	0.412
391.3	1.752	3.185E+4	0.409
415.3 440.5	1.749 1.734	3.371E+4 3.575E+4	0.392 0.405
440.5 466.9	1.734 1.723	3.785E+4	0.405 0.401
₹00.5	1.725	J.7 UJL 14	0.401

Time (sec) 495.1 525.1 556.9 590.5 626.5 662.5	Displacement (ft) 1.72 1.696 1.698 1.692 1.687 1.668	Time (sec) 4.007E+4 4.247E+4 4.499E+4 4.763E+4 5.045E+4 5.345E+4	Displacement (ft) 0.391 0.392 0.397 0.386 0.386 0.37
662.5	1.668	5.345E+4	0.37
704.5	1.659	5.663E+4	0.382

SOLUTION

Slug Test

Aquifer Model: Confined Solution Method: Bouwer-Rice

In(Re/rw): 3.827

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	2.175E-5	cm/sec
y0	2.	ft

 $T = K*b = 0.001326 \text{ cm}^2/\text{sec}$

AUTOMATIC ESTIMATION RESULTS

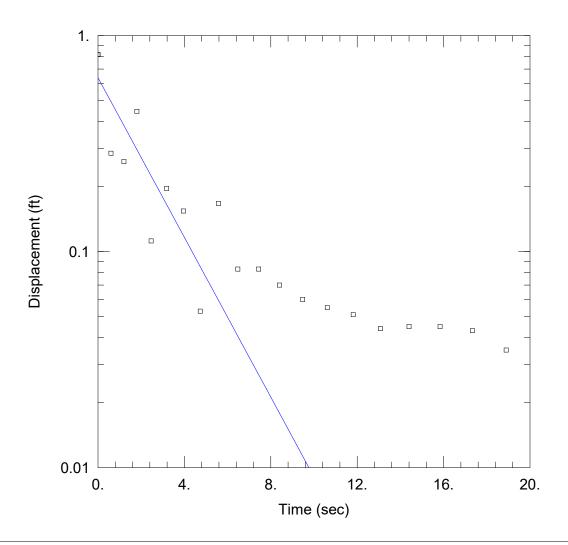
Estimated Parameters

Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	
K	1.576E-5	6.205E-7	+/- 1.226E-6	25.39	cm/sec
y0	1.824	0.01479	+/- 0.02922	123.3	ft

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

 $T = K*b = 0.0009605 \text{ cm}^2/\text{sec}$

Parameter Correlations


<u>K</u> <u>y0</u> K 1.00 0.41 y0 0.41 1.00

Residual Statistics

for weighted residuals

Sum of Squares... 2.758 ft² Variance 0.01838 ft² Std. Deviation 0.1356 ft Mean 0.03165 ft AQTESOLV for Windows AP-15D Recovery

No. of Residuals . . 152 No. of Estimates . . 2

AP-15S DRAWDOWN

Data Set: J:\...\AP-15S Drawdown.aqt

Date: 09/02/25 Time: 10:00:37

PROJECT INFORMATION

Company: Andrews Engineering

Client: <u>CWLP</u>
Project: <u>240338</u>
Location: <u>CWLP</u>
Test Well: <u>AP-15S</u>
Test Date: <u>8-20-25</u>

AQUIFER DATA

Saturated Thickness: 11.6 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (AP-15S)

Initial Displacement: 0.815 ft

Total Well Penetration Depth: 22.2 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 16.6 ft

Screen Length: 4.73 ft Well Radius: 0.08333 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.03296 cm/sec y0 = 0.6383 ft

AQTESOLV for Windows AP-15S Drawdown

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\AP-15S\AP-15S Drawd

Title: AP-15S Drawdown

Date: 09/02/25 Time: 10:00:46

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-20-25 Test Well: AP-15S

AQUIFER DATA

Saturated Thickness: 11.6 ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: AP-15S

X Location: 1127960.672 ft Y Location: 2455903.692 ft

Initial Displacement: 0.815 ft

Static Water Column Height: 16.6 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft Screen Length: 4.73 ft

Total Well Penetration Depth: 22.2 ft

No. of Observations: 20

Observation Data

Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)
0.	0.815	7.44	0.083
0.6	0.285	8.4	0.07
1.2	0.261	9.48	0.06
1.8	0.446	10.62	0.055
2.46	0.112	11.82	0.051
3.18	0.196	13.08	0.044
3.96	0.154	14.4	0.045
4.74	0.053	15.84	0.045
5.58	0.167	17.34	0.043
6.48	0.083	18.9	0.035

SOLUTION

Slug Test

Aquifer Model: Confined Solution Method: Bouwer-Rice

In(Re/rw): 4.038

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter Estimate

K 0.03006 cm/sec y0 0.6383 ft

 $T = K*b = 10.63 \text{ cm}^2/\text{sec}$

AUTOMATIC ESTIMATION RESULTS

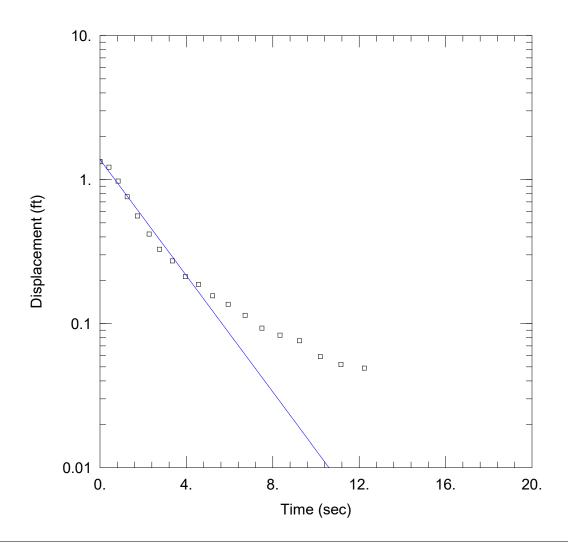
Estimated Parameters

Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	
K	0.03296	0.006996	+/- 0.0147	4.712	cm/sec
y0	0.6383	0.0773	+/- 0.1624	8.258	ft

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

 $T = K*b = 11.66 \text{ cm}^2/\text{sec}$

Parameter Correlations


K 1.00 0.61 y0 0.61 1.00

Residual Statistics

for weighted residuals

Sum of Squares... 0.1628 ft² Variance 0.009046 ft² Std. Deviation 0.09511 ft Mean 0.02632 ft

No. of Residuals . . 20 No. of Estimates . . 2

AP-15S RECOVERY

Data Set: J:\...\AP-15S Recovery.aqt

Date: 09/02/25 Time: 10:00:57

PROJECT INFORMATION

Company: Andrews Engineering

Client: <u>CWLP</u>
Project: <u>240338</u>
Location: <u>CWLP</u>
Test Well: <u>AP-15S</u>
Test Date: 8-20-25

AQUIFER DATA

Saturated Thickness: 11.6 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (AP-15S)

Initial Displacement: 1.331 ft

Total Well Penetration Depth: 22.2 ft

Total Well Telletration Depti

Casing Radius: 0.08333 ft

Static Water Column Height: 16.6 ft

Screen Length: 4.73 ft Well Radius: 0.08333 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.03597 cm/sec y0 = 1.378 ft

AQTESOLV for Windows AP-15S Recovery

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\AP-15S\AP-15S Recove

Title: AP-15S Recovery

Date: 09/02/25 Time: 10:01:11

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-20-25 Test Well: AP-15S

AQUIFER DATA

Saturated Thickness: 11.6 ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: AP-15S

X Location: 1127960.672 ft Y Location: 2455903.692 ft

Initial Displacement: 1.331 ft

Static Water Column Height: 16.6 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 1. ft Screen Length: 4.73 ft

Total Well Penetration Depth: 22.2 ft

No. of Observations: 19

Observation Data

Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)
0.	1.331	5.22	0.156
0.42	1.22	5.94	0.136
0.84	0.977	6.72	0.114
1.26	0.76	7.5	0.093
1.74	0.559	8.34	0.083
2.28	0.418	9.24	0.076
2.76	0.328	10.2	0.059
3.36	0.272	11.16	0.052
3.96	0.212	12.24	0.049
4.56	0.187		

SOLUTION

Slug Test

Aquifer Model: Confined Solution Method: Bouwer-Rice

In(Re/rw): 4.038

VISUAL ESTIMATION RESULTS

Estimated Parameters

<u>Parameter</u> <u>Estimate</u> K 0.03597 cn

0.03597 cm/sec 1.378 ft

y0 1.

 $T = K*b = 12.72 \text{ cm}^2/\text{sec}$

AUTOMATIC ESTIMATION RESULTS

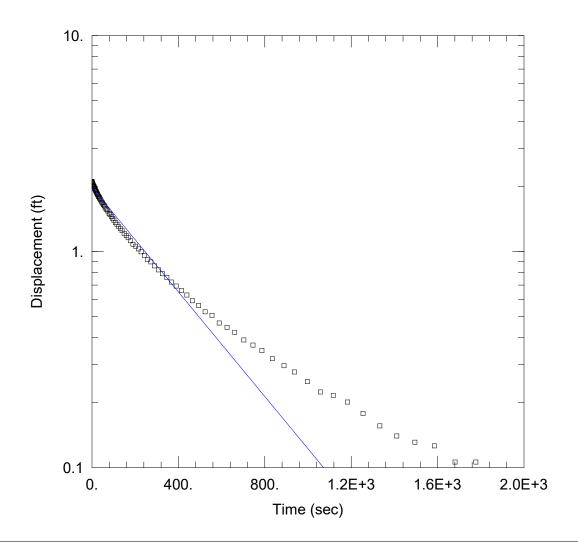
Estimated Parameters

Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	
K	0.03597	0.00174	+/- 0.003672	20.67	cm/sec
y0	1.378	0.03803	+/- 0.08025	36.23	ft

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

 $T = K*b = 12.72 \text{ cm}^2/\text{sec}$

Parameter Correlations


<u>K</u> <u>y0</u> K 1.00 0.63 y0 0.63 1.00

Residual Statistics

for weighted residuals

Sum of Squares... 0.04332 ft² Variance 0.002548 ft² Std. Deviation 0.05048 ft Mean 0.01778 ft

No. of Residuals . . 19 No. of Estimates . . 2

AP-16 DRAWDOWN

Data Set: J:\...\AP-16 Drawdown.aqt

Date: 09/02/25 Time: 10:04:05

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP
Project: 240338
Location: CWLP
Test Well: AP-16
Test Date: 8-20-25

AQUIFER DATA

Saturated Thickness: 7. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (AP-16)

Initial Displacement: 2.113 ft

Total Well Penetration Depth: 16.15 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 10.01 ft

Screen Length: 4.68 ft Well Radius: 0.08333 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0002079 cm/sec y0 = 1.981 ft

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\AP-16\AP-16 Drawdown

Title: AP-16 Drawdown

Date: 09/02/25 Time: 10:04:17

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-20-25 Test Well: AP-16

AQUIFER DATA

Saturated Thickness: 7. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: AP-16

X Location: 1131172.579 ft Y Location: 2455836.828 ft

Initial Displacement: 2.113 ft

Static Water Column Height: 10.01 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft Screen Length: 4.68 ft

Total Well Penetration Depth: 16.15 ft

Corrected Casing Radius (Bouwer-Rice Method): 0.07715 ft

Gravel Pack Porosity: 0.

No. of Observations: 90

	Observation	n Data	
Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)
0.	2.113	131.5	1.277
0.599	2.102	139.9	1.25
1.26	2.09	148.9	1.214
1.98	2.08	158.5	1.185
2.76	2.065	168.1	1.159
3.54	2.055	178.9	1.122
4.38	2.052	190.3	1.08
5.28	2.038	202.3	1.058
6.239	2.022	214.9	1.028
7.199	2.013	228.1	0.997
8.279	2.007	242.5	0.96
9.419	1.997	257.5	0.919
10.62	1.991	273.1	0.896
11.88	1.967	289.9	0.858

13.2 1.961 307.9 0.823 14.64 1.946 326.5 0.789 16.14 1.929 346.9 0.759 17.7 1.915 367.9 0.722 19.38 1.898 390.1 0.692 21.18 1.884 414.1 0.66 23.04 1.862 439.3 0.629 25.08 1.845 465.7 0.592 27.18 1.835 493.9 0.562 29.4 1.81 523.9 0.526 31.8 1.797 555.7 0.507 34.32 1.78 589.3 0.467 36.96 1.757 625.3 0.446 39.78 1.739 661.3 0.423 42.78 1.715 703.3 0.39 45.96 1.692 745.3 0.369 49.32 1.649 835.3 0.319	Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)	
14.64 1.946 326.5 0.789 16.14 1.929 346.9 0.759 17.7 1.915 367.9 0.722 19.38 1.898 390.1 0.692 21.18 1.884 414.1 0.66 23.04 1.862 439.3 0.629 25.08 1.845 465.7 0.592 27.18 1.835 493.9 0.562 29.4 1.81 523.9 0.526 31.8 1.797 555.7 0.507 34.32 1.78 589.3 0.467 36.96 1.757 625.3 0.446 39.78 1.739 661.3 0.423 42.78 1.715 703.3 0.39 45.96 1.692 745.3 0.369 49.32 1.674 787.3 0.348					
16.14 1.929 346.9 0.759 17.7 1.915 367.9 0.722 19.38 1.898 390.1 0.692 21.18 1.884 414.1 0.66 23.04 1.862 439.3 0.629 25.08 1.845 465.7 0.592 27.18 1.835 493.9 0.562 29.4 1.81 523.9 0.526 31.8 1.797 555.7 0.507 34.32 1.78 589.3 0.467 36.96 1.757 625.3 0.446 39.78 1.739 661.3 0.423 42.78 1.715 703.3 0.39 45.96 1.692 745.3 0.369 49.32 1.674 787.3 0.348					
17.7 1.915 367.9 0.722 19.38 1.898 390.1 0.692 21.18 1.884 414.1 0.66 23.04 1.862 439.3 0.629 25.08 1.845 465.7 0.592 27.18 1.835 493.9 0.562 29.4 1.81 523.9 0.526 31.8 1.797 555.7 0.507 34.32 1.78 589.3 0.467 36.96 1.757 625.3 0.446 39.78 1.739 661.3 0.423 42.78 1.715 703.3 0.39 45.96 1.692 745.3 0.369 49.32 1.674 787.3 0.348					
19.38 1.898 390.1 0.692 21.18 1.884 414.1 0.66 23.04 1.862 439.3 0.629 25.08 1.845 465.7 0.592 27.18 1.835 493.9 0.562 29.4 1.81 523.9 0.526 31.8 1.797 555.7 0.507 34.32 1.78 589.3 0.467 36.96 1.757 625.3 0.446 39.78 1.739 661.3 0.423 42.78 1.715 703.3 0.39 45.96 1.692 745.3 0.369 49.32 1.674 787.3 0.348					
21.18 1.884 414.1 0.66 23.04 1.862 439.3 0.629 25.08 1.845 465.7 0.592 27.18 1.835 493.9 0.562 29.4 1.81 523.9 0.526 31.8 1.797 555.7 0.507 34.32 1.78 589.3 0.467 36.96 1.757 625.3 0.446 39.78 1.739 661.3 0.423 42.78 1.715 703.3 0.39 45.96 1.692 745.3 0.369 49.32 1.674 787.3 0.348	19.38				
23.04 1.862 439.3 0.629 25.08 1.845 465.7 0.592 27.18 1.835 493.9 0.562 29.4 1.81 523.9 0.526 31.8 1.797 555.7 0.507 34.32 1.78 589.3 0.467 36.96 1.757 625.3 0.446 39.78 1.739 661.3 0.423 42.78 1.715 703.3 0.39 45.96 1.692 745.3 0.369 49.32 1.674 787.3 0.348					
25.08 1.845 465.7 0.592 27.18 1.835 493.9 0.562 29.4 1.81 523.9 0.526 31.8 1.797 555.7 0.507 34.32 1.78 589.3 0.467 36.96 1.757 625.3 0.446 39.78 1.739 661.3 0.423 42.78 1.715 703.3 0.39 45.96 1.692 745.3 0.369 49.32 1.674 787.3 0.348					
29.4 1.81 523.9 0.526 31.8 1.797 555.7 0.507 34.32 1.78 589.3 0.467 36.96 1.757 625.3 0.446 39.78 1.739 661.3 0.423 42.78 1.715 703.3 0.39 45.96 1.692 745.3 0.369 49.32 1.674 787.3 0.348	25.08				
31.8 1.797 555.7 0.507 34.32 1.78 589.3 0.467 36.96 1.757 625.3 0.446 39.78 1.739 661.3 0.423 42.78 1.715 703.3 0.39 45.96 1.692 745.3 0.369 49.32 1.674 787.3 0.348	27.18	1.835	493.9	0.562	
34.32 1.78 589.3 0.467 36.96 1.757 625.3 0.446 39.78 1.739 661.3 0.423 42.78 1.715 703.3 0.39 45.96 1.692 745.3 0.369 49.32 1.674 787.3 0.348	29.4	1.81	523.9	0.526	
36.96 1.757 625.3 0.446 39.78 1.739 661.3 0.423 42.78 1.715 703.3 0.39 45.96 1.692 745.3 0.369 49.32 1.674 787.3 0.348	31.8	1.797	555.7	0.507	
39.78 1.739 661.3 0.423 42.78 1.715 703.3 0.39 45.96 1.692 745.3 0.369 49.32 1.674 787.3 0.348	34.32	1.78	589.3	0.467	
42.78 1.715 703.3 0.39 45.96 1.692 745.3 0.369 49.32 1.674 787.3 0.348	36.96	1.757	625.3	0.446	
45.96 1.692 745.3 0.369 49.32 1.674 787.3 0.348	39.78	1.739	661.3	0.423	
49.32 1.674 787.3 0.348	42.78	1.715	703.3	0.39	
	45.96	1.692	745.3	0.369	
52.92 1.649 835.3 0.319	49.32	1.674	787.3	0.348	
	52.92	1.649	835.3	0.319	
56.52 1.634 889.3 0.296	56.52	1.634	889.3	0.296	
60.72 1.612 937.3 0.277	60.72	1.612	937.3	0.277	
64.92 1.579 997.3 0.25	64.92	1.579	997.3	0.25	
69.12 1.561 1057.3 0.224	69.12	1.561	1057.3	0.224	
73.92 1.54 1117.3 0.216	73.92	1.54	1117.3	0.216	
79.32 1.501 1183.3 0.201	79.32	1.501	1183.3	0.201	
84.12 1.484 1255.3 0.178	84.12	1.484	1255.3	0.178	
90.12 1.452 1333.3 0.156	90.12	1.452	1333.3	0.156	
96.12 1.424 1411.3 0.14		1.424	1411.3	0.14	
102.1 1.397 1495.3 0.131					
108.7 1.362 1585.3 0.126					
115.9 1.338 1681.3 0.106					
123.7 1.304 1777.3 0.106	123.7	1.304	1777.3	0.106	

SOLUTION

Slug Test

Aquifer Model: Confined Solution Method: Bouwer-Rice

In(Re/rw): 3.851

VISUAL ESTIMATION RESULTS

Estimated Parameters

 Parameter
 Estimate

 K
 0.0002079 cm/sec

 y0
 1.981 ft

 $T = K*b = 0.04436 \text{ cm}^2/\text{sec}$

AUTOMATIC ESTIMATION RESULTS

Estimated Parameters

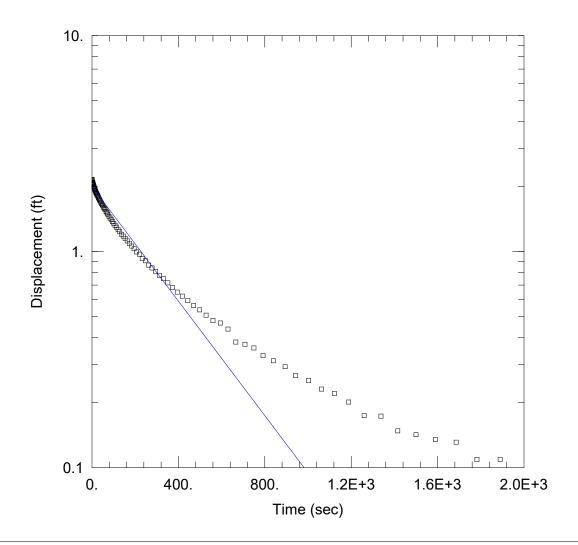
AQTESOLV for Windows AP-16 Drawdown

Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	
K	0.0002079	5.116E-6	+/- 1.017E-5	40.64	cm/sec
y0	1.981	0.01501	+/- 0.02983	131.9	ft

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

 $T = K*b = 0.04436 \text{ cm}^2/\text{sec}$

Parameter Correlations


<u>K</u> <u>y0</u> K 1.00 0.56 y0 0.56 1.00

Residual Statistics

for weighted residuals

Sum of Squares... 0.5863 ft² Variance 0.006662 ft² Std. Deviation 0.08162 ft Mean 0.01914 ft

No. of Residuals .. 90 No. of Estimates .. 2

AP-16 RECOVERY

Data Set: J:\...\AP-16 Recovery.aqt

Date: 09/02/25 Time: 10:04:43

PROJECT INFORMATION

Company: Andrews Engineering

Client: <u>CWLP</u>
Project: <u>240338</u>
Location: <u>CWLP</u>
Test Well: <u>AP-16</u>
Test Date: <u>8-20-25</u>

AQUIFER DATA

Saturated Thickness: 7. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (AP-16)

Initial Displacement: 2.156 ft

Total Well Penetration Depth: 16.15 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 10.01 ft

Screen Length: 4.68 ft Well Radius: 0.08333 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0002276 cm/sec y0 = 1.997 ft

AQTESOLV for Windows AP-16 Recovery

Data Set: J:\S\Springfield CWLP\CWLP Ash Pond\GEO\Slug Testing Data\Converted Files\AP-16\AP-16 Recovery

Title: AP-16 Recovery

Date: 09/02/25 Time: 10:04:58

PROJECT INFORMATION

Company: Andrews Engineering

Client: CWLP Project: 240338 Location: CWLP Test Date: 8-20-25 Test Well: AP-16

AQUIFER DATA

Saturated Thickness: 7. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: AP-16

X Location: 1131172.579 ft Y Location: 2455836.828 ft

Initial Displacement: 2.156 ft

Static Water Column Height: 10.01 ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft Well Skin Radius: 0.3438 ft Screen Length: 4.68 ft

Total Well Penetration Depth: 16.15 ft

Corrected Casing Radius (Bouwer-Rice Method): 0.07715 ft

Gravel Pack Porosity: 0.

No. of Observations: 102

Observation Data													
Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)										
0.	2.156	101.	1.35										
0.25	2.153	107.	1.325										
0.609	2.136	113.6	1.296										
0.97	2.133	120.8	1.263										
1.389	2.11	128.6	1.239										
1.809	2.103	136.4	1.203										
2.229	2.097	144.8	1.179										
2.71	2.091	153.8	1.151										
3.249	2.086	163.4	1.12										
3.729	2.079	173.	1.091										
4.329	2.067	183.8	1.06										
4.929	2.063	195.2	1.03										
5.529	2.046	207.2	0.995										
6.189	2.038	219.8	0.972										

AQTESOLV for Windows AP-16 Recovery

Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)	
6.909	2.033	233.	0.927	
7.689	2.012	247.4	0.907	
8.47	2.004	262.4	0.866	
9.31	1.997	278.	0.839	
10.21	1.984	294.8	0.808	
11.17	1.962	312.8	0.775	
12.13	1.959	331.4	0.749	
13.21	1.942	351.8	0.716	
14.35	1.935	372.8	0.682	
15.55	1.917	395.	0.649	
16.81	1.904	419.	0.622	
18.13	1.886	444.2	0.593	
19.57	1.872	470.6	0.562	
21.07	1.858	498.8	0.537	
22.63	1.846	528.8	0.508	
24.31	1.827	560.6	0.479	
26.11	1.818	594.2	0.467	
27.97	1.805	630.2	0.438	
30.01	1.782	666.2	0.381	
32.11	1.764	708.2	0.372	
34.33	1.745	750.2	0.358	
36.73	1.725	792.2	0.33	
39.25	1.713	840.2	0.312	
41.89	1.686	894.2	0.293	
44.71	1.666	942.2	0.267	
47.71	1.646	1002.2	0.253	
50.89	1.626	1062.2	0.231	
54.25	1.6	1122.2	0.22	
57.85	1.584	1188.2	0.201	
61.45	1.564	1260.2	0.174	
65.65	1.533	1338.2	0.173	
69.85	1.509	1416.2	0.148	
74.05	1.488	1500.2	0.142	
78.85	1.456	1590.2	0.135	
84.25	1.43	1686.2	0.131	
89.05	1.408	1782.2	0.109	
95.05	1.377	1890.2	0.109	
89.05	1.408	1782.2	0.109	

SOLUTION

Slug Test Aquifer Model: Confined Solution Method: Bouwer-Rice

In(Re/rw): 3.851

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.0002276	cm/sec
γ0	1.997	ft

$T = K*b = 0.04857 \text{ cm}^2/\text{sec}$

AUTOMATIC ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	Std. Error	Approx. C.I.	t-Ratio	
K	0.0002276	6.531E-6	+/- 1.296E-5	34.86	cm/sec
y0	1.997	0.01632	+/- 0.03239	122.3	ft

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

 $T = K*b = 0.04857 \text{ cm}^2/\text{sec}$

Parameter Correlations

 $\begin{array}{ccc} & \underline{K} & \underline{y0} \\ K & 1.00 & 0.53 \\ y0 & 0.53 & 1.00 \end{array}$

Residual Statistics

for weighted residuals

Sum of Squares... 0.9793 ft²
Variance 0.009793 ft²
Std. Deviation 0.09896 ft
Mean 0.02408 ft
No. of Residuals .. 102
No. of Estimates .. 2

PACKER TEST DATA

Packer Test Summary Table CWLP Ash Pond Investigation

Boring	Bottom of Top Packer (ft. BGS)	Top of Bottom Packer (ft. BGS)	Hydraulic Conductivity	Formation	Comment
B100	93	103.5	1.00E-09	shale w/ claystone, limestone interbeddings	No take
B100	93	103.5	2.69E-07	shale w/ claystone, limestone interbeddings	took .05 gallons during test
B100	93	103.5	1.00E-09	shale w/ claystone, limestone interbeddings	No take
B100	93	103.5	1.00E-09	shale w/ claystone, limestone interbeddings	No take
B100	93	103.5	1.00E-09	shale w/ claystone, limestone interbeddings	No take
B100	82.5	93	1.00E-09	shale w/ claystone interbeddings	No take, switch gauges from 0-200 psi to 0-100 psi prior to test.
B100	82.5	93	1.00E-09	shale w/ claystone interbeddings	No take
B100	82.5	93	1.00E-09	shale w/ claystone interbeddings	No take
B100	82.5	93	1.00E-09	shale w/ claystone interbeddings	No take
B100	82.5	93	1.00E-09	shale w/ claystone interbeddings	No take
B100	72	82.5	1.00E-09	shale w/ claystone interbeddings	No take
B100	72	82.5	1.00E-09	shale w/ claystone interbeddings	No take
B100	72	82.5	1.00E-09	shale w/ claystone interbeddings	No take
B100	72	82.5	1.00E-09	shale w/ claystone interbeddings	No take
B100	72	82.5	1.00E-09	shale w/ claystone interbeddings	No take
B100	61.5	72	1.00E-09	shale w/ claystone interbeddings	No take
B100	61.5	72	1.00E-09	shale w/ claystone interbeddings	No take
B100	61.5	72	2.60E-07	shale w/ claystone interbeddings	
B100	61.5	72	4.33E-07	shale w/ claystone interbeddings	
B100	61.5	72	2.60E-07	shale w/ claystone interbeddings	
B100	51	61.5	1.00E-09	shale w/ claystone interbeddings	No take
B100	51	61.5	1.00E-09	shale w/ claystone interbeddings	No take
B100	51	61.5	1.20E-06	shale w/ claystone interbeddings	pressure drpped on 60 psi test so next test terminated.
B100	40.5	51	1.28E-05	shale w/ claystone interbeddings	
B100	40.5	51	3.17E-04	shale w/ claystone interbeddings	pressure drpped on 45 psi test so next test terminated.
B100	38.5	49	3.91E-05	shale	packer blowout. Replace backer and resumed test.
B100	38.5	49	4.26E-04	shale	could only maintain 28 psi on the planned 30 psi test.

"Methods and procedures for defining aquifer parameters" (by John Sevee);

in Practical Handbook of Ground-Water Monitor` Friction loss calculation using Hazen-Williams formula.

[Hf = $(3.022)(v)^1.85(L) / (C)^1.85(D)^1.165$]

Shale

Date: 5/23/2024 Boring B100

0.14 Radius of test hole (in ft.)

2.67 Gauge height above ground (in ft.)

4.9 Depth to Water Below Ground (in ft.) - Water level after filling boring before testing.

Test No.	Bottom of Top Packer	Top of Bottom Packer	Depth [interval midpoint]	Length of Interval	Initial Gauge Reading	End Gauge Reading	Begin Time	End Time	Constant flow rate Q	Static Head Hs	Gauge pressure p	Fluid head Hp = p * 2.3	Friction loss Hf	Differential head Hs+Hp+Hg-Hf		Hydraulic Cond K	Nat Log	Inv Hyp Sin	Convert Q gal/min to
	(ft)	(ft)	(ft)	(ft)	(gal)	(gal)	(min)	(min)	(in gal/min)	(in feet)	(in psi)	(in feet)	(in feet)	(in feet)		(in cm/sec)	In(L/r)	sinh-1 (L/2r)	cu ft/sec
1a	93	103.5	98.25	10.5	2711.65	2711.65	0	15	0	93.35	15	34.5	0	130.52	≦	1.00E-09	4.32	4.32	0.00E+00
1b	93	103.5	98.25	10.5	2711.8	2711.95	0	15	0.01	93.35	30	69	4.08E-05	165.02	≦	2.69E-07	4.32	4.32	2.23E-05
1c	93	103.5	98.25	10.5	2711.9	2711.9	0	15	0	93.35	45	103.5	0	199.52	≦	1.00E-09	4.32	4.32	0.00E+00
1d	93	103.5	98.25	10.5	2711.95	2711.95	0	15	0	93.35	60	138	0	234.02	≦	1.00E-09	4.32	4.32	0.00E+00
1e	93	103.5	98.25	10.5	2711.9	2711.9	0	15	0	93.35	45	103.5	0	199.52	≦	1.00E-09	4.32	4.32	0.00E+00
														mean K (cm/sec)		5.47E-08			

Shale

Date: 5/23/2024 Boring B100

0.14 Radius of test hole (in ft.)

2.67 Gauge height above ground (in ft.)

2.4 Depth to Water Below Ground (in ft.) - Water level after filling boring before testing.

Test No.	Bottom of Top Packer	Top of Bottom Packer	Depth [interval midpoint]	Length of Interval	Initial Gauge Reading	End Gauge Reading	Begin Time	End Time	Constant flow rate Q	Static Head Hs	Gauge pressure p	Fluid head Hp = p * 2.3	Friction loss Hf	Differential head Hs+Hp+Hg-Hf		Hydraulic Cond K	Nat Log	Inv Hyp Sin	Convert Q gal/min to
	(ft)	(ft)	(ft)	(ft)	(gal)	(gal)	(min)	(min)	(in gal/min)	(in feet)	(in psi)	(in feet)	(in feet)	(in feet)		(in cm/sec)	In(L/r)	sinh-1 (L/2r)	cu ft/sec
1a	82.5	93	87.75	10.5	2712.35	2712.35	0	15	0	85.35	15	34.5	0	122.52	≦	1.00E-09	4.32	4.32	0.00E+00
1b	82.5	93	87.75	10.5	2712.4	2712.4	0	15	0	85.35	30	69	0	157.02	≦	1.00E-09	4.32	4.32	0.00E+00
1c	82.5	93	87.75	10.5	2712.4	2712.4	0	15	0	85.35	45	103.5	0	191.52	≦	1.00E-09	4.32	4.32	0.00E+00
1d	82.5	93	87.75	10.5	2712.4	2712.4	0	15	0	85.35	60	138	0	226.02	≦	1.00E-09	4.32	4.32	0.00E+00
1e	82.5	93	87.75	10.5	2712.4	2712.4	0	15	0	85.35	45	103.5	0	191.52	≦	1.00E-09	4.32	4.32	0.00E+00
														mean K (cm/sec)		1.00E-09			

"Methods and procedures for defining aquifer parameters" (by John Sevee);

in Practical Handbook of Ground-Water Monitor`

Friction loss calculation using Hazen-Williams formula.

[Hf = $(3.022)(v)^1.85(L) / (C)^1.85(D)^1.165$]

Shale

Date: 5/24/2024 Boring B100

0.14 Radius of test hole (in ft.)

2.67 Gauge height above ground (in ft.)

1.2 Depth to Water Below Ground (in ft.) - Water level after filling boring before testing.

Test No.	Bottom of Top Packer	Top of Bottom Packer	Depth [interval midpoint]	Length of Interval	Initial Gauge Reading	End Gauge Reading	Begin Time	End Time	Constant flow rate Q	Static Head Hs	Gauge pressure p	Fluid head Hp = p * 2.3	Friction loss Hf	Differential head Hs+Hp+Hg-Hf		Hydraulic Cond K	Nat Log	Inv Hyp Sin	Convert Q gal/min to
	(ft)	(ft)	(ft)	(ft)	(gal)	(gal)	(min)	(min)	(in gal/min)	(in feet)	(in psi)	(in feet)	(in feet)	(in feet)		(in cm/sec)	In(L/r)	sinh-1 (L/2r)	cu ft/sec
1a	72	82.5	77.25	10.5	2717.85	2717.85	0	15	0	76.05	15	34.5	0	113.22	≦	1.00E-09	4.32	4.32	0.00E+00
1b	72	82.5	77.25	10.5	2717.85	2717.85	0	15	0	76.05	30	69	0	147.72	≦	1.00E-09	4.32	4.32	0.00E+00
1c	72	82.5	77.25	10.5	2717.85	2717.85	0	15	0	76.05	45	103.5	0	182.22	≦	1.00E-09	4.32	4.32	0.00E+00
1d	72	82.5	77.25	10.5	2717.85	2717.85	0	15	0	76.05	60	138	0	216.72	≦	1.00E-09	4.32	4.32	0.00E+00
1e	72	82.5	77.25	10.5	2717.85	2717.85	0	15	0	76.05	45	103.5	0	182.22	≦	1.00E-09	4.32	4.32	0.00E+00
														mean K (cm/sec)		1.00E-09			

Shale

Date: 5/24/2024 Boring B100

0.14 Radius of test hole (in ft.)

2.67 Gauge height above ground (in ft.)

2.2 Depth to Water Below Ground (in ft.) - Water level after filling boring before testing.

Test	Bottom of Top	Top of Bottom	Depth [interval	Length of	Initial Gauge	End Gauge	Begin	End	Constant flow rate	Static Head	Gauge pressure	Fluid head	Friction loss	Differential head		Hydraulic Cond		Inv Hyp Sin	Convert Q gal/min
No.	Packer	Packer	midpoint]	Interval	Reading	Reading	Time	Time	Q	Hs	. р	Hp = p * 2.3	Hf	Hs+Hp+Hg-Hf		K	Nat Log		to
	(ft)	(ft)	(ft)	(ft)	(gal)	(gal)	(min)	(min)	(in gal/min)	(in feet)	(in psi)	(in feet)	(in feet)	(in feet)		(in cm/sec)	In(L/r)	sinh-1 (L/2r)	cu ft/sec
1a	61.5	72	66.75	10.5	2724.05	2724.05	0	15	0	64.55	15	34.5	0	101.72	≦	1.00E-09	4.32	4.32	0.00E+00
1b	61.5	72	66.75	10.5	2724.05	2724.05	0	15	0	64.55	30	69	0	136.22	≦	1.00E-09	4.32	4.32	0.00E+00
1c	61.5	72	66.75	10.5	2724.05	2724.2	0	15	0.01	64.55	45	103.5	2.77E-05	170.72	≦	2.60E-07	4.32	4.32	2.23E-05
1d	61.5	72	66.75	10.5	2724.2	2724.5	0	15	0.02	64.55	60	138	1.00E-04	205.22	≦	4.33E-07	4.32	4.32	4.46E-05
1e	61.5	72	66.75	10.5	2724.5	2724.65	0	15	0.01	64.55	45	103.5	2.77E-05	170.72	≦	2.60E-07	4.32	4.32	2.23E-05
														mean K (cm/sec)		1.91E-07			

"Methods and procedures for defining aquifer parameters" (by John Sevee);

in Practical Handbook of Ground-Water Monitor` Friction loss calculation using Hazen-Williams formula. [Hf = (3.022)(v)^1.85(L) / (C)^1.85(D)^1.165]

Shale

Date: 5/24/2024 Boring B100

0.14 Radius of test hole (in ft.)

2.67 Gauge height above ground (in ft.)

2.1 Depth to Water Below Ground (in ft.) - Water level after filling boring before testing.

Test No.	Bottom of Top Packer	Top of Bottom Packer	Depth [interval midpoint]	Length of Interval	Initial Gauge Reading	End Gauge Reading	Begin Time	End Time	Constant flow rate Q	Static Head Hs	Gauge pressure p	Fluid head Hp = p * 2.3	Friction loss Hf	Differential head Hs+Hp+Hg-Hf		Hydraulic Cond K	Nat Log	Inv Hyp Sin	Convert Q gal/min to
	(ft)	(ft)	(ft)	(ft)	(gal)	(gal)	(min)	(min)	(in gal/min)	(in feet)	(in psi)	(in feet)	(in feet)	(in feet)		(in cm/sec)	In(L/r)	sinh-1 (L/2r)	cu ft/sec
1a	51	61.5	56.25	10.5	2732	2732	0	15	0	54.15	15	34.5	0	91.32	≦	1.00E-09	4.32	4.32	0.00E+00
1b	51	61.5	56.25	10.5	2732	2732	0	15	0	54.15	30	69	0	125.82	≦	1.00E-09	4.32	4.32	0.00E+00
1c	51	61.5	56.25	10.5	2732	2732.65	0	15	0.04	54.15	45	103.5	3.52E-04	160.32	≦	1.20E-06	4.32	4.32	9.65E-05
														mean K (cm/sec)		4.01E-07			

Shale

Date: 5/24/2024 Boring B100

0.14 Radius of test hole (in ft.)

2.67 Gauge height above ground (in ft.)

1.9 Depth to Water Below Ground (in ft.) - Water level after filling boring before testing.

Test No.	Bottom of Top Packer	Top of Bottom Packer	Depth [interval midpoint]	Length of Interval	Initial Gauge Reading	End Gauge Reading	Begin Time			Static Head Hs	Gauge pressure p	Fluid head Hp = p * 2.3	Friction loss Hf	Differential head Hs+Hp+Hg-Hf		Hydraulic Cond K	Nat Log	Inv Hyp Sin	Convert Q gal/min to
	(ft)	(ft)	(ft)	(ft)	(gal)	(gal)	(min)	(min)	(in gal/min)	(in feet)	(in psi)	(in feet)	(in feet)	(in feet)		(in cm/sec)	In(L/r)	sinh-1 (L/2r)	cu ft/sec
1a	40.5	51	45.75	10.5	2814.4	2817.9	0	15	0.23	43.65	15	34.5	0.01	80.81	≦	1.28E-05	4.32	4.32	5.20E-04
1b	40.5	51	45.75	10.5	2718.8	2837.5	0	15	7.91	43.65	30	69	4.38	110.94	≦	3.17E-04	4.32	4.32	1.76E-02

"Methods and procedures for defining aquifer parameters" (by John Sevee);

in Practical Handbook of Ground-Water Monitor`

Friction loss calculation using Hazen-Williams formula.

[Hf = $(3.022)(v)^1.85(L) / (C)^1.85(D)^1.165$]

Shale

Date: 5/24/2024 Boring B100

0.14 Radius of test hole (in ft.)

2.67 Gauge height above ground (in ft.)

1.2 Depth to Water Below Ground (in ft.) - Water level after filling boring before testing.

	Bottom	Top of	Depth		Initial	End			Constant	Static	Gauge	Fluid	Friction	Differential		Hydraulic		Inv Hyp Sin	Convert Q
Test	of Top	Bottom	[interval	Length of	Gauge	Gauge	Begin	End	flow rate	Head	pressure	head	loss	head		Cond			gal/min
No.	Packer	Packer	midpoint]	Interval	Reading	Reading	Time	Time	Q	Hs	р	Hp = p * 2.3	Hf	Hs+Hp+Hg-Hf		K	Nat Log		to
	(ft)	(ft)	(ft)	(ft)	(gal)	(gal)	(min)	(min)	(in gal/min)	(in feet)	(in psi)	(in feet)	(in feet)	(in feet)		(in cm/sec)	In(L/r)	sinh-1 (L/2r)	cu ft/sec
1a	38.5	49	43.75	10.5	2914	2924.4	0	15	0.69	41.65	15	34.5	0.05	78.77	≦	3.91E-05	4.32	4.32	1.54E-03
1b	38.5	49	43.75	10.5	2925.8	3073	0	15	9.81	41.65	28	64.4	6.23	102.49	≦	4.26E-04	4.32	4.32	2.19E-02

mean K (cm/sec) 2.32E-04

APPENDIX E: LABORATORY SOILS ANALYSES

APPENDIX E1:

APPLICATION LOG NO. 1995-243

Table 4
Summary of Laboratory Test Results for Creek Fill Materials

					Gra	in Size Anal	ysis	A	tterberg Lim	its				
Boring/ Piezometer	Sample Number	Depth (ft)	USCS Symbol	Moisture Content (%)	Gravel (%)	Sand (%)	Silt or Clay (%)	LL	PL	PI	Dry Density (pcf)	Unconfined Compressive Strength (tsf)	Hydraulic Conductivity (cm/sec)	Cation Exchange Capacity (meq/100 gm)
В-7	SS-4	6.0-8.0	CL	24.4	0	33	46/21*							
CB-1	3T-5	8.0-10.0	CL	27.4				44	23	18	95.5		1.5x10 ⁻⁷	
CB-1	3T-5	8.0-10.0	CL	29.4							94.4	0.6		
CB-2	3T-9	16.0-18.0	ML	37.8				34	25	9	79.6		2.4x10 ⁻⁷	
CB-3	SS-4	6.0-8.0	CL-ML	20.5	0	48	52							
CB-8	SS-3	4.0-6.0	OL	31.4				35	21	14				
СВ-9	SS-5	8.0-10.0	OL	34.2										18.1
P-1D	SS-5	8.0-10.0	OL	20.4				46	20	26				
P-2D	3T-15	28.0-30.0	CL	25.9							99.1		7.3x10 ⁻⁷	
P-1S	SS-2A	38.0-38.7	SC**	19.3	2	65	33							
P-3S	SS-3	10.0-12.0	SM**	-	0	55	45							
P-5D	SS-4	6.0-8.0	OL	31.8				45	25	20				
P-5S	3T-2	10.0-12.0	OL	26.3							95.7		7.6x10 ⁻⁸	
P-8D	SS-4	608.0	OL	25.3				37	21	16				
P-8S	SS-3	10.0-12.0	OL	41.0	0	12	62/26*							
B-13***	2-ST	5.0-7.0	CL/OL	37.2	0	2	67/31*	39	23	16	83.7		2.2x10 ⁻⁷	14.0
B-16***	2-ST	5.0-7.0	CL/OL	22.1	0	5	67/28*	38	28	10	104.4		2.1x10 ⁻⁷	16.0
P-9D****	3T-8	14.0-16.0	CL	22.7							102.3		3.3x10 ⁻⁸	

^{*} Represent percentages of silt and clay based on hydrometer analysis

^{**} Granular Creek Fill

^{***} Based on PSI (1989) investigation

^{****} Berm Fill

		Table	5										
	Summar	y of Slug Test R	esults for Cre	ek Fill									
	Calculated Hydraulic Conductivity (cm/sec)												
Location	Soil Type Tested	USCS Classification	Recovery Test	Drawdown Test	Average Value								
P-1S	Clayey sand	SC	2.4 x 10 ⁻⁴	6.1 x 10 ⁻⁵	1.5 x 10 ⁻⁴								
P-3S	Silty sand	SM	5.6 x 10 ⁻³	1.5 x 10 ⁻²	1.0 x 10 ⁻²								
P-5S	Organic silty clay	OL	7.1 x 10 ⁻⁵	1.1 x 10 ⁻⁴	8.6 x 10 ⁻⁵								
P-8S	Clayey sand	SC	1.2 x 10 ⁻⁴	NT	1.2 x 10 ⁻⁴								

Refer to Appendix D for detailed test results. NT = Not Tested

ref:hb/496b/496b-5.tbl

			S	Summary	of Labo	ratory 7	Tabl Fest Res		Upper (Cohesive	e Deposit			
Boring/ Piezometer	Sample Number	Depth (ft)	USCS Symbol	Moisture Content (%)	Gra Gravel (%)	Sand (%)	Silt or Clay (%)	LL	tterberg Lim PL	PI	Dry Density (pcf)	Unconfined Compressive Strength (tsf)	Hydraulic Conductivity (cm/sec)	Cation Exchange Capacity (meq/100 gm)
B-4	3T-4	6.0 - 8.0	CL	28.0							98.7		4.7 x 10 ⁻⁸	
P-6D	SS-2	2.0 - 4.0	CL	21.2				29	18	11				
P-6S	SS-2A	6.0 - 6.5	CL	23.4	0	14	86							
P-7D	SS-3	4.0 - 6.0	CL	21.7				33	19	14				
P-7D	SS-4	6.0 - 8.0	CL	25.3										16.5
P-7D	3T-5	8.0 - 10.0	CL	22.6							101.2		2.0 x 10 ⁻⁷	
P-7S	SS-1B	10.5 - 11.0	CL	-	0	43	40/17*							
B-5**	2-ST	5.0 - 7.0	CL/ML	24.3	0	18	63/19*	. 23	21	2	100.8		1.6 x ·10 ⁻⁸	11.0
B-15**	2-ST	5.0 - 7.0	CL/ML	23.9	0	15	62/23*	27	19	8	102.8		5.2 x 10 ⁻⁷	12.0
B-16**	4-ST											10.0		

Represent percentages of silt and clay based on hydrometer analysis. Based on PSI (1989) investigation.

ref:hb\496b\496b-6.tbl

Table 7
Summary of Laboratory Test Results for Shallow Sand

					Gra	in Size Anal	ysis	A	tterberg Lim	its				
Boring/ Piezometer	Sample Number	Depth (ft)	USCS Symbol	Moisture Content (%)	Gravel (%)	Sand (%)	Silt or Clay (%)	LL	PL	PI	Dry Density (pcf)	Unconfined Compressive Strength (tsf)	Hydraulic Conductivity (cm/sec)	Cation Exchange Capacity (meq/100 gm)
B-1	SS-7	12.0 - 14.0	sc	21.8	0	50	50							
P-7D	SS-6B	11.5 - 12.0	sc	23.1	0	52	48							

ref:hb\496b\496b-7.tbl

* Represent percentages of silt and clay based on hydrometer analysis.

		Ta	ible 8											
	Summary of Slug Test Results for Shallow Sand													
	Calculated Hydraulic Conductivity (cm/sec)													
Location	Soil Type Tested	USCS Classification	Recovery Test	Drawdown Test	Average Value									
P-6S														
P-7S	Clayey sand	SC	3.6 x 10 ⁻³	4.3 x 10 ⁻³	3.9 x 10 ⁻³									

Refer to Appendix D for detailed test results NT = Not Tested

ref:hb/496b/496b-8.tbl

Table 9
Summary of Laboratory Test Results for Lower Cohesive Deposits

			*****	Moisture	G	rain Size Ar	nalysis	А	tterberg Lim	its	Dry	Unconfined Compressive	Hydraulic	Cation Exchange
Boring/ Piezometer	Sample Number	Depth (ft)	USCS Symbol	Content (%)	Gravel (%)	Sand (%)	Silt or Clay (%)	LL	PL	PI	Density (pcf)	Strength (tsf)	Conductivity (cm/sec)	Capacity (meq/100 gm)
B-1	SS-9	16.0 - 18.0	ML/CL-ML	36.9				25	22	3				
B-3	3T-20	38.0 - 40.0	CL	24.6							104.2		8.2 x 10 ⁻⁸	
B-4	SS-8	12.0 - 14.0	CL	29.1	0	8	70/22*	32	20	12				
B-6	SS-10	18.0 - 20.0	CL-ML/CL	23.5				25	20	5				
B-6	SS-14	26.0 - 28.0	CL-ML	25.1	0	44	56							
B-7	SS-9	16.0 - 18.0	CL-ML	18.2	0	38	50/12*							
B-9	SS-8	14.0 - 16.0	CL	24.6										10.7
CB-2	SS-11	20.0 - 22.0	CL	34.9				47	22	25				
CB-3	SS-9	16.0 - 18.0	CL-ML	27.1	0	33	55/12*							
CB-4	3T-9	16.0 - 18.0	CL/CL-ML	23.9							103.3		4.3 x 10 ⁻⁷	
CB-6	3T-7	12.0 - 14.0	CL	29.9							95.3		5.3 x 10 ⁻⁷	
CB-6	3T-7	12.0 - 14.0	CL	26.4							99.0	1.4		
CB-6	SS-12	22.0 - 24.0	ML/CL-ML	23.6				23	20	3				
P-3D	3T-9	16.0 - 18.0	CL	34.5							89.2		1.3 x 10 ⁻⁸	
P-3D	SS-13	24.0 - 26.0	СН	53.7				71	32	39				
P-4	3T-11	20.0 - 22.0	СН	40.9							78.2		2.9 x 10 ⁻⁸	
P-4	SS-16	30.0 - 32.0	СН	52.6				67	30	37				
P-7D	SS-8	14.0 - 16.0	CL-ML/CL	26.9				29	22	7				
P-7D	SS-13	24.0 - 26.0	CL-ML	24.3	0	34	54/12*							
P-7M	3T-2	18.0 - 20.0	CL	22.5							101.4		1.5 x 10 ⁻⁷	
P-9D	SS-26	50.0 - 52.0	CL	20.7	0	33	53/14*							
P-9S	3T-1	34.0 - 36.0	CL	24.1							101.2		1.3 x 10 ⁻⁶	
B-2**	3-ST	10.0 - 12.0	CL-ML	22.9	0	32	58/10*		– Non-Plasti	c →	93.4		8.4 x 10 ⁻⁷	9.0
B-2**	5-ST	15.0 - 17.0	CL	22.0	0	15	77/18*	30	18	12	104.9		5.1 x 10 ⁻⁷	7.0
B-2**	7-ST	20.0 - 22.0	CL	23.1	0	38	50/12*		- Non-Plasti	c →	103.2		3.2 x 10 ⁻⁷	6.0
B-13**	4-ST	10.0 - 12.0	CL-ML	21.7	0	48	42/10*		- Non-Plastic	c →	105.4		9.7 x 10 ⁻⁷	8.0
B-13**	6-ST	15.0 - 17.0	CL-ML	24.8	0	20	62/18*		- Non-Plasti	c →	100.6		1.8 x 10 ⁻⁶	

^{*} Represent percentages of silt and clay based on hydrometer analysis.

		Tal	ble 10	2									
	Summary of Slug Test Results for Lower Cohesive Deposit												
	Calculated Hydraulic Conductivity (cm/sec)												
Location	Soil Type Tested	USCS Classification	Recovery Test	Drawdown Test	Average Value								
P-7M Silty clay CL NT 7.6 x 10 ⁻⁵ 7.6 x 10 ⁻⁵													
P-9S Silty clay CL NT 4.9 x 10 ⁻⁵ 4.9 x 10 ⁻⁵													

Refer to Appendix D for detailed test results NT = Not Tested

ref:hb/496b/496b-10.tbl

Table 11 Summary of Laboratory Test Results for Basal Sand

					Gra	in Size Anal	ysis	A	tterberg Lim	its				
Boring/ Piezometer	Sample Number	Depth (ft)	USCS Symbol	Moisture Content (%)	Gravel (%)	Sand (%)	Silt or Clay (%)	LL	PL	PI	Dry Density (pcf)	Unconfined Compressive Strength (tsf)	Hydraulic Conductivity (cm/sec)	Cation Exchange Capacity (meq/100 gm)
B-4	SS-14	26.0-28.0	SC	17.6	0	56	44							
B-13	SS-14	26.0-28.0	SM	15.1	16	65	19						2011 3980	
CB-1	SS-13	24.0-26.0	SM	21.1	0	69	31							
СВ-6	SS-14	26.0-28.0	sc	30.9	0	62	38					т.		
P-1D	SS-25B	48.0-50.0	sc	21.1	0	64	36				and the second s			
P-2D	SS-28A	54.0-54.5	SW-SM	-	3	91	6							
P-3D	SS-17B	33.0-33.5	SM	17.9	0	58	42							
P-4	SS-19	36.0-38.0	SW-SM	-	23	69	8							
P-5D	SS-14A	26.0-27.3	SM	-	29	54	17							
P-6D	SS-15	28.0-30.0	SM	14.6	23	55	22							
P-7D	SS-15	29.0-30.0	SW-SM/SM	10.9	27	59	14							
P-8D	SS-13A	24.0-25.5	SW-SM/SM	-	34	50	16							
P-9D	SS-29A	56.0-57.5	SP-SM/SM	-	22	66	12							

ref:hb\496b\496b-11.tbl

Sumr	nary of Slug Tes	t Results for Ba	sal Sand	
		Calculated Hy	ydraulic Conducti	vity (cm/sec)
Soil Type Tested	USCS Classification	Recovery Test	Drawdown Test	Average Value
Silty to clayey Sand to sand	SC/SM/SP	6.1 x 10 ⁻⁴	1.1 x 10 ⁻³	8.4 x 10 ⁻⁴
Silty sand	SM	1.6 x 10 ⁻²	7.6 x 10 ⁻³	1.2 x 10 ⁻²

 3.0×10^{-3}

 3.8×10^{-3}

 3.3×10^{-2}

 6.1×10^{-3}

 3.0×10^{-2}

 5.6×10^{4}

 2.5×10^{-3}

 4.4×10^{-3}

 3.4×10^{-2}

 5.8×10^{-3}

2.6 x 10⁻²

 6.4×10^{-4}

 2.0×10^{-3}

 5.0×10^{-3}

 3.6×10^{-2}

 5.6×10^{-3}

 2.3×10^{-2}

 7.2×10^{-4}

Table 12

SP-SM/SM

SM/SW-SM

SM

SW-SM/SM

SM/SW-SM

SM/SP-SM

Refer to Appendix D for detailed test results. NT = Not Tested

Silty sand

Silty sand

Silty sand

Silty sand

Silty sand

sand

Silty sand to

ref:hb/496b/496b-12.tbl

Location

P-1D

P-3D

P-4

P-5D

P-6D

P-7D

P-8D

P-9D

	Tal	ble 13		
Summa	ry of Slug Test I	Results for Bedro	ock (Shale)	
		Calculated Hy	draulic Conducti	vity (cm/sec)
Soil Type Tested	USCS Classification	Recovery Test	Drawdown Test	Average Value
hale	-	NT	1.8 x 10 ⁻⁷	1.8 x 10 ⁻⁷

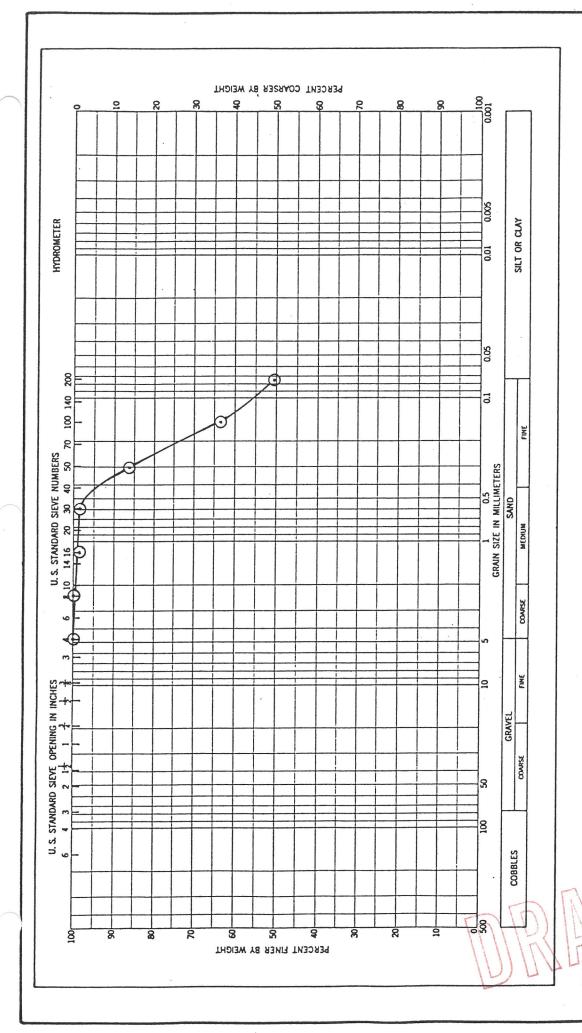
NT

1.3x10⁻⁶

1.3x10⁻⁶

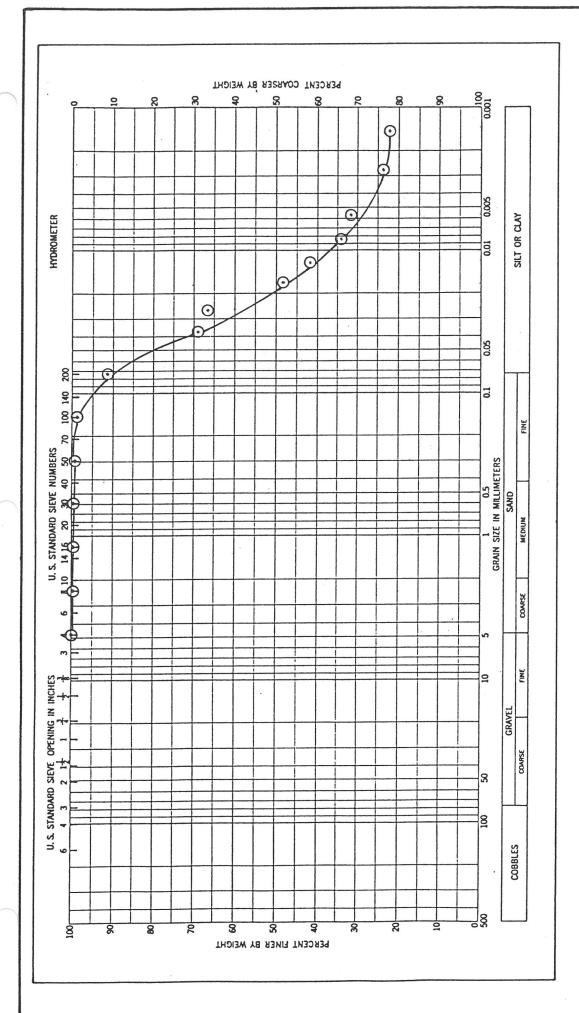
Refer to Appendix D for detailed test results NT = Not Tested

Shale

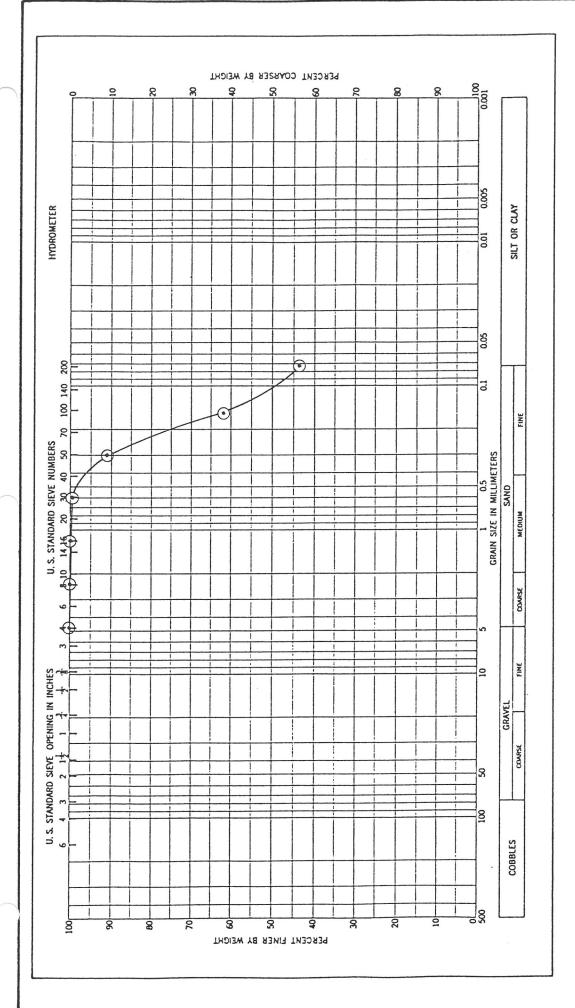

Shale

ref:hb/496b/496b-13.tbl

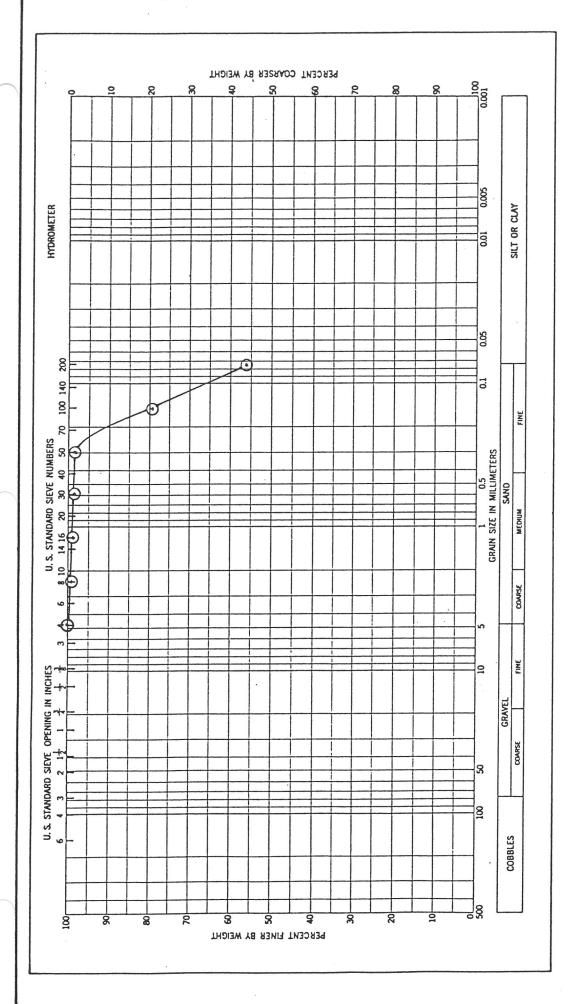
Location


P-7R

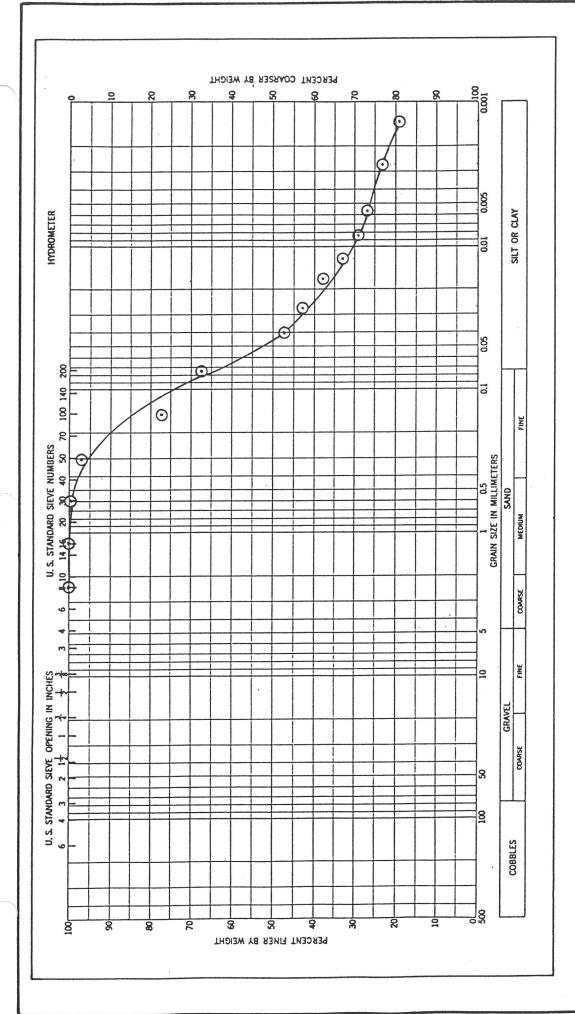
P-6R


20.0				
	silt	SC		
12.0'-14:0!		7	7	
B-1	SS-7			
	B-1 12.0'-14:0'-'Gray clayey sand and 20.0			

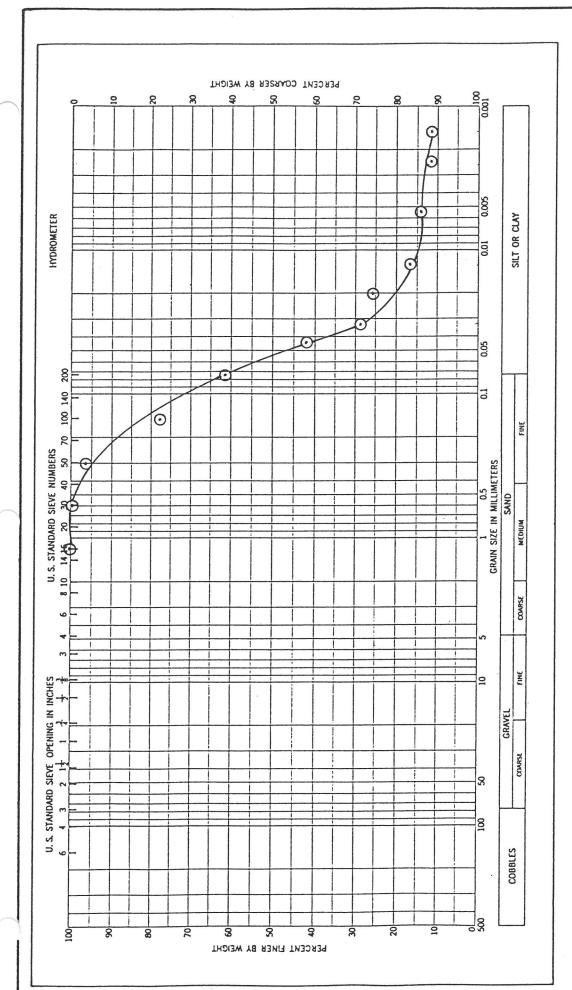
PATRICK ENGINEERING INC.


Sample No.	Elev. or Depth	Classification	Nat w %	LL	PL	P.	Remarks
B-4	14.0'-16.0'	.4.0'-16.0' Dark gray silty clay,	29.1				
SS-8		trace fine sand					
		CL					

PATRICK ENGINEERING INC.

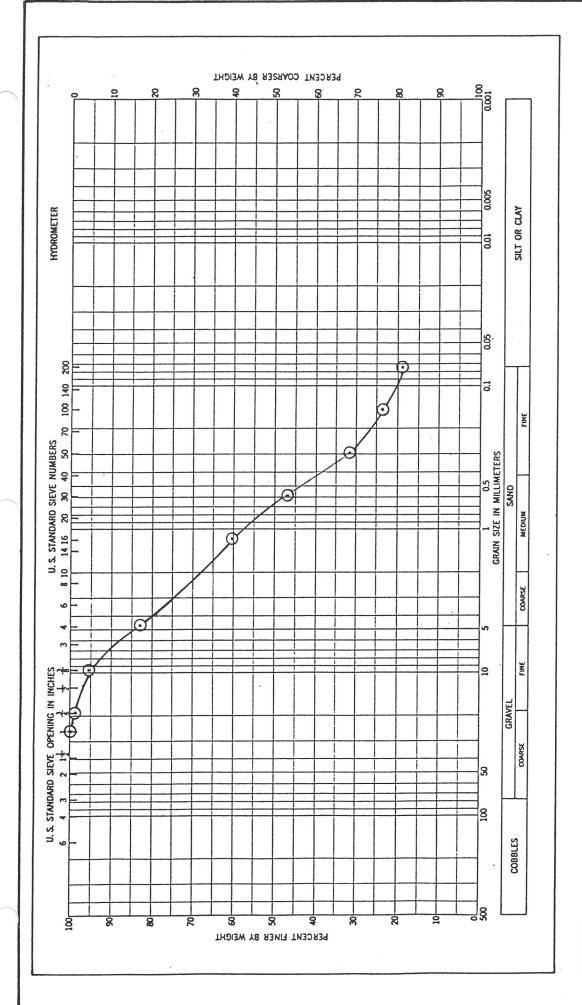

Sample No.	Elev. or Depth	Classification	Nat w% LL	LL	PL	PI	Remarks
B-4	26.0'-28.0'	26.0'-28.0' Gray clayey fine sand and 17.7	17.7				
SS-14		silt					
		SC					

PATRICK ENGINEERING INC.


Sample No.	Elev. or Depth	Classification	Nat w% LL	LL	PL	PI	Remarks
B-6	26.0'-28.0'	26.0'-28.0' Gray clayey silt to clayey 24.6	7 24.6				
SS-14		sand					
		CI-MI/SC					
		2					
		·					

ZC.
ENGINEERING
PATRICK

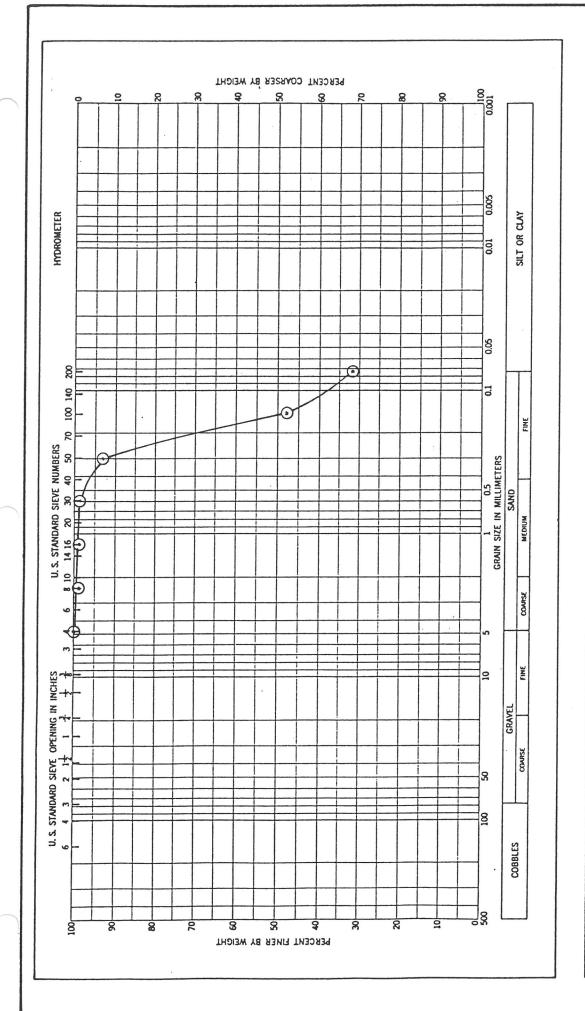
Sample No.	Elev. or Depth	Classification	Nat w % LL	LL	PL	PI	Remarks
B-7	6.0'-8.0'	Gray silty clay and	24.4				
SS-4 .		medium to fine sand					
		CI					


Z C
U
7
Milliand
S
7
O
111
Z
U
Z
ENGI
C K
13
PATRI
L
A
4

	CWLP		C1tY	PEI P	
Remarks					The Party and Personal Persona
Ы					
PL					
LL					The second named in column 2 is not a second
Nat w% LL PL PI	18.2				
Classification	Gray clayey silt and fine 18.2	sand	CL-ML		
Elev. or Depth	16.0'-18.0'				Control of the Contro
Sample No.	B-7	88-9			

Project No. 496B of Springfield FGDS Landfill

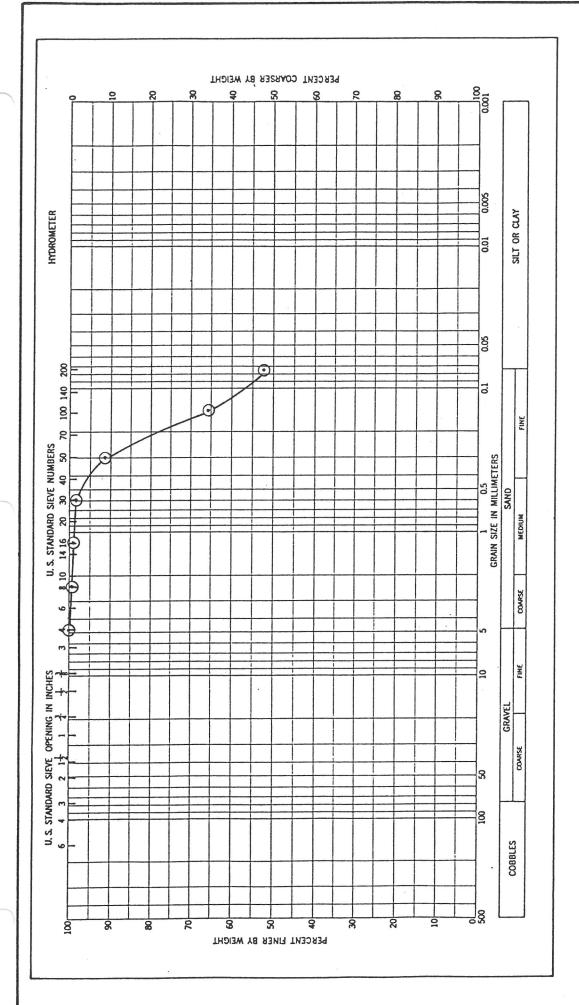
PATRICK ENGINEERING INC.



111	ield	496B
Landf	ringf.	t No.
FGDS 1	of Sp	rojec
CWLP	city	PEI P

Sample No.	Sample No. Elev. or Depth	Classification	Nat w %	LL	PL	PI	Remarks
B-13	26.0'-28.0'	B-13 [26.0'-28.0' Gray coarse to fine sand, 14.3	14.3				
SS-14		little fine gravel, little	·- a				
		silt					
		WS					

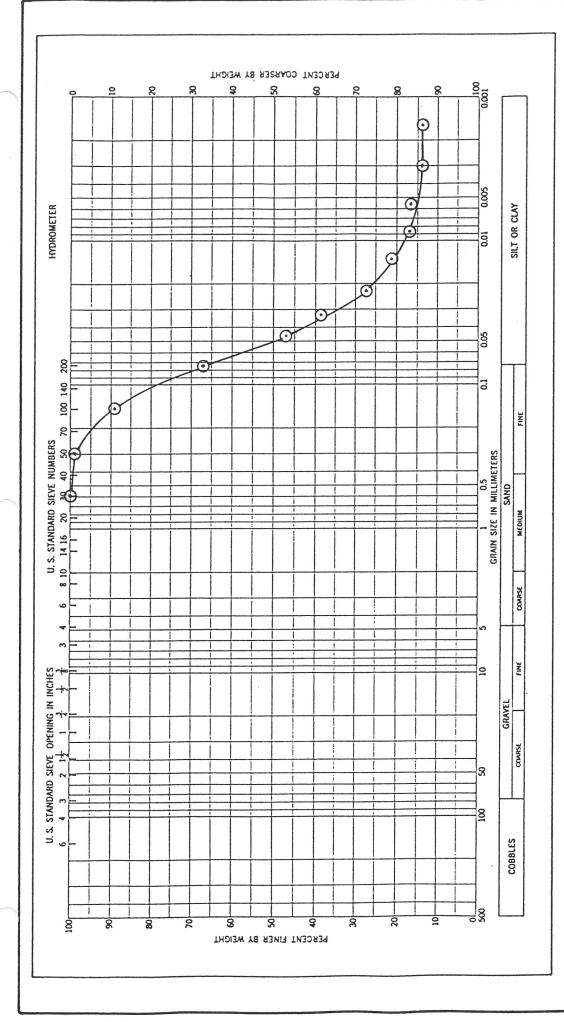
ENGINEERING ATRICK


0

	CWLP FGDS Landfill	City of Springfield	PEI Project No. 496B	
-				
	21.1			

Sample No.	Elev. or Depth	Classification	Nat w % LL	LL	PL	PI	Remarks
CB-1	24.0'-26.0'	.0'-26.0' Gray medium to fine sand 21.1	21.1				
SS-13		and clayey silt					
		SM					

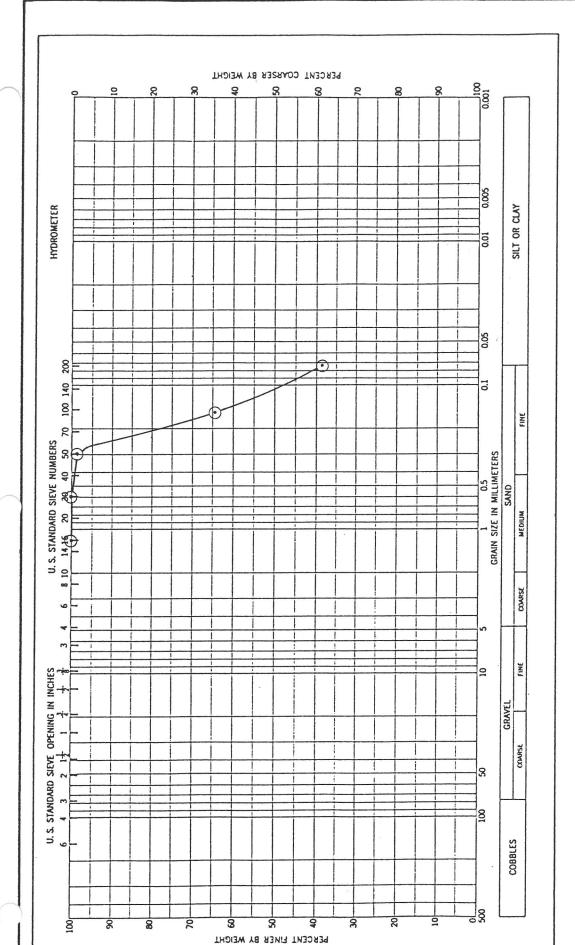
S ENGINEERING PATRICK



111	ield	496B
andf	ingf	No.
DS L	Spr	ject
P FG	y of	Pro
CWL	City	PEI

Sample No.	Elev. or Depth	Classification	Nat w% LL	LL	PL	ď	Remarks
CB-3	6.0'-8.0'	Brown and tan clayey silt 20.5	20.5				
SS-4		and fine sand					
		CI-MI					

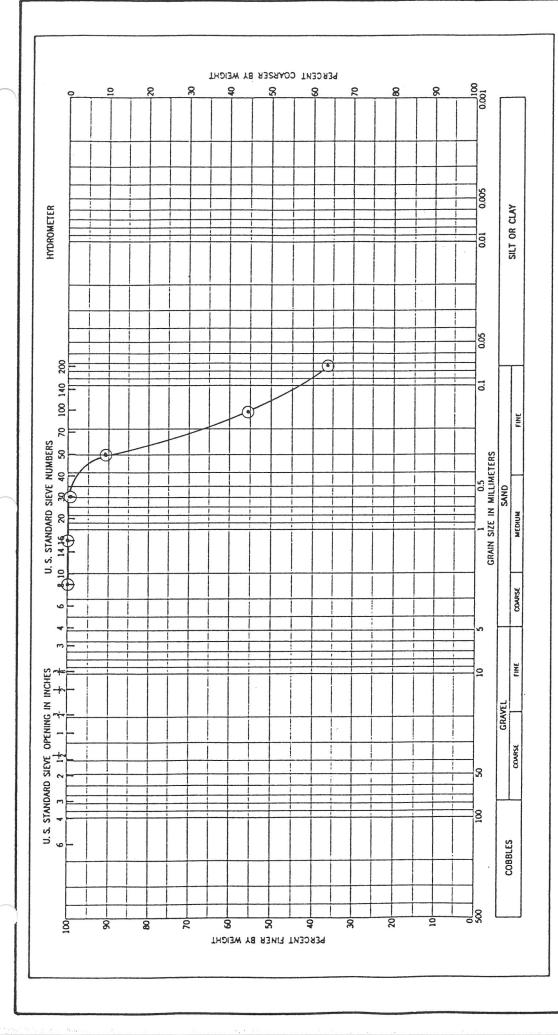
S
ט
NE
NO
不同
חמח
PAT



Ē	Sample No. Elev. or Depth	Classification	Nat w % LL	LL	PL	Ы	Remarks
16.0	0.4-18	'-18.0' Gray clayey silt and fine 22.6	22.6				
		sand					
		CL-ML					

ATRICK ENGINEERING INC.

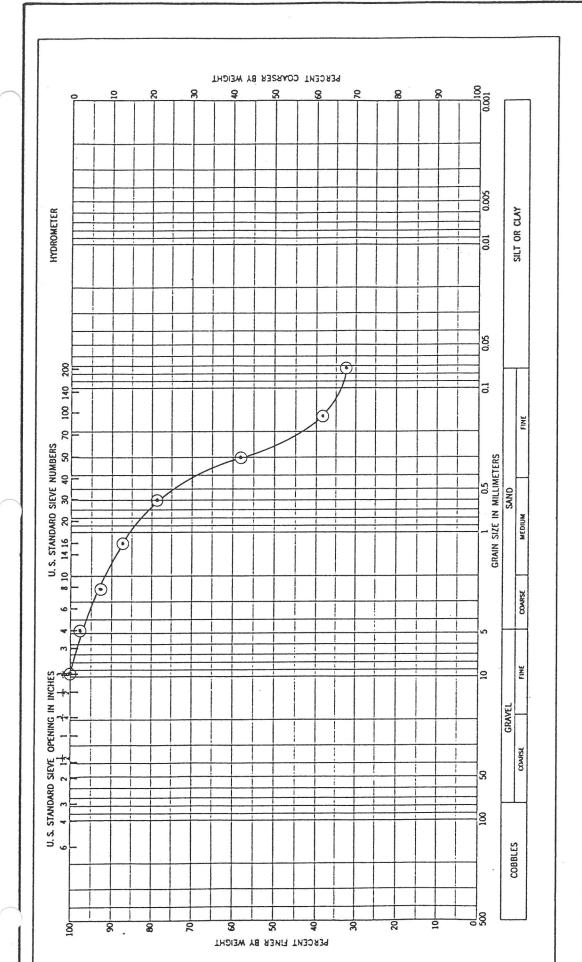
0


CWLP FGDS Landfill		- City of Springfield	PEI Project No. 496B
	8		

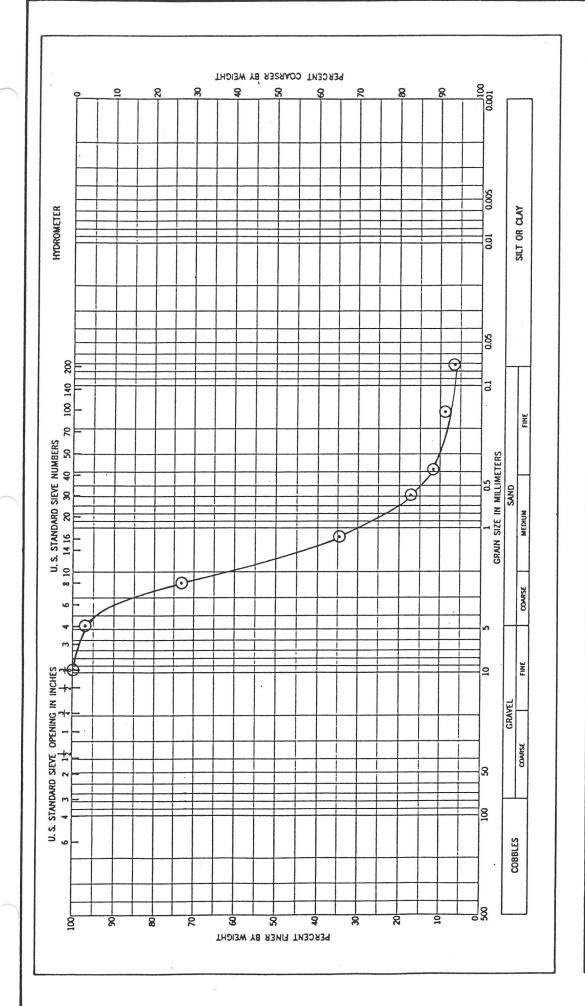
Sample No.	Elev. or Depth	Classification	Nat w % LL	LL	PL	<u>a</u>	Remarks
CB-6	26.0'-28.0'	26.0'-28.0' Gray clayey fine sand and 26.1	1.56.1				
SS-14		silt					8
		SS					

CWLP	City	PEI
FGDS I	of Spi	Project
Landfill	ringfiel	No.
П	eld	496E

ENGINEERING INC. PATRICK

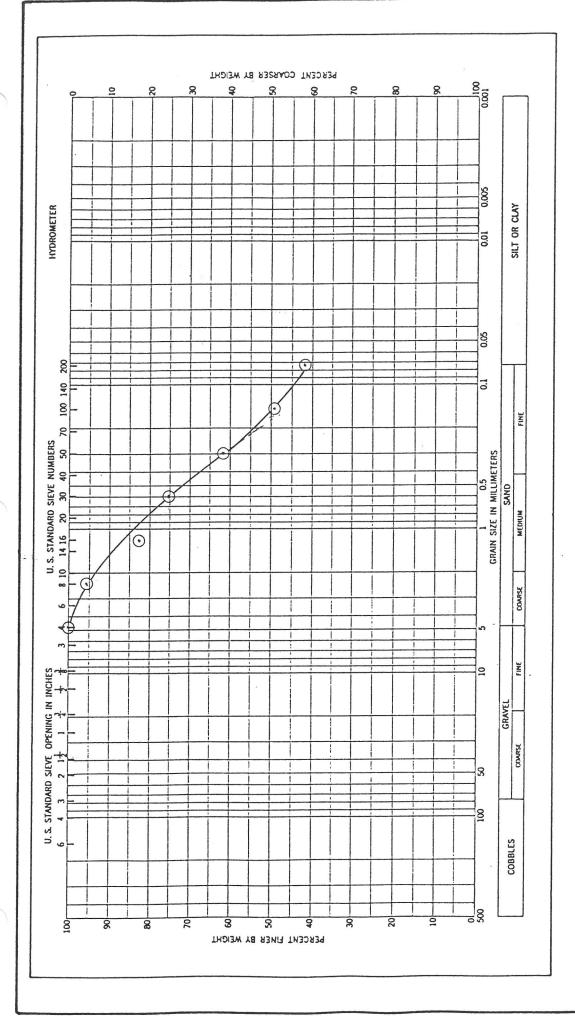


Sample No.	Elev. or Depth	Classification	Nat w% LL	LL	PL	PI	PI Remarks
P-1D	48.0'-50.0'	.0'-50.0' Gray clayey fine sand	20.8				
SS-25B		and silt					
		SC					

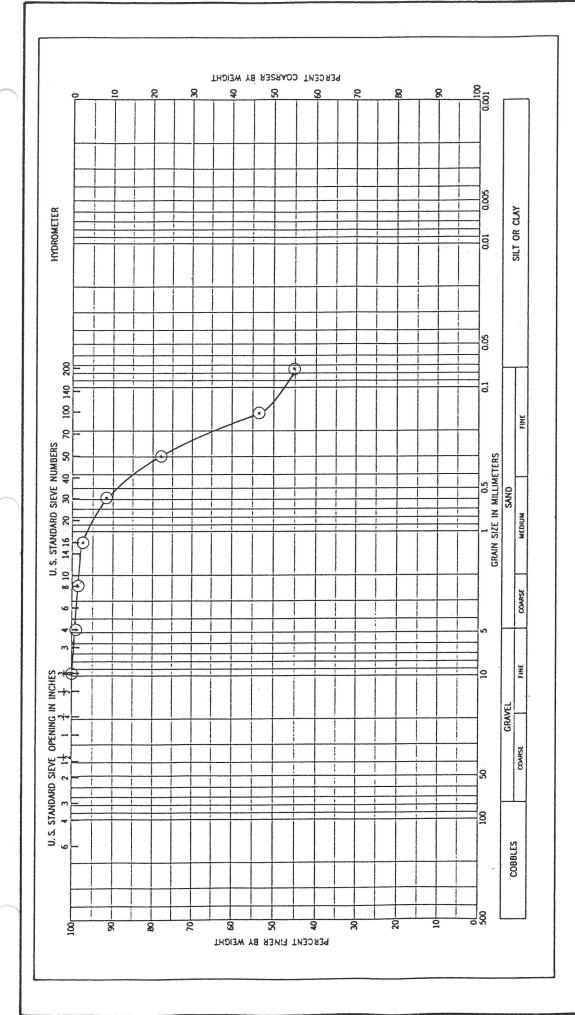

ATRICK ENGINEERING INC.

0

Sample No.	Elev. or Depth	Classification	Nat w % LL	LL	PL	I.d.	Remarks
P-1S	38.0'-40.0'	38.0'-40.0' Gray coarse to fine sand 18.7	18.7				
SS-2A		and silt, trace fine					
		gravel					
		SS					


N N
ENGINEERING
PATRICK

CWLP FGDS Landfill	City of Springfield	PEI Project No. 496B

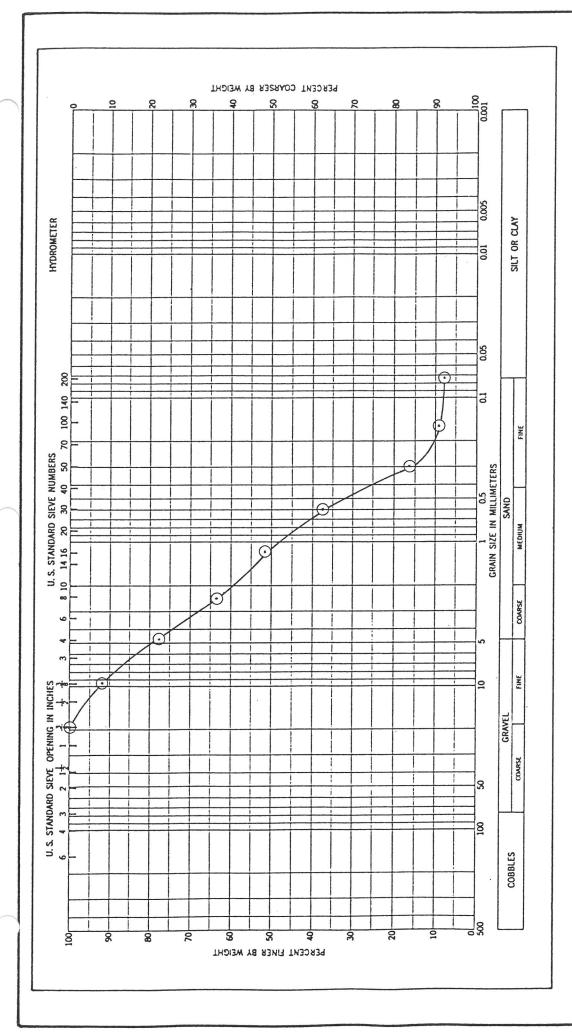

Sample No.	Sample No. Elev. or Depth	Classification	Nat w % LL PL	L	PL	Ы	Remarks
P-2D	54.0'-54.5'	54.0'-54.5' Gray coarse to fine sand, 16.2	, 16.2				
SS-28A		trace fine gravel, trace					
		silt					
		SP-SM					

PATRICK ENGINEERING INC.

Sample No.	Elev. or Depth	Classification	Nat w % LL	LL	PL	Ы	Remarks
P-3D	32.0-34.0	Grav coarse to fine sand 17.9	17.9				
SS-17B		and silt.					
		SM					

PATRICK ENGINEERING INC.

PEI Project No. 496B City of Springfield CWLP FGDS Landfill

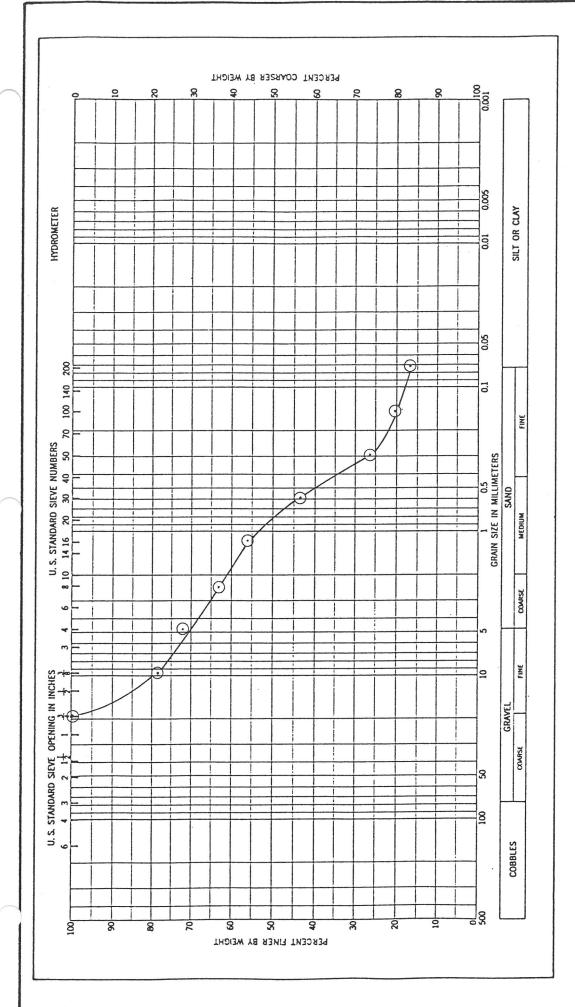

Sample No.	Elev. or Depth	Classification	Nat w % LL	LL	PL	ā	Remarks
P-3S	10.0'-12.0'	10.0'-12.0' Dark gray medium to fine					
SS-3		sand and silt, trace					
		coarse sand.					
		WS					
*							

sand and Silt, trace	coarse sand.	WS		
SS-3				

ENGINEERING INC.

PATRICK

PARTICLE SIZE DISTRIBUTION PARTICLE

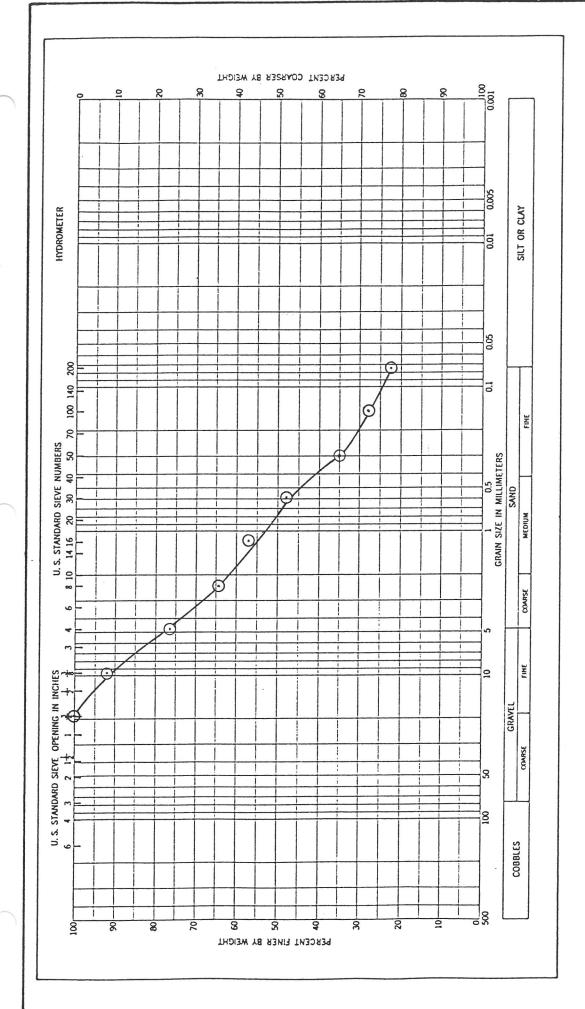

Elev. or Depth	Classification	Nat w% LL	LL	PL	Ы	Remarks		
36.0'-38.0'	Gray coarse to fine						CWLP FGDS	FGDS L
	sand, some fine gravel,							Ç
	trace silt						$C1 \tau Y$	CITY OF SPE
	MS-WS						PEI P	Project

Sample No.

SS-19 P-4

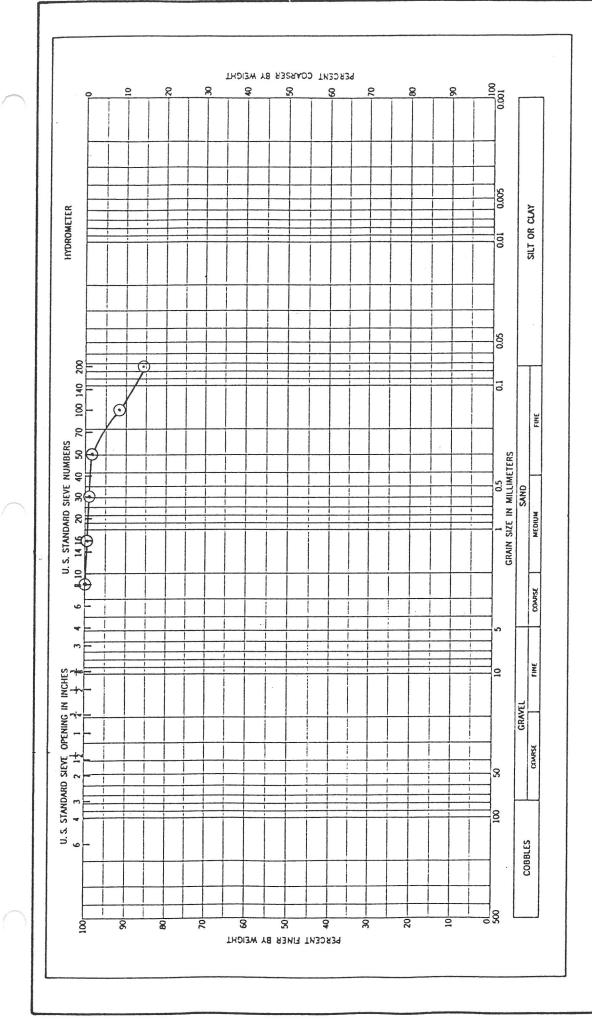
t No. 496B ringfield Landfill

PATRICK ENGINEERING INC.



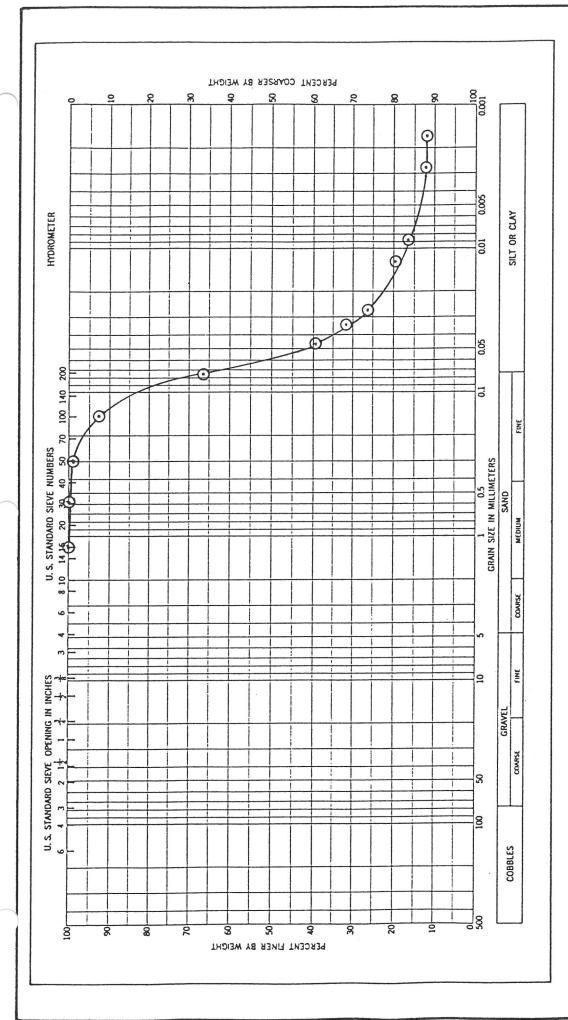
B

Sample No.	Elev. or Depth	Classification	Nat w% LL	LL	PL	PI	Remarks
P-5D	26.0'-28.0'	26.0'-28.0' Gray coarse to fine sand					
SS-14A		some fine gravel,					
		little silt.					
		MS					


CWLP FGD	city of	PEI Projec
DS Landfill	Springfield	ject No. 4961

ENGINEERING INC. PATRICK

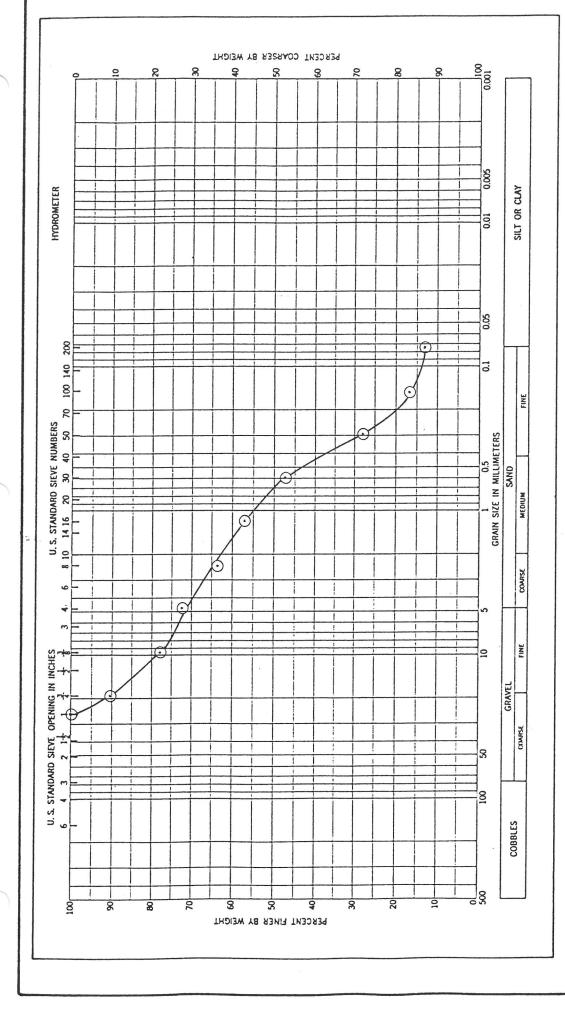
Sample No.	Elev. or Depth	Classification	Nat w % LL PL	LL	PL	PI	Remarks
P-6D	28.0'-30.0'	28.0'-30.0' Gray Coarse to fine	14.6				
SS-15		sand, some fine gravel,					
		some silt					
		SM					


PATRICK ENGINEERING INC.

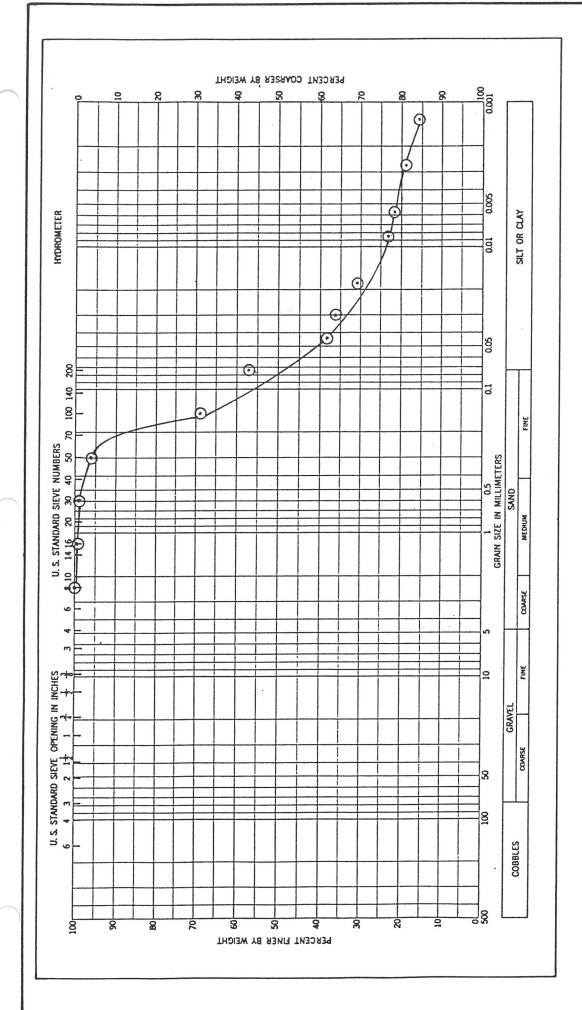
LP FGDS Landfill	ty of Springfield	I Project No. 496B
CWLP	City	PEI P

Sample No.	Elev. or Depth	Classification	Nat w % LL PL	LL	PL	Ы	Remarks
P-6S	6.0'-8.0'	Brown silty clay, little 23.4	23.4				
SS-2A		fine sand					
		CT					

		Z Z
		PATRICK ENGINEERING
		M
		PATRICK
_	- 1	

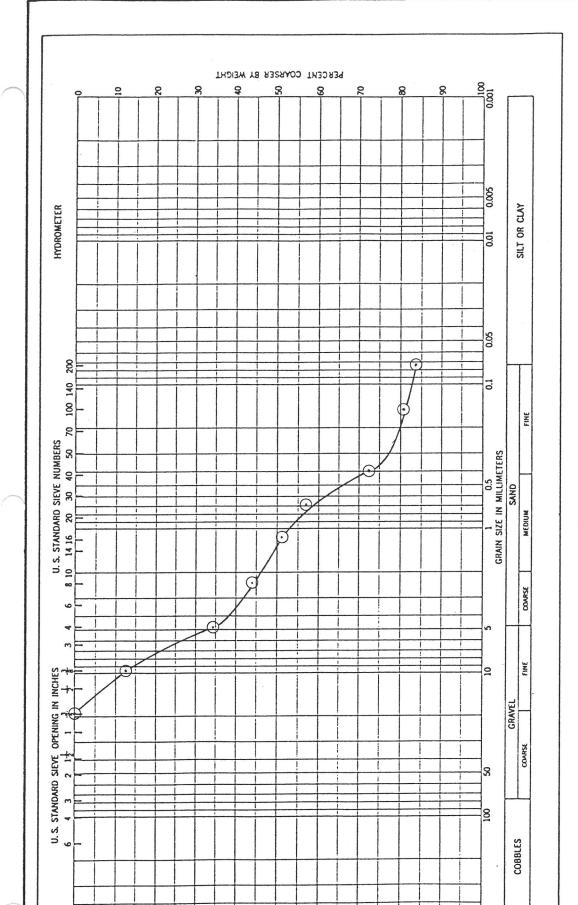


CWLP FGDS Landfill


Sample No.	Elev. or Depth	Classification	Nat w %	LL	PL	Ы	Remarks
P-7D	24.0'-26.0'	24.0'-26.0' Gray clayey silt and fine 24.3	24.3				
SS-13		sand					
		CL-ML					

ENGINEERING INC. PATRICK

PI Remarks					Contraction of the Contraction o
PL F					
LL					
Nat w% LL PL	10.9				
Classification	-30.0' Gray coarse to fine	sand, some coarse to	fine gravel, little silt.	SW-SM	
Elev. or Depth	28.0'-30.0'				
Sample No.	P-7D	SS-15			


111	ield	496B
andf	ingf	No.
DS L	Spr	ject
P FG	y of	Pro
CWL	Cit	PEI

Sample No.	Sample No. Elev. or Depth	Classification	Nat w % LL PL	L	PL	PI Remarks
P-7S	10.5'-11.0'	10.5'-11.0' Gray clayey silt to celler	1.7			
SS-1B		clayey sand				
		SC/ML				
	je.					

2				
10.5'-11.0' Gray clayey silt to and all to	clayey sand	SC/ML		
10.5'-11.0'			· C	

S ENGINEERING PATRICK

PARTICLE SIZE DISTRIBUTION PARTICLE

2

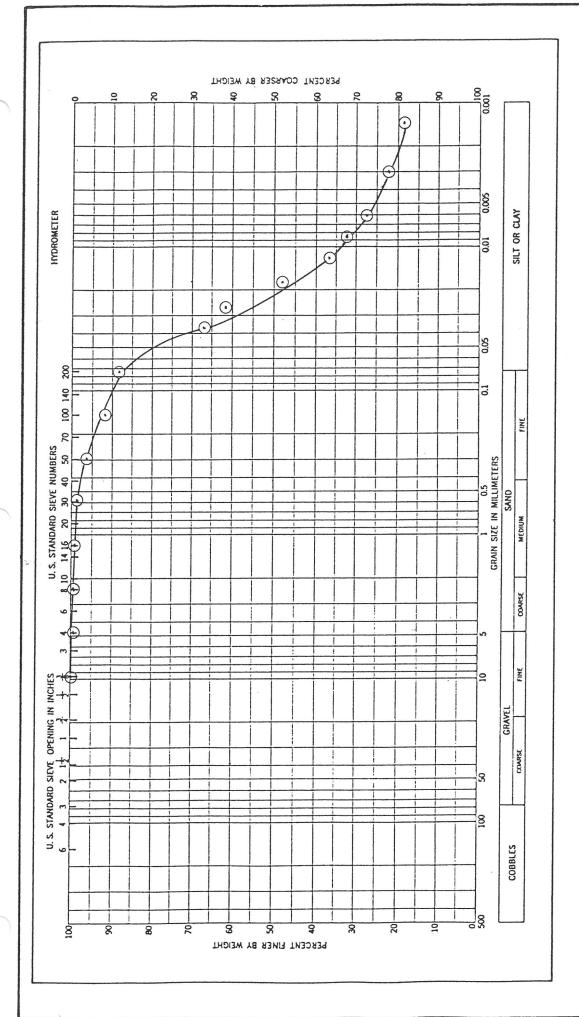
8

PERCENT FINER BY WEIGHT

8

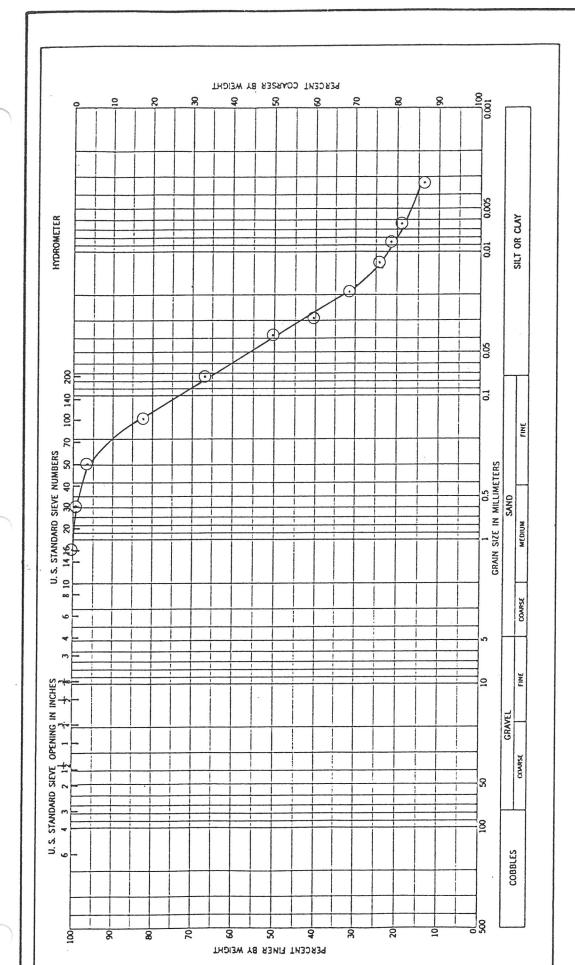
\$

8


20

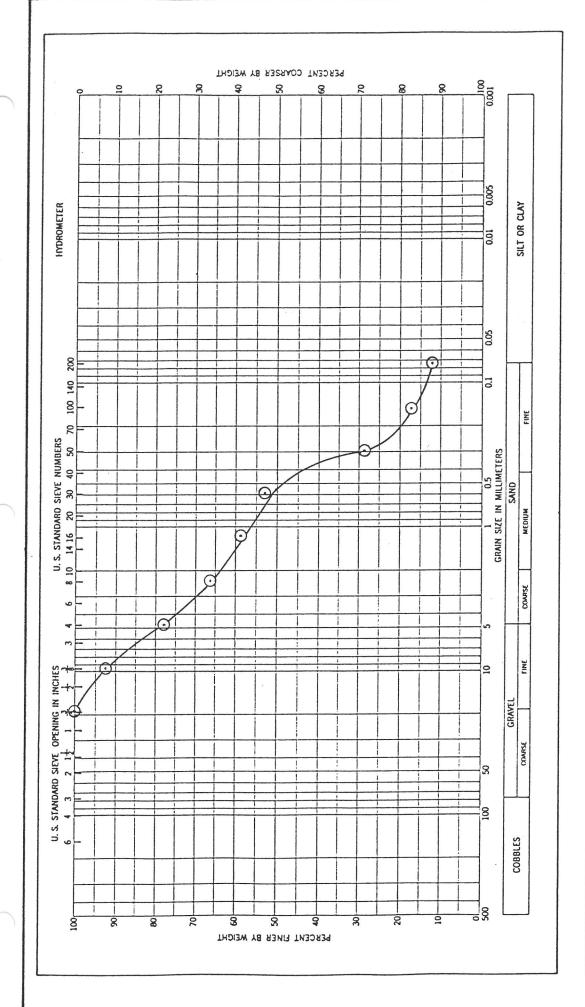
111	ield	496B
andf:	ingf	No.
GDS L	f Spr	oject
CWLP F	City o	PEI Pr
	O	щ

D-8D 04 01		Classification	Nat w% LL	LL	٩٢	ď	Remarks
	1-26 01	24 0'-26 0' Gray coarse to fine					
		sand and fine gravel,					
		little silt					
		SM					


Sample No. Elev. or Depth	Classification	Nat w% LL	LL	PL	Ы	Remarks
ا ا	24 0'-26 0' Gray coarse to fine					
Sa	sand and fine gravel,					
11	little silt					
	SM					

ENGINEERING INC. ATRICK 0

Sample No.	Elev. or Depth	Classification	Nat w% LL	LL	PL	Id	Remarks
P-8S	10.0'-12.0'	Dark gray to black	41.0				
SS-3		organic silty clay,					
		little coarse to fine					
		sand, wood present					
		TO				77	


N N	
O Z	
T T	
INE	
ENGINEERI	
PATRICK	
D	

City of Springfield
PEI Project No. 496B

Sample No.	Elev. or Depth	Classification	Nat w% LL PL	LL	PL	Id	Remarks
P-9D	50.0'-52.0'	Gray clayey silt and	20.7				
SS-26		medium to fine sand					
		CL-ML					

PATRICK ENGINEERING INC.

Sample No.	Elev. or Depth	Classification	Nat w% LL	LL	PL	PI	PI Remarks
P-9D	56.0'-58.0'	6.0'-58.0' Gray coarse to fine sand,					
SS-29A		some fine gravel, little					
		silt					
		WS					

PATRICK ENGINEERING INC.

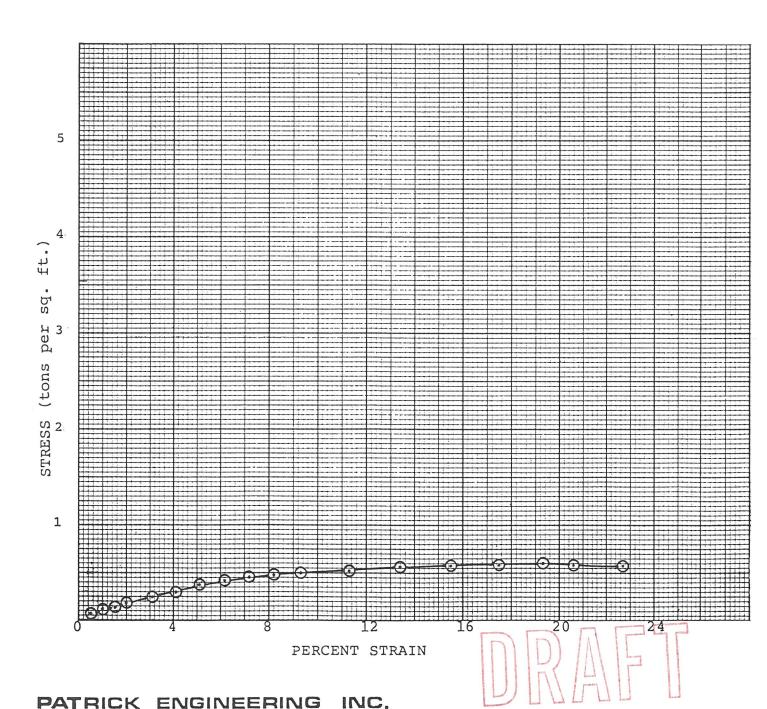
UNCONFINED COMPRESSIVE STRENGTHS

UNCONFINED COMPRESSION TEST

Job No. 496B Client: City of Springfield (CWLP)

Sample: CB-1 3T-5 8.0'-10.0'

Sample Height: 5.8 in dia.: 2.8 in


Moisture content 29.4%

Dry density: 94.4 pcf

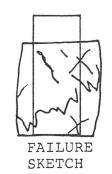
Max. compr. stress: 0.6 tsf @ 15.0 % strain

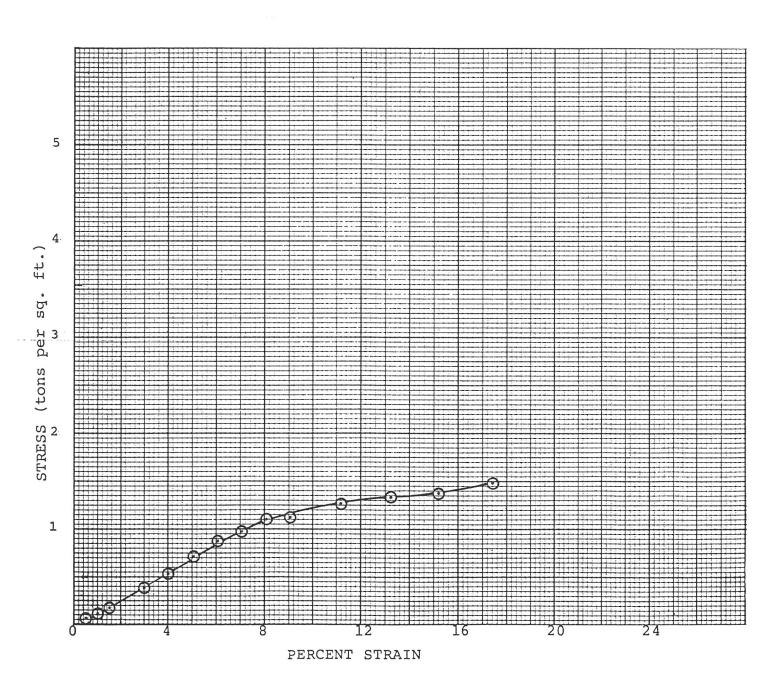
Remarks:

UNCONFINED COMPRESSION TEST

Job No. 496B Client: City of Springfield (CWLP)

Sample: CB-6, 3T-7 12.0'-14.0'


Sample Height: 5.9 in dia.: 2.8 in


Moisture content 26.4%

Dry density: 99.0 pcf

Max. compr. stress:1.4 tsf @ 15.0 % strain

Remarks:

PATRICK ENGINEERING INC.

				*** **********************************		
		N 10				
			į			
			~~~~~			
TRIAX	IAL HYD	RAULIC (	CONDUCT	TIVITY T	TEST RE	SUL
TRIAX	IAL HYD	RAULIC C	CONDUCT	TIVITY 7	TEST RE	SUL
TRIAX	IAL HYD	RAULIC C	CONDUCT	TIVITY 7		
		RAULIC C	CONDUCT		TEST RE	
TRIAX			CONDUCT			
			CONDUCT			
			CONDUCT			

Job No.	496B		Initial WC%	Final W%	
Boring Number:	B-3	- Tare no.	136	131	
Sample No.	3T-20	Tare wt. (g)	21.41	21.1	
Description:	GRAY CL-ML	Wt. wet soil & tare (g)		100.55	
		Wt. dry soil & tare (g)		85.82	
		Moisture Content (%)		22.76	
	Diameter (cm)	7.07		7/M:	
	Height (cm)	15.02	-	1/5/1	
	Volume (cm3)	589.7			
	Wet Wt. (g)	1226.70			
	Dry Density (pcf)	104.2		MIEW	
	Specific Gravity	2.70	_ 0 = 0		
	Void Ratio	0.618	•		
	Saturation (%)	108			
	Dimensional Change	During Consolidation (	assuming isotropic	consolidation)	
Manometer change (in)=	Top:	-	Bottom:		
Volume change (cm3):		15.0	•		
Consolidated volume (cm3):		574.6			
Dry weight of sample (g):		984.25			
% change each dimension:		0.00849			
Consolidated diameter (cm):		7.01	2.76	in.	
Consolidated height (cm):		14.89	5.86		
Consolidated area (cm2):		38.6	5.98		
Consolidated dry density (pcf):	:	106.9			
Consolidated void ratio:		0.576			
Consolidated % saturation:		107			
	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL4	TRIAL
Cell pressure (psi):	69.7	69.7			
Top pressure (psi):	58.2	58.2			
Bottom pressure (psi):	61.3	61.2			
Gradient:	15	14	0	0	
Confining Pressure (psi):	9.95	10	*Error*	*Error*	*Error
Date initial reading:	10/27/92	10/28/92			
Time initial reading:	4:53 PM	5:07 PM			
Date final reading:	10/28/92	10/29/92			
Time final reading:	8:57 AM	8:41 AM			
Initial man. rdg. (in) Top=	66.05	68.3			
Bottom=	66.1	64	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -		
Final man. rdg. (in) Top=	67.55	69.6			
Bottom=	64.7	62.7			
∆ Top (in.)	1.5	1.3	0	0	(
Δ Bottom (in.)	1.40	1.3	0	0	(
∆ Time (hrs.)	16.07	15.57	0.00	0.00	0.00
Top "K" value (cm/sec) =	8.9E-08	8.2E-08	*Error*	*Error*	*Error
Bottom "K" value (cm/sec) =	8.3E-08	8.2E-08	*Error*	*Error*	Error
			4 1 1		9 3 9 8

Coefficient of Permeability - 0	Calculation Sheet		Tech JCV	Check -	
Job No.	496B		Initial WC%	Final W%	
Boring Number:	B-4	Tare no.	log	201	
Sample No.	3T-4	Tare wt. (g)	20.41	21.03	•
Description:		Wt. wet soil & tare (g)	103.90	154.45	
·		Wt. dry soil & tare (g)	85.66	126.65	•
		Moisture Content (%)	27.95	26.32	•
	Diameter (cm)	7.25			
	Height (cm)	12.92			
	Volume (cm3)	533.4	•		
	Wet Wt. (g)	1079.07			
	Dry Density (pcf)	98.7	•		
	Specific Gravity	2.70			
	Void Ratio	0.708	•		
	Saturation (%)	107			
	Dimensional Change	During Consolidation (	(assuming isotropic	consolidation)	
Manometer change (in)=	Тор:	0.8	. Bottom:	1.10	
Volume change (cm3):		3.4			
Consolidated volume (cm3):		529.9			
Dry weight of sample (g):		843.33			
% change each dimension:		0.00215			
Consolidated diameter (cm):		7.23	2.85	in.	
Consolidated height (cm):		12.89	5.08	in.	
Consolidated area (cm2):		41.1	6.37	in2	
Consolidated dry density (pcf):	:	99.3			
Consolidated void ratio:		0.697			
Consolidated % saturation:		102			
	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL4	TRIAL
Cell pressure (psi):	60	60.1			
Top pressure (psi):	47.6	47.8			Y
Bottom pressure (psi):	51.4	51.4			
Gradient:	21	20	0	0	
Confining Pressure (psi):	10.5	10.5	*Error*	*Error*	*Erroi
Date initial reading:	8/28/92	8/28/92	,		
Time initial reading:	9:04 AM	10:02 PM			
Date final reading:	8/28/92	8/29/92			
Time final reading:	1:44 PM	8:43 PM			
Initial man. rdg. (in) Top=	64.75	66			
Bottom=	71	69.8			
Final man. rdg. (in) Top=	65.25	67.6			
Bottom=	70.5	68.2			
∆Top (in.)	0.50	1.60	0	0	
∆ Bottom (in.)	0.50	1.60	0	0	(
	4.67	22.68	0.00	0.00	0.0
∆Time (hrs.)					
∆Time (hrs.)  Top "K" value (cm/sec) =	6.8E-08	4.7E-08 4.7E-08	*Error* *Error*	*Error* *Error*	*Error *Error

Obelia citto i i citto ability	Calculation Sheet		Tech JCV	Check -	
Job No.	496B		Initial WC%	Final W%	
Boring Number:	CB-1	Tare no.	log	225	
Sample No.	3T-5	Tare wt. (g)	20.56	20.89	
Description:	Vry Dk Gr Silty Clay	Wt. wet soil & tare (g)	124.71	118.38	
		Wt. dry soil & tare (g)		97.34	
		Moisture Content (%)		27.52	
	Diameter (cm)	7.20			
	Height (cm)	14.17	•		
	Volume (cm3)	576.9			
	Wet Wt. (g)	1124.63			
	Dry Density (pcf)	95.5	*		
	Specific Gravity	2.70		,	
	Void Ratio	0.764			
	Saturation (%)	97			
	Dimensional Change	During Consolidation (	assuming isotropic	consolidation)	
Manometer change (in)=	Top:	6.7	Bottom:	4.30	
Volume change (cm3):		19.9			
Consolidated volume (cm3):		557.0			
Dry weight of sample (g):		882.86			
% change each dimension:		0.01150			
Consolidated diameter (cm):		7.12	2.80	in.	
Consolidated height (cm):		14.01	5.51	in.	
Consolidated area (cm2):		39.8	6.17	in2	
Consolidated dry density (pcf)	):	98.9			
Consolidated void ratio:		0.704			
Consolidated % saturation:		106			
,	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL4	TRIAL
Cell pressure (psi):	59.4	59.4			
Top pressure (psi):	47.4	47.4			1.0
Bottom pressure (psi):	51.7	51.7			
Gradient:	22	22	0	- 0	1
Confining Pressure (psi):	9.85	9.85	*Error*	*Error*	*Error
Date initial reading:	8/27/92	8/27/92			
Time initial reading:	9:26 AM	1:45 PM			
Date final reading:	8/27/92	8/27/92			
Time final reading:	1:45 PM	8:03 PM			
Initial man. rdg. (in) Top=	62.65	64.2			
Bottom=	68.8	67.9			
Final man. rdg. (in) Top=	64.2	65.7			
Bottom=	67.9	66.7			······································
∆Top (in.)	1.55	1.5	0	0	(
	0.9	1.2	0	0	(
	4.32	6.30	0.00	0.00	0.00
∆ Bottom (in.) ∆ Time (hrs.)		2 -F 2-1		. <del></del>	
	2.2E-07[ 1.3E-07	1.5E-07 1.2E-07	*Error* *Error*	*Error*	*Error

Coefficient of Permeability -	Calculation Sheet		Tech JCV	Check -	
lob No.	496B		Initial WC%	Final W%	
Boring Number:	CB-2	Tare no.	log	266	
Sample No.	3T-9	Tare wt. (g)	20.98	20.61	
Description:		Wt. wet soil & tare (g)	110.34	86.99	
		Wt. dry soil & tare (g)	85.81	69.88	
		Moisture Content (%)	37.84	34.73	
	Diameter (cm)	7.15			
	Height (cm)	7.11			
	Volume (cm3)	285.5			
	Wet Wt. (g)	501.73	•		
	Dry Density (pcf)	79.6		,	
	Specific Gravity	2.70			
	Void Ratio	1.118			
	Saturation (%)	91			
	Dimensional Change	During Consolidation (	assuming isotropic	consolidation)	
fanometer change (in)=	Тор:	3.4	Bottom	4.25	
'olume change (cm3):		13.8			
Consolidated volume (cm3):		271.6			
ry weight of sample (g):		364.00			
6 change each dimension:		0.01616			
consolidated diameter (cm):		7.03	2.77	in.	
consolidated height (cm):		7.00	2.75	in.	
consolidated area (cm2):		38.9	6.02	in2	
consolidated dry density (pcf)	:	83.6			
consolidated void ratio:		1.015			
consolidated % saturation:		92			
	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL4	TRIAL S
ell pressure (psi):	50.1	50.1			
op pressure (psi):	38.8	38.8			
ottom pressure (psi):	40.6	40.6			
radient:	18	18	- 0	0	(
onfining Pressure (psi):	10.4	10.4	*Error*	*Error*	*Error
ate initial reading:	8/27/92	8/27/92			
me initial reading:	9:25 AM	1:40 AM			
ate final reading:	8/27/92	8/27/92			
me final reading:	1:40 PM				
itial man. rdg. (in) Top=	65.4	66.9			
Bottom=	72.85	71.6	· · · · · · · · · · · · · · · · · · ·		
nal man. rdg. (in) Top=	66.9	68.8			
Bottom=	71.6	69.9			
Top (in.)	1.5	1.9	0	0	C
Bottom (in.)	1.25	1.7	0	0	C
Time (hrs.)	4.25	6.10	0.00	0.00	0.00
Top "K" value (cm/sec) =	2.7E-07	2.4E-07	*Error*	*Error*	*Error*
ottom "K" value (cm/sec) =	2.2E-07	2.1E-07	*Error*	*Error*	*Error*

Coefficient of Permeability -	Calculation Sheet		Tech JCV	Check -	-
ob No.	496B	_	Initial WC%	Final W%	
Boring Number:	CB-4	Tare no.	log	228	_
Sample No.	3T-9	Tare wt. (g)	20.60	20.84	_
Description:	Dk Gr Silt	Wt. wet soil & tare (g)	111.80	75.91	_
		Wt. dry soil & tare (g)	94.24	65.37	_
		Moisture Content (%)	23.85	23.67	_
	Diameter (cm)	7.20	_		
	Height (cm)	14.75			
	Volume (cm3)	600.5			
	Wet Wt. (g)	1231.78			
	Dry Density (pcf)	103.3	i .		
	Specific Gravity	2.70			
	Void Ratio	0.630			
	Saturation (%)	102			
	Dimensional Change	During Consolidation (	assuming isotropic	consolidation)	
fanometer change (in)=	Top:	6.2	Bottom:	5.10	
olume change (cm3):	·	20.4			-
consolidated volume (cm3):		580.1			
ry weight of sample (g):		994.61			
change each dimension:		0.01135			
onsolidated diameter (cm):		7.12	2.80	in.	
onsolidated height (cm):		14.58	5.74	in.	
onsolidated area (cm2):		39.8	6.17	in2	
onsolidated dry density (pcf)	):	107.0			
onsolidated void ratio:		0.575			
onsolidated % saturation:		111			
	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL4	TRIAL
ell pressure (psi):	40.1	40.1	40.1		
op pressure (psi):	28.2	28.4	28.2	****	
ottom pressure (psi):	31.6	31.4	31.6		
radient:	16	14	16		
onfining Pressure (psi):	10.2	10.2	10.2		*Error
ate initial reading:	8/26/92	8/26/92	8/26/92		
me initial reading:	7:52 AM	9:58 PM	11:19 AM		
ate final reading:	8/26/92	8/27/92	8/26/92		
me final reading:	9:58 PM	8:36 AM	9:58 PM		
itial man. rdg. (in) Top=	59.2	66.9	61.35	***************************************	
Bottom=		63	68.3		
nal man. rdg. (in) Top=	66.9	71.75	66.9		
Bottom=	63	58.15	63		
Top (in.)	7.7	4.85	5.55	0	(
Bottom (in.)	7.05	4.85	5.3	0	
Time (hrs.)	14.10	10.63	10.65	0.00	0.00
Top "K" value (cm/sec) =	4.5E-07	4.3E-07	4.3E-07	*Error*	*Error
ottom "K" value (cm/sec) =	4.1E-07	4.3E-07	4.1E-07	*Error*	*Error

Coefficient of Permeability -	Calculation Sheet		Tech JCV	Check -	
Job No.	496B		Initial WC%	Final W%	
Boring Number:	CB-6	Tare no.	log	200	
Sample No.	3T-7	Tare wt. (g)	20.94	20.45	
Description:	Gr. Silty Clay	Wt. wet soil & tare (g)	124.57	149.79	
		Wt. dry soil & tare (g)	100.75	121.98	
		Moisture Content (%)	29.85	27.39	
	Diameter (cm)	7.10	_		
	Height (cm)	9.09	_		
	Volume (cm3)	359.9			
	Wet Wt. (g)	713.69			
	Dry Density (pcf)	95.3	. s		
	Specific Gravity	2.70			
	Void Ratio	0.768			
	Saturation (%)	105			
	Dimensional Change	During Consolidation (	assuming isotropic	consolidation)	
Manometer change (in)=	Тор:	4.7	Bottom:	2.65	
Volume change (cm3):		13.3			
Consolidated volume (cm3):		346.6			
Dry weight of sample (g):		549.64			
% change each dimension:		0.01232			
Consolidated diameter (cm):		7.01	2.76	in.	
Consolidated height (cm):		8.98	3.53	in.	
Consolidated area (cm2):		38.6	5.99	in2	
Consolidated dry density (pcf)	:	99.0			
Consolidated void ratio:		0.703			
Consolidated % saturation:		105			
	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL4	TRIAL
Cell pressure (psi):	50.2	50.4	50.2		
Top pressure (psi):	38.5	38.9	38.5		
Bottom pressure (psi):	41.3	41.4	41.3		
Gradient:	22	20	22	0	(
Confining Pressure (psi):	10.3	10.25	10.3	*Error*	*Error
Date initial reading:	8/28/92	8/28/92	8/28/92		
Time initial reading:	1:43 PM	3:33 PM	1:43 PM		
Date final reading:	8/28/92	8/28/92	8/28/92		
Time final reading:	3:33 PM	10:01 PM	10:01 PM		
Initial man. rdg. (in) Top=	62	63.9	62		
Bottom=	67.3	66	67.3		***************************************
Final man. rdg. (in) Top=	63.9	68.7	68.7		
Bottom=	66	61.55	61.55		
∆Top (in.)	1.9	4.8	6.7	0	C
	1.3	4.45	5.75	0	C
∆ Bottom (in.)					0.00
	1.83	6.47	8.30	0.00	0.00
Δ Bottom (in.)		6.47 5.3E-07 4.9E-07	8.30 5.1E-07 4.4E-07	0.00 *Error* *Error*	*Error*

Coefficient of Permeability -	Calculation Sheet		Tech JCV	Check -	
Job No.	496B		Initial WC%	Final W%	
Boring Number:	P-2D	Tare no.	105	248	
Sample No.	3T-15	Tare wt. (g)	21.99	20.32	
Description:	Brown CL-ML	Wt. wet soil & tare (g)		116.65	
		Wt. dry soil & tare (g)		97.23	
		Moisture Content (%)		25.25	
	Diameter (cm)	7.24			
	Height (cm)	15.28	•		
	Volume (cm3)	629.1	-		
	Wet Wt. (g)	1257.45			
	Dry Density (pcf)	99.1			
	Specific Gravity	2.70			
	Void Ratio	0.701	-		
	Saturation (%)	100			
	Cataration (70)	100			
	Dimensional Change	During Consolidation (	assuming isotropic	consolidation)	
Manometer change (in)=	_	4.00	Bottom:	•	
Volume change (cm3):		10.9			
Consolidated volume (cm3):		618.2			
Dry weight of sample (g):		998.67			
% change each dimension:		0.00575			
Consolidated diameter (cm):		7.20	2.83	in	
Consolidated height (cm):		15.19	5.98		
Consolidated area (cm2):		40.7			
		100.8	6.31	In2	
Consolidated dry density (pcf) Consolidated void ratio:					
		0.671			
Consolidated % saturation:		102			
	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL4	TRIAL 5
Cell pressure (psi):	59.7	59.7		900000000000000000000000000000000000000	
Top pressure (psi):	48	47.3			
Bottom pressure (psi):	51.7	51.1			
Gradient:	17	18	0	0	0
Confining Pressure (psi):	9.85	10.5	*Error*	*Error*	*Error*
Date initial reading:	8/3/92	8/3/92			
Time initial reading:	8:49 AM	2:39 PM			
Date final reading:	8/3/92	8/3/92			
Time final reading:	2:16 PM	4:27 PM			
Initial man. rdg. (in) Top=	63.5	68.7			
Bottom=	68	63.05		~	
Final man. rdg. (in) Top=	68.7	70.4			
Bottom=	63.1	61.45			
ΔTop (in.)	5.2	1.7	0	0	0
A Dettera (in )	4.9	1.6	0	0	0
Δ Bottom (in.)			0.00	0.00	0.00
Δ Time (hrs.)	5.45	1.80	0.00	0.00	0.00
	5.45 7.4E-07	1.80 7.1E-07	*Error*	*Error*	*Error*

^{*}percentage of "k" values for trials 1 and 2 added for weighted composite value for 7.25 hours.

Coefficient of Permeability - 0	Salculation Sheet		Tech JCV	Check -	
Job No.	496B		Initial WC%	Final W%	
Boring Number:	P-3D	Tare no.	213	213	
Sample No.	3T-9	Tare wt. (g)	20.63	20.63	
Description:	Olive gray CL w/ silt	Wt. wet soil & tare (g)	98.59	111.47	
		Wt. dry soil & tare (g)		89.49	
		Moisture Content (%)		31.92	
	Diameter (cm)	7.20			
	Height (cm)	14.78	•		
	Volume (cm3)	601.8	•		
	Wet Wt. (g)	1157.82			
	Dry Density (pcf)	89.2			
	Specific Gravity	2.70			
	Void Ratio	0.888	•		
	Saturation (%)	105			
	Dimensional Change	During Consolidation (	assuming isotropic	consolidation)	
Manometer change (in)=	Top:	-	Bottom:		
Volume change (cm3):	. 36.	7.9			
Consolidated volume (cm3):		593.9			
Dry weight of sample (g):		860.64			
% change each dimension:		0.00436			
Consolidated diameter (cm):		7.17	2.82	in	
Consolidated height (cm):		14.72	5.79		
Consolidated area (cm2):		40.4	6.26		
Consolidated dry density (pcf):		90.4	0.20	11 12	
Consolidated void ratio:	•	0.863			
Consolidated % saturation:		100			
	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL4	TRIAL
Cell pressure (psi):	69.3	69.3			
Top pressure (psi):	57.8	57.8			
Bottom pressure (psi):	61.2	61.2			
Gradient:	16	16	0	0	
Confining Pressure (psi):	9.8	9.8	*Error*	*Error*	*Error
Date initial reading:	11/3/92	11/2/92			
Time initial reading:	4:25 PM	5:07 PM			
Date final reading:	11/4/92	11/3/92		H.	
Time final reading:	8:25 AM	8:26 AM			
Initial man. rdg. (in) Top=	65.05	64.7			
Bottom=	63.75	64.1	V-14.		
Final man. rdg. (in) Top=	65.3	65			
Bottom=	63.5	63.9			
$\Delta$ Top (in.)	0.25	0.30	0.00	0.00	0.0
Δ Pop (in.) Δ Bottom (in.)	0.25	0.20	0.00	0.00	0.0
Δ Time (hrs.)	16.00	15.32	0.00	0.00	
	1.3E-08	1.6E-08	*Error*	*Error*	0.0 *Error
Top "K" value (cm/sec) =	1.3E-08	1.1E-08	*Error*	*Error*	*Error *Error
Bottom "K" value (cm/sec) =					

			Tech JCV	Check -	
Job No.	496B		Initial WC%	Final W%	
Boring Number:	P-4	Tare no.	LOG	114	
Sample No.	3T-11	Tare wt. (g)		21.27	
Description:	GRAYCH	Wt. wet soil & tare (g)		91.69	
		Wt. dry soil & tare (g)		68.22	
		Moisture Content (%)	40.88	49.99	
	Diameter (cm)	7.26			
	Height (cm)	14.13	•		
	Volume (cm3)	584.9	•		
	Wet Wt. (g)	1032.84			
	Dry Density (pcf)	78.2	• »		
	Specific Gravity	2.70			
	Void Ratio	1.154	•		
	Saturation (%)	96			
	Dimensional Change	During Consolidation (	(assuming isotropic	consolidation)	
Manometer change (in)=	Top:	-	Bottom:	450	
Volume change (cm3):	, 1	10.9	•		
Consolidated volume (cm3):		574.0			
Dry weight of sample (g):		733.13			
% change each dimension:		0.00624			
Consolidated diameter (cm):		7.21	2.84	in.	
Consolidated height (cm):		14.04	5.53		
Consolidated area (cm2):		40.9	6.34	in2	
Consolidated dry density (pcf)	ı:	79.7			
Consolidated void ratio:		1.114			
Consolidated % saturation:		121			
	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL4	TRIAL
Cell pressure (psi):	130.9	130.5	130.9		
Top pressure (psi):	119.1	119.1	119.4		
Bottom pressure (psi):	122.6	122.5	122.7	*	
Gradient:	18	17	17	0	
Confining Pressure (psi):	10.05	9.7	9.85	*Error*	*Error
Date initial reading:	11/4/92	11/4/92	11/5/92		
Fime initial reading:	8:42 AM	5:18 PM	8:55 AM		
Date final reading:	11/4/92	11/5/92	11/5/92		
Fime final reading:	5:18 PM	8:55 AM	5:16 PM		
nitial man. rdg. (in) Top=	60.8	61.1	61.3		
Bottom=	61.4	61.05	60.6		
Final man. rdg. (in) Top=	61.1	61.3	61.5		
Bottom=	61.05	60.6	60.3		
Top (in.)	0.30	0.20	0.20	0.00	0.00
A Bottom (in.)	0.35	0.45	0.30	0.00	0.00
1 Time (hrs.)	8.60	15.62	8.35	0.00	0.00
Top "K" value (cm/sec) =	2.6E-08	9.9E-09	1.9E-08	*Error*	*Error
	2.02 00	2.2E-08	2.9E-08	*Error*	*Error

pefficient of Permeability -	Calculation Sheet		Tech JCV	Check -	
b No.	496B		Initial WC%	Final W%	
oring Number:	P-5S	Tare no.	LOG	254	
ample No.	3T-2	- Tare wt. (g)		20.75	
escription:	VERY DK. GRAY CL	Wt. wet soil & tare (g)		96.87	
		Wt. dry soil & tare (g)	B	81.8	
		Moisture Content (%)		24.68	
	Diameter (cm)	7.10			
	Height (cm)	12.81	-		
	Volume (cm3)	507.2			
	Wet Wt. (g)	982.85			
	Dry Density (pcf)	95.7			
	Specific Gravity	2.70			
	Void Ratio	0.760			
	Saturation (%)	93			
	Dimensional Change	During Consolidation	(assuming isotropic	consolidation)	
anometer change (in)=	Top:	1.9	Bottom:	-1.05	
olume change (cm3):		1.5			
onsolidated volume (cm3):		505.6			
y weight of sample (g):		778.19			
change each dimension:		0.00101			
onsolidated diameter (cm):		7.09	2.79	in.	
onsolidated height (cm):		12.80	5.04	in.	
onsolidated area (cm2):		39.5	6.12	in2	
ensolidated dry density (pcf)	:	96.0			
onsolidated void ratio:		0.754			
onsolidated % saturation:		88			
	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL4	TRIAL
ell pressure (psi):	89.9	90			
p pressure (psi):	78.6	78.9			
ttom pressure (psi):	81.6	81.5			
adient:	16	14	0	0	
onfining Pressure (psi):	9.8	9.8	*Error*	*Error*	*Erro
te initial reading:	11/4/92	11/4/92			
ne initial reading:	8:42 AM	5:17 PM			
te final reading:	11/4/92	11/5/92			
ne final reading:	5:17 PM	8:56 AM			
tial man. rdg. (in) Top=	64.25	65			
Bottom=	68.8	68			
nal man. rdg. (in) Top=	65	66.15			
Bottom=	68	66.75			
op (in.)	0.75	1.15	0.00	0.00	0.0
7-4 (:- \	0.80	1.25	0.00	0.00	0.0
Bottom (in.)	8.58	15.65	0.00	0.00	0.0
ime (hrs.)	0.00				
	7.2E-08	7.0E-08	*Error*	*Error*	*Error

Boring Number: Sample No. Description:	496B P7D	•	Initial WC%	Final W%	
Sample No. Description:		•		milai VV%	
Description:	OT C	Tare no.	log	203	
	3T-5	Tare wt. (g)	20.46	20.6	
		Wt. wet soil & tare (g)	116.29	136.53	
		Wt. dry soil & tare (g)	98.60	115.96	
		Moisture Content (%)	22.64	21.57	
	Diameter (cm)	7.23			
	Height (cm)	14.13	-		
	Volume (cm3)	580.1			
	Wet Wt. (g)	1153.85			
	Dry Density (pcf)	101.2			
	Specific Gravity	2.70			
	Void Ratio	0.665	•		
	Saturation (%)	92			
	Dimensional Change	During Consolidation (	(assuming isotropic	consolidation)	
Manometer change (in)=	Top:	3.5	Bottom:	3.25	
Volume change (cm3):		12.2			
Consolidated volume (cm3):		567.9			
Dry weight of sample (g):		940.85			
% change each dimension:		0.00702			
Consolidated diameter (cm):		7.18	2.83	in.	
Consolidated height (cm):		14.03	5.52	in.	
Consolidated area (cm2):		40.5	6.27	in2	
Consolidated dry density (pcf):		103.4			
Consolidated void ratio:		0.630			
Consolidated % saturation:		92			
	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL4	TRIAL
Cell pressure (psi):	79.6	79.6			
Top pressure (psi):	68	68			
Bottom pressure (psi):	71.7	71.7			
Gradient:	19	19	0	0	
Confining Pressure (psi):	9.75	9.75	*Error*	*Error*	*Error
Date initial reading:	8/31/92	8/31/92			
Time initial reading:	9:16 AM	9:16 AM			
Date final reading:	8/31/92	8/31/92			
Time final reading:	12:14 PM	5:00 PM			
Initial man. rdg. (in) Top=	66.5	66.5			
Bottom=	69.4	69.4			
Final man. rdg. (in) Top=	67.35	68.7			
Bottom=	68.55	67.2			
∆Top (in.)	0.85	2.2	0	. 0	(
∆ Bottom (in.)	0.85	2.2	0	0	
∆Time (hrs.)	2.97	7.73	0.00	0.00	0.0
Top "K" value (cm/sec) =	2.1E-07	2.0E-07	*Error*	*Error*	*Error
Bottom "K" value (cm/sec) =	2.1E-07	2.0E-07	*Error*	*Error*	*Error

Coefficient of Permeability - 0	Calculation Sheet		Tech JCV	Check -	
Job No.	496B	_	Initial WC%	Final W%	
Boring Number:	P-7M	Tare no.	log	265	
Sample No.	3T-2	Tare wt. (g)	20.65	20.65	
Description:		Wt. wet soil & tare (g)	126.92	182.16	
		Wt. dry soil & tare (g)	107.43	154.42	
		Moisture Content (%)	22.46	20.74	
	Diameter (cm)	7.35			
	Height (cm)	14.04			
	Volume (cm3)	595.7			
	Wet Wt. (g)	1185.50			
	Dry Density (pcf)	101.4			
	Specific Gravity	2.70			
	Void Ratio	0.661			
	Saturation (%)	92			
	Dimensional Change	During Consolidation (	assuming isotropic	consolidation)	
Manometer change (in)=	Top:	6.6	Bottom:	3.15	
Volume change (cm3):		17.6			
Consolidated volume (cm3):		578.1			
Dry weight of sample (g):		968.08			
% change each dimension:		0.00987			
Consolidated diameter (cm):		7.28	2.87	in.	
Consolidated height (cm):		13.90	5.47	in.	
Consolidated area (cm2):		41.6	6.45	in2	
Consolidated dry density (pcf):		104.5			
Consolidated void ratio:		0.612			
Consolidated % saturation:		91			
is.	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL4	TRIAL 5
Cell pressure (psi):	49.9	49.9	1111/120	1111/124	THAL
Top pressure (psi):	38.4	38.4	***************************************		
Bottom pressure (psi):	41.7	41.7			
Gradient:	17	17	0	0	(
Confining Pressure (psi):	9.85	9.85	*Error*	*Error*	*Error
Date initial reading:	8/31/92	8/31/92			
Time initial reading:	12:13 PM	9:14 AM			
Date final reading:	8/31/92	8/31/92			
Time final reading:	4:54 PM	4:54 PM			
Initial man. rdg. (in) Top=	63.5	62.8			
Bottom=	69.35	69.8			
Final man. rdg. (in) Top=	64.3	64.3		11.555	
Bottom=	68.6	68.6	2) 0		
_ Δ Top (in.)	0.80	1.50	0	0	0
Δ Bottom (in.)	0.75	1.20	0	0	C
Δ Time (hrs.)	4.68	7.67	0.00	0.00	0.00
Top "K" value (cm/sec) =	1.3E-07	1.5E-07	*Error*	*Error*	*Error*
	1.2E-07	1.2E-07	*Error*	*Error*	*Error*
Bottom "K" value (cm/sec) =	1.22-07	1.22-07	LIIOI	Liloi	LITOI

Coefficient of Permeability -	Calculation Sheet		Tech JCV	Check -	
Job No.	496B		Initial WC%	Final W%	
Boring Number:	P-9D	Tare no.	140	227	
Sample No.	3T-8	Tare wt. (g)	21.39	20.86	
Description:	VERY DK. GR. CL	Wt. wet soil & tare (g)	157.72	67.52	
		Wt. dry soil & tare (g)	132.45	58.86	
		Moisture Content (%)		22.79	
	Diameter (cm)	7.11			
	Height (cm)	14.93	•		
	Volume (cm3)	592.8	•		
	Wet Wt. (g)	1192.37			
	Dry Density (pcf)	102.3	• •		
	Specific Gravity	2.70			
	Void Ratio	0,648	•		
	Saturation (%)	95			
Manometer change (in)=	Dimensional Change	During Consolidation (	assuming isotropic Bottom:		
	τορ.	24.0		3.33	
Volume change (cm3):		568.8			
Consolidated volume (cm3):					
Dry weight of sample (g):		971.35			
% change each dimension:		0.01348	0.76	i.e.	
Consolidated diameter (cm):		7.01	2.76		
Consolidated height (cm):		14.73	5.80		
Consolidated area (cm2):	_	38.6	5.99	In2	
Consolidated dry density (pcf)	:	106.6			
Consolidated void ratio:		0.581			
Consolidated % saturation:		106			
	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL4	TRIAL 5
Cell pressure (psi):	110	110	110.3		
Top pressure (psi):	98.3	98.3	98.6		
Bottom pressure (psi):	101.6	101.6	101.8		
Gradient:	16	16	15	0	0
Confining Pressure (psi):	10.05	10.05	10.1	*Error*	*Error*
Date initial reading:	11/1/92	10/30/92	11/3/92		
Time initial reading:	12:28 PM	5:04 PM	4:27 PM		
Date final reading:	11/2/92	11/1/92	11/4/92		
Time final reading:	8:25 AM	12:28 PM	8:28 AM		
Initial man. rdg. (in) Top=	66.45	63.4	68.75		
Bottom=	64.35	65.85	62.7		
Final man. rdg. (in) Top=	67.2	66.45	69.4		
Bottom=	63.7	64.35	62.45		
ΔTop (in.)	0.75	3.05	0.65	0	0
Δ Bottom (in.)	0.65	1.5	0.25	0	0
ΔTime (hrs.)	19.95	43.40	16.02	0.00	0.00
Top "K" value (cm/sec) =	3.3E-08	6.2E-08	3.7E-08	*Error*	*Error*
Bottom "K" value (cm/sec) =	2.9E-08	3.1E-08	1.4E-08	*Error*	*Error*
PERMEABILIT'	Y VALUE (CM/SEC.) =	3.3E-08	Conf. Pres. (psi) =	10.05	

Coefficient of Permeability - 0			Tech Jo		Check		
Job No.	496B	<b>-</b>	Initial WC	%	Final W	<b>/</b> %	
Boring Number:	P-9S	Tare no.	112		114		
Sample No.	3T-1	Tare wt. (g)	21.81		21.24		
Description:	Gray CL/CL-ML	Wt. wet soil & tare (g)			147.21		
		Wt. dry soil & tare (g)			122.17	·	
		Moisture Content (%)			24.81		
	Diameter (cm)	7.17					
	Height (cm)	14.31	-				
	Volume (cm3)	577.8					
	Wet Wt. (g)	1163.11					
	Dry Density (pcf)	101.2					
	Specific Gravity	2.70	•				
	Void Ratio	0.665					
	Saturation (%)	98					
	-	During Consolidation	(assuming			dation)	
Manometer change (in)=	Тор:			Bottom:	5.70	-	
Volume change (cm3):		8.5					
Consolidated volume (cm3):		569.3					
Dry weight of sample (g):		937.10					
% change each dimension:		0.00491					
Consolidated diameter (cm):		7.13		2.81			
Consolidated height (cm):		14.24		5.61			
Consolidated area (cm2):		40.0		6.20	in2		
Consolidated dry density (pcf):	:	102.7					
Consolidated void ratio:		0.640					
Consolidated % saturation:		105					
	TRIAL 1	TRIAL 2		TRIAL 3		TRIAL4	TRIAL 5
Cell pressure (psi):	69.7	69.6					
Top pressure (psi):	58.3	58.8					
Bottom pressure (psi):	62.1	61.8					
Gradient:	19	15		0		0	(
Confining Pressure (psi):	9.5	9.3		*Error*		*Error*	*Error
Date initial reading:	10/27/92	10/28/92	140				
Time initial reading:	12:14 PM	8:58 AM					
Date final reading:	10/27/92	10/28/92					
Time final reading:	4:51 PM	5:06 PM				**************************************	
Initial man. rdg. (in) Top=	59.4	59.6					Action (and City Action Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action (and Action
Bottom=	71.6	71.4					
Final man. rdg. (in) Top=	67.6	71.3					
Bottom=	63.5	59.7					
Δ Top (in.)	8.2	11.7		0		0	C
Δ Bottom (in.)	8.1	11.7		0		0	C
ΔTime (hrs.)	4.62	8.13		0.00		0.00	0.00
Top "K" value (cm/sec) =	1.3E-06	1.3E-06		*Error*		*Error*	*Error*
Bottom "K" value (cm/sec) =	1.3E-06	1.3E-06		*Error*		*Error*	*Error*

CATION EXCHANGE CAPACITY TEST RESULTS

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Mr. Krishna Redby PATRICK ENGINEERING, INC. 346 Taft Ave. Glen Ellyn, IL 60137

11/13/1992

NET Job Number: 92.50181

Enclosed are the Analytical Results for the following samples submitted to NET, Inc. Bartlett Division for analysis:

Project Description: 496B; Springfield

Sample Number	Sample Description	Date Taken	Date Received
186568 186569 186570	P-7D; SS-4; Soil B-9; SS-8; Soil CB-9; SS-5; Soil		11/03/1992 11/03/1992 11/03/1992

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

Darla J. Kalicki
Project Manager

Page 1 of ___





Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Mr. Jim Davis PATRICK ENGINEERING, INC.

346 Taft Ave.

Glen Ellyn, IL 60137

11/13/1992

Sample No. :

186568

NET Job No.:

92.50181

Sample Description:

P-7D; SS-4; Soil 496B; Springfield

Date Taken:

Time Taken:

IEPA Cert. No. 100221

Date Received: 11/03/1992

Time Received: 11:15

WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Analytical Method
Solids, Total	97.3	%	11/05/1992	2540 (4)
Cation Exchange Capacity	16.5	meq/100g	11/12/1992	9080 (1)
CEC - Calcium	179.	mg/100g	11/13/1992	9080 (1)
CEC - Magnesium	71.	mg/100g	11/12/1992	9080 (1)
CEC - Sodium	2.6	mg/100g	11/12/1992	9080 (1)
CEC - Potassium	6.5	mg/100g	11/12/1992	9080 (1)





Bartlett Division 850 W. Bartlett Rd. Bartlett , IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Mr. Jim Davis PATRICK ENGINEERING, INC.

346 Taft Ave.

Glen Ellyn, IL 60137

11/13/1992

Sample No. :

186569

NET Job No.:

92.50181

Sample Description:

B-9; SS-8; Soil 496B; Springfield

Date Taken:

Time Taken:

IEPA Cert. No. 100221

Date Received: 11/03/1992

Time Received: 11:15 WDNR Cert. No. 999447130

Parameter Results Units Date of Analytical Analysis Method Solids, Total 98.3 11/05/1992 % 2540 (4) Cation Exchange Capacity 10.7 meq/100g 11/12/1992 9080 (1) CEC - Calcium 133. mg/100g 11/13/1992 9080 (1) CEC - Magnesium 35. mg/100g 11/12/1992 9080 (1) CEC - Sodium 1.8 mg/100g 11/12/1992 9080 (1) CEC - Potassium 4.8 mg/100g 11/12/1992 9080 (1)





Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

#### ANALYTICAL REPORT

Mr. Jim Davis

11/13/1992

PATRICK ENGINEERING, INC. 346 Taft Ave.

Sample No. :

186570

Glen Ellyn, IL 60137

NET Job No.:

92.50181

Sample Description:

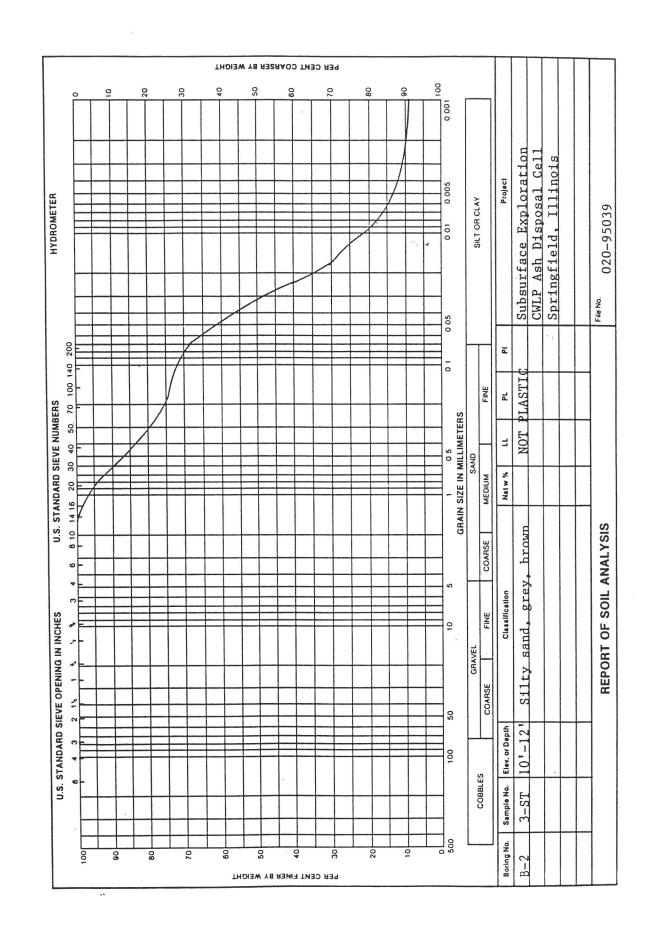
CB-9; SS-5; Soil 496B; Springfield

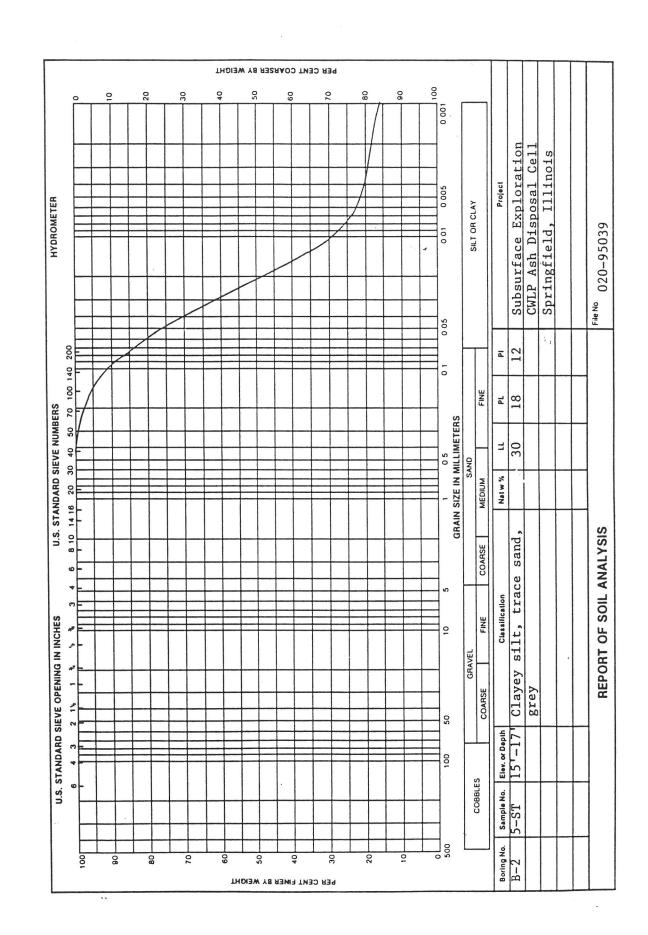
Date Taken:

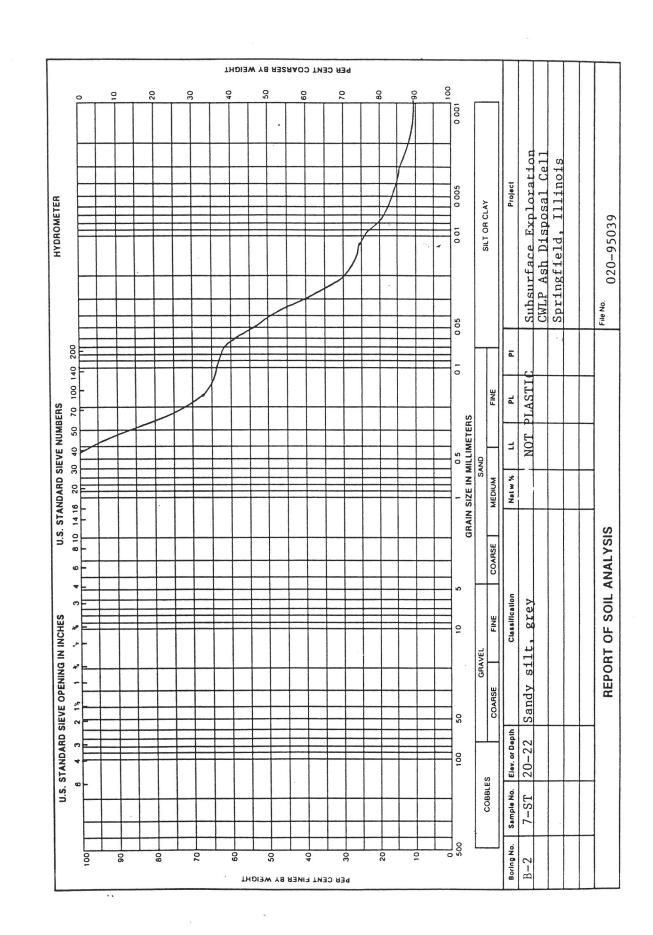
Date Received: 11/03/1992

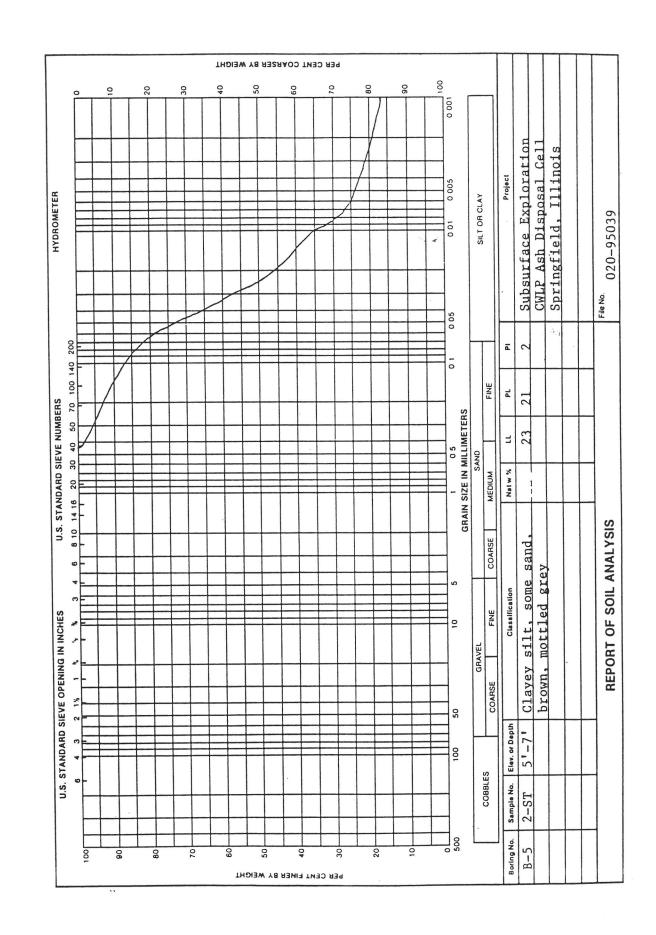
Time Taken:

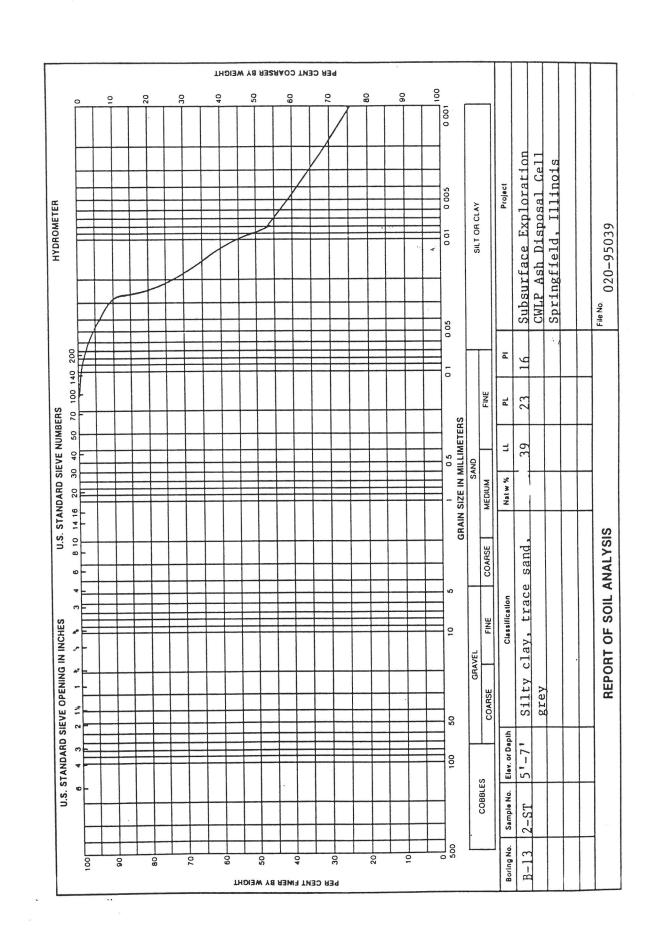
Time Received: 11:15

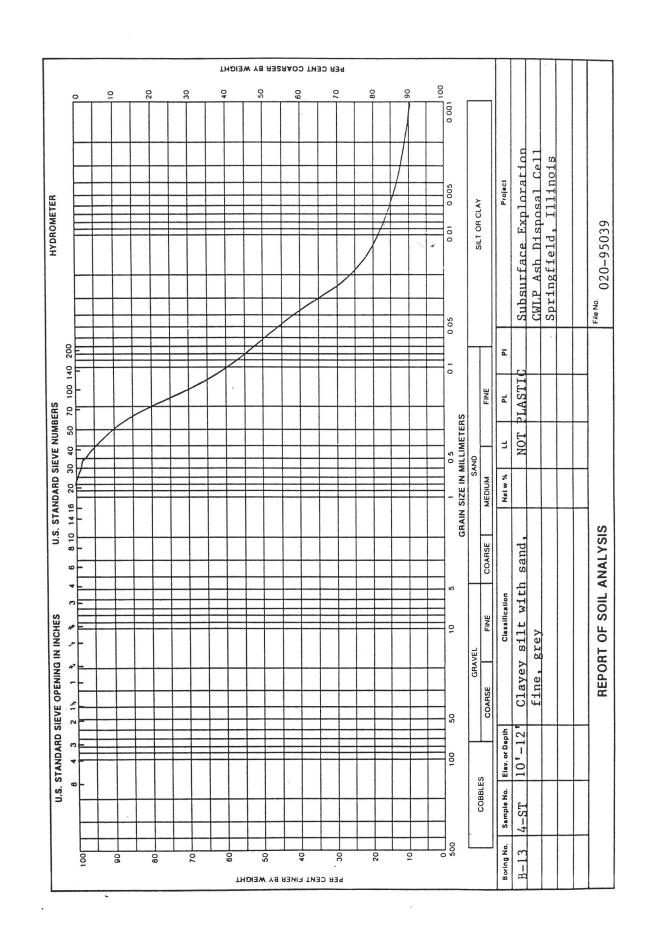

IEPA Cert. No. 100221


WDNR Cert. No. 999447130

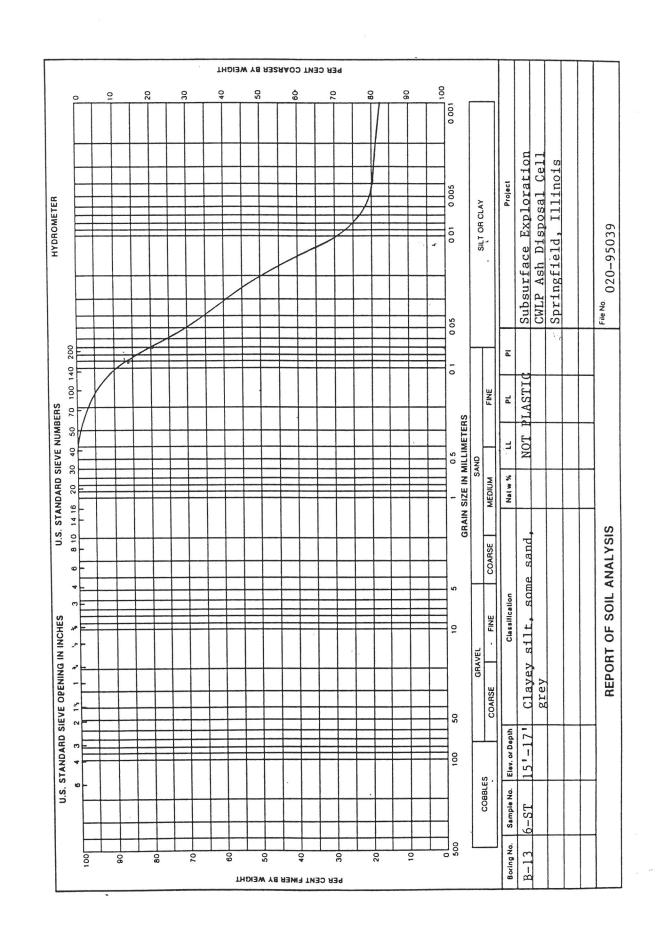

Parameter	Results	Units	Date of Analysis	Analytical Method
Solids, Total	97.1	%	11/05/1992	2540 (4)
Cation Exchange Capacity	18.1	meq/100g	11/12/1992	9080 (1)
CEC - Calcium	208.	mg/100g	11/13/1992	9080 (1)
CEC - Magnesium	70.	mg/100g	11/12/1992	9080 (1)
CEC - Sodium	3.3	mg/100g	11/12/1992	9080 (1)
CEC - Potassium	6.7	mg/100g	11/12/1992	9080 (1)

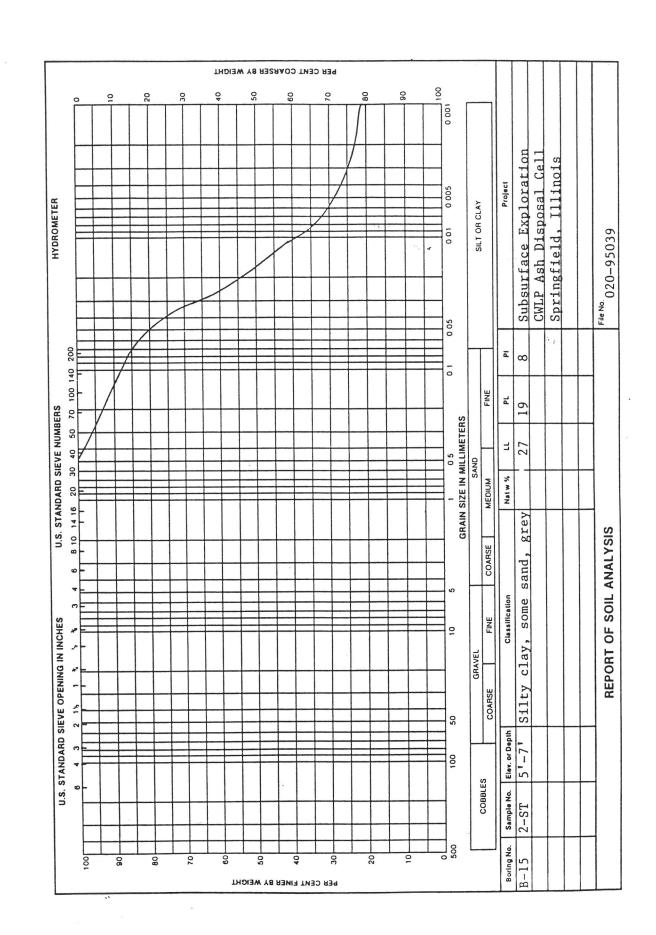


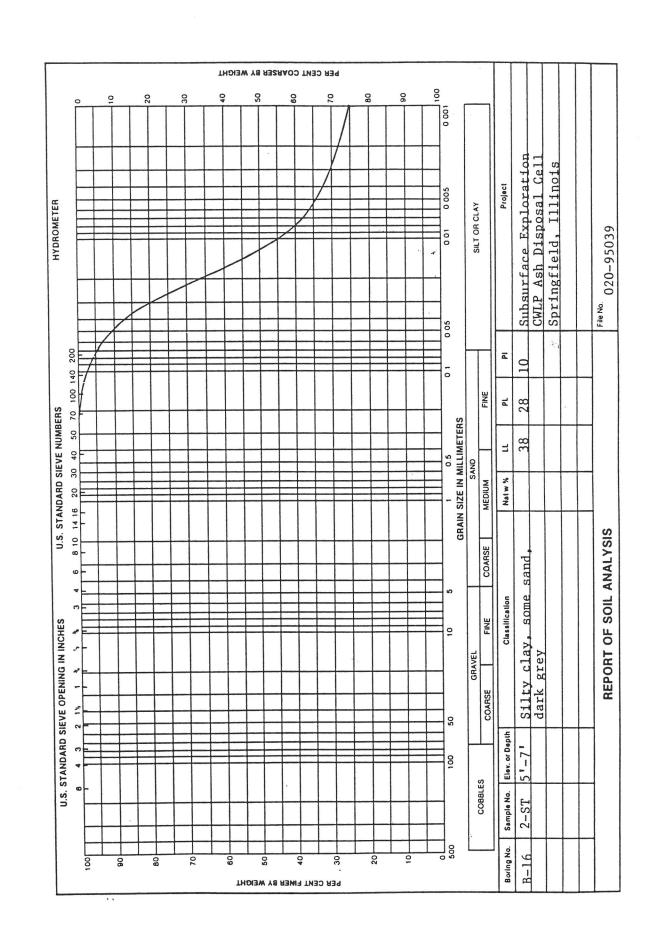


# APPENDIX D-2 LABORATORY TESTS BY OTHERS

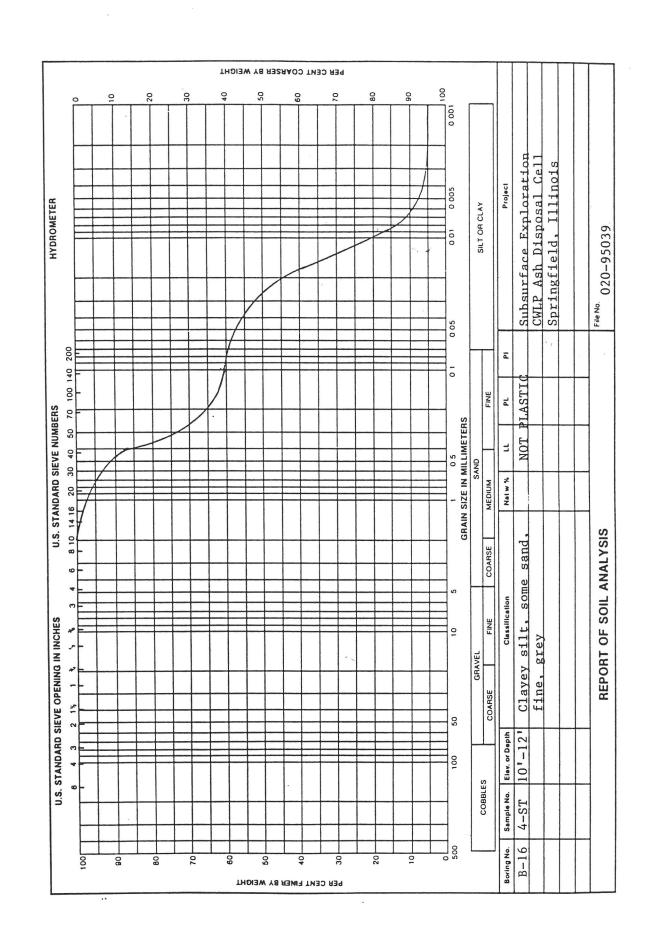





1









APPENDIX E2	
GEOTECHNICAL INVESTIGATION - 2023/2024	ļ



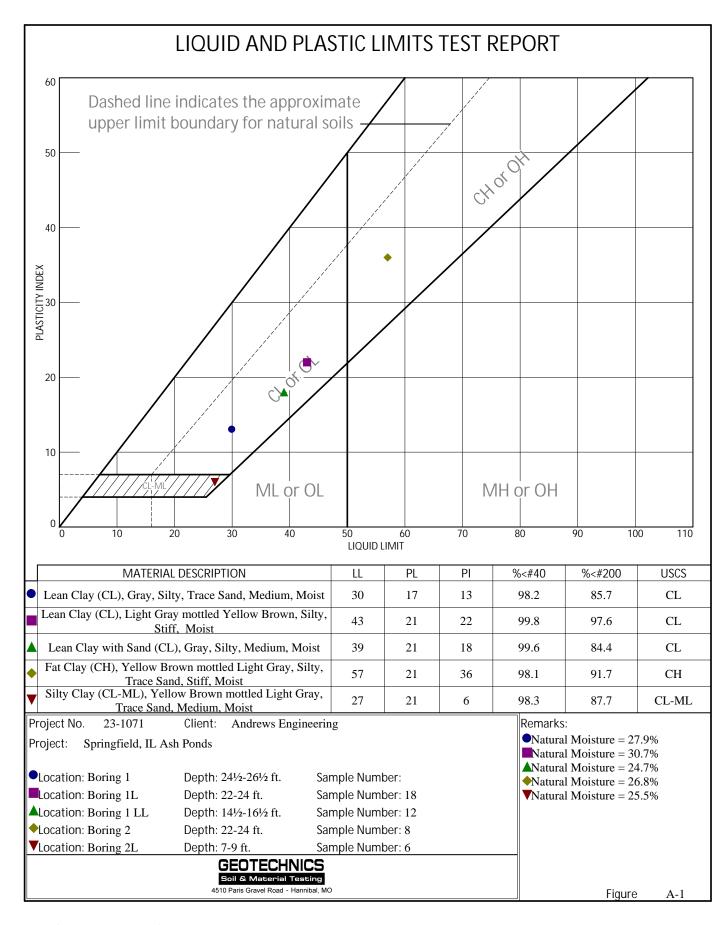
Sample No.	Depth (ft.)	Moisture Content (%)	Wet Density (PCF)	Dry Density (PCF)	Torvane (TSF)	Grad200 (%)	Silt/Clay (%)	Atterberg % (LL/PL)	Hydraulic Cond. (cm/sec)	USCS Visual Description
1	2.5-3	14.5								Sandy Lean Clay (CL), Yellow Brown mottled Brown, Silty, With Coal
1	5-5.5	10.1								Sandy Lean Clay (CL), Yellow Brown mottled Brown, Silty, With Coal
1	7.5-8	19.8								Sandy Lean Clay (CL), Light Brown mottled Yellow Brown, Silty
1	10-10.5	21.7								Sandy Lean Clay (CL), Light Brown/Yellow Brown mottled Gray, Silty
1	13-13.5	21.3								Sandy Lean Clay (CL), Light Brown/Yellow Brown mottled Gray, Silty
1	15.5-16	24.8								Sandy Lean Clay (CL), Light Brown mottled Gray, Silty
1	17.5-18	47.7								Sandy Lean Clay (CL), Light Gray mottled Yellow Brown, Silty
1	20.5-21	25.6								Lean Clay (CL), Gray mottled Greenish Gray, Black Oxidation, Silty
1	22.5-23	27.1								Lean Clay (CL), Gray mottled Light Gray, Silty
1 ST	24.5-26.5	27.9	127.7	99.8	0.49	85.70	65.7/20.0	30 / 17	1.23 x 10 ⁻⁶	Lean Clay (CL), Gray, Silty, Trace Sand, Medium, Moist
1	28-28.5	25.5								Fat Clay (CL), Gray, Silty
1	32.5-33	26.0								Sandy Lean Clay (CL), Light Gray/Gray mottled Yellow Brown, Silty
1L	2-3.5	18.5								Fat Clay (CH), Yellow Brown mottled Brown
1L	4.5-6	21.4								Fat Clay (CH), Yellow Brown mottled Brown
1L	7-8.5	21.4								Lean Clay (CL), Yellow Brown mottled Brown, Silty
1L	9.5-11	17.7								Sandy Lean Clay (CL), Yellow Brown, Silty
1L	12-13.5	23.4								Poorly Graded Sand (SP), Dark Brown, Fine to Coarse
1L	14.5-16	19.7								Poorly Graded Sand (SP), Dark Brown, Fine to Coarse
1L	17-18.5	n/a								· · ·
1L	19.5-21	30.7								Sandy Lean Clay (CL), Light Gray mottled Yellow Brown, Silty
1L ST-18	22-24	30.7	118.9	91.0	0.57	97.60	63.0/34.6	43/21	5.84 x 10 ⁻⁶	Lean Clay (CL), Light Gray mottled Yellow Brown, Silty, Stiff, Moist
1LL	2-3.5	11.7								Sandy Lean Clay with Gravel (CL), Yellow Brown mottled Brown, Silty
1LL	4.5-6	13.4								Fat Clay (CH), Yellow Brown mottled Light Gray
1LL	7-8.5	20.1								Fat Clay (CH), Yellow Brown mottled Light Gray
1LL	9.5-11	17.8								Poorly Graded Sand (SP), Yellow Brown, Fine to Medium
1LL	12-13.5	22.1								Fat Clay (CH), Gray mottled Light Gray
1LL ST-12	14.5-16.5	24.7	125.2	100.4	0.26	84.40	64.5/19.9	39/21	6.02x10 ⁻⁶	Lean Clay with Sand (CL), Gray, Silty, Medium, Moist
1LL	17-18.5	26.2								Fat Clay (CH), Light Brown, Silty
1U	2-3.5	14.6								Lean Clay (CL), Brown mottled Light Gray/Reddish Brown, Silty, With Coal
1U	4.5-6	21.0								Lean Clay (CL), Brown mottled Light Brown/Light Gray, Silty, Trace Gravel
1U	7-8.5	36.5								Silt (ML), Black, Clayey, With Coal
1U	9.5-11	6.1								Coal, Black, With Silt
1U	12-13.5	32.2								Coal, Black
1U	14.5-16	59.2								Silt (ML), Black, Clayey, With Coal
1U	17-18.5	68.6								Silt (ML), Black, With Coal and Ash
1CCR	2-3.5	10.7								Cinders, Black
1CCR	4.5-6	11.3								Cinders, Black
1CCR	7-8.5	22.2								Cinders/Ash Black
1CCR	9.5-11	21.5								Cinders/Ash Black GEOTECHNICS
1CCR	12-13.5	20.1								ICinders, Black
1CCR	14.5-16	53.5								Cinders, Black, With Clayey Silt  Soil & Material Testing
1CCR	17-18.5	22.2								Cinders, Black

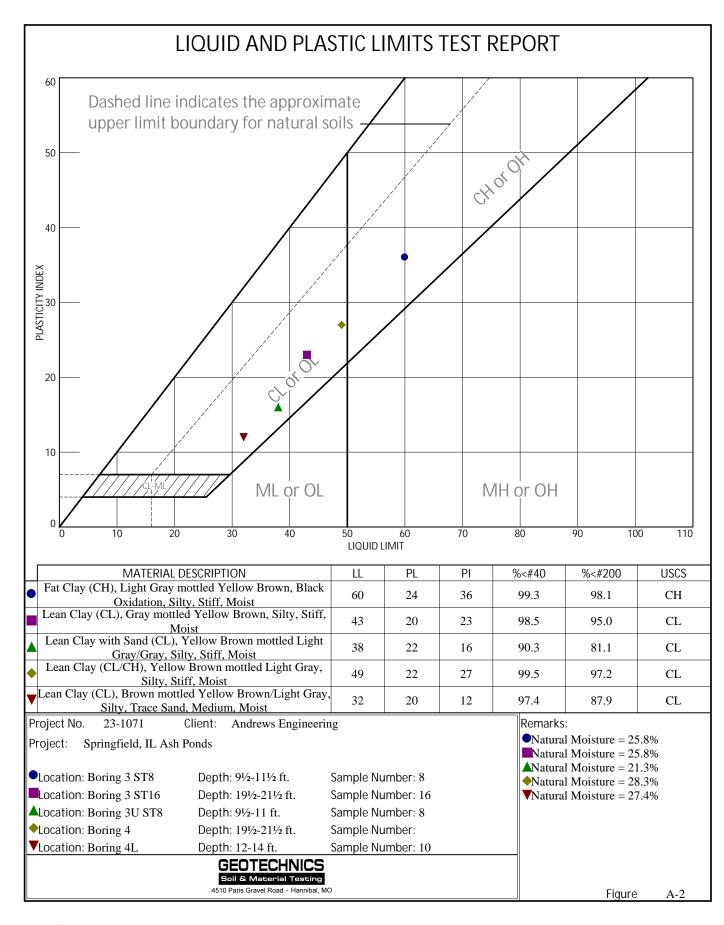
Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   Semple   S				Wet Density	Dry Density	Torvane	Grad200		Atterberg %		
2	Sample No.	Depth (ft.)	Nat. Moist. (%)					Silt/Clay (%)		Hydraulic Cond. (cm/sec)	USCS Visual Description
2	2	2-3.5	18.5								Fat Clay (CH), Brown mottled Light Gray
2	2	4.5-6	22.0								Fat Clay (CH), Yellow Brown mottled Light Gray, Black Oxidation
2 19-13.5 28.4	2	7-8.5	27.0								Fat Clay (CH), Dark Brown mottled Brown
2	2	9.5-11	24.9								Fat Clay (CH), Yellow Brown mottled Brown
2	2	12-13.5	28.4								Fat Clay (CH), Light Gray mottled yellow Brown
2   195-21   272   28   123.1   97.1   0.50   91.70   57.6Gls.9   5721   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5.87103   5	2	14.5-16	25.7								Fat Clay (CH), Yellow Brown mottled Light Gray, Trace Sand
2 ST	2	17-18.5	27.2								Fat Clay (CH), Light Gray mottled Yellow Brown
2	2	19.5-21	27.2								Fat Clay (CH), Yellow Brown mottled Light Gray
2	2 ST	22-24	26.8	123.1	97.1	0.50	91.70	57.8/33.9	57/21	6.87x10 ⁻⁸	Fat Clay (CH), Yellow Brown mottled Light Gray, Silty, Trace Sand, Stiff, Moist
2.   275-29.5   22.4	2	24.5-26	24.3								Lean Clay (CL), Yellow Brown mottled Light Gray, Black Oxidation
21.   2-3.5   21.8	2	27-27.5	21.2								Sandy Lean Clay (CL), Yellow Brown mottled Light Gray, Black Oxidation, Silty
21.   45-6   28.9	2	27.5-28.5	22.4								Sandy Lean Clay (CL), Yellow Brown mottled Light Gray, Black Oxidation, Silty
21.   45-6   28.9											
22.516   7-9	2L	2-3.5	21.8								Fat Clay (CH), Yellow Brown mottled Light Gray/Brown
2.1   3.5.11   22.5	2L	4.5-6	28.9								Fat Clay (CH), Yellow Brown mottled Light Gray, Black Oxidation
2.	2L ST 6	7-9'	25.5	126.5	100.8	0.33	87.70	74.3/13.4	27/21	8.24x10 ⁻⁶	Silty Clay (CL-ML), Yellow Brown mottled Light Gray, Trace Sand, Medium, Moist
21	2L	9.5-11	22.5								Sandy Lean Clay (CL), Yellow Brown mottled Light Gray, Silty
21.	2L	12-13.5	22.0								Sandy Lean Clay (CL), Yellow Brown mottled Brown, Silty
21	2L	14.5-16	23.6						20/16		Sandy Silty Clay (CL), Yellow Brown mottled Light Gray
2L         22-23.5         29.0         Lean Clay (CL), Light Gray, Silty           2U         2-3.5         8.1         Cinders, Dark Brown           2U         4.5-6         8.3         Cinders, Dark Brown           2U         4.5-6         8.3         Cinders, Dark Brown           2U         9.5-11         11.0         Eart Clay (CH), Wellow Brown mottled Light Gray           2U         12-13.5         65.7         Sandy Silt (ML), Dark Brown           2U         12-13.5         65.7         Sandy Silt (ML), Dark Brown           2U         17-18.5         24.6         Sandy Silt (ML), Dark Brown           2U         17-18.5         24.6         Poorty Graded Sand (SP), Dark Brown, Fine to Coarse           2U         195-21         53.1         Poorty Graded Sand (SP), Dark Brown, Fine to Coarse           2U         22-23.5         31.7         Poorty Graded Sand (SP), Dark Gray, Fine to Coarse           2U         24-52.6         27.4         Eart Clay (CH), Yellow Brown mottled Light Gray           2CCR         2-3.5         58.6         Eart Clay (CH), Yellow Brown mottled Light Gray           2CCR         4-5.6         23.5         Eart Clay (CH), Yellow Brown mottled Light Gray           2CCR         4-5.6         23.5	2L	17-18.5	21.1								Sandy Lean Clay (CL), Light Brown mottled Yellow Brown/Brown, Silty
2U   2-3.5   8.1	2L	19.5-21	21.4								Poorly Graded Sand (SP), Yellow Brown, Fine, With Clay Seams
2U   4.5-6   8.3	2L	22-23.5	29.0								Lean Clay (CL), Light Gray, Silty
2U   4.5-6   8.3											
2U   7-8.5   20.2	2U	2-3.5	8.1								Cinders, Dark Brown
2U   9.5-11   11.0	2U	4.5-6	8.3								Cinders, Dark Brown
2U   12-13.5   65.7	2U	7-8.5	20.2								Fat Clay (CH), Yellow Brown mottled Light Gray
2U   14.5-16   46.3   Sandy Silt (ML), Dark Brown	2U	9.5-11	11.0								Cinders/Silt, Dark Brown
2U   17-18.5   24.6	2U	12-13.5	65.7								Sandy Silt (ML), Dark Brown
2U   19.5-21   53.1	2U	14.5-16	46.3								Sandy Silt (ML), Dark Brown
2U   19.5-21   53.1	2U	17-18.5	24.6								Poorly Graded Sand (SP), Dark Brown, Fine to Coarse
2U       24.5-26       27.4       Fat Clay (CH), Yellow Brown mottled Light Gray         2CCR       2-3.5       58.6       Lean Clay (CL), Light Gray mottled Yellow Brown/Brown, Silty, Trace Coal         2CCR       4.5-6       23.5       Coal, Black over Silt (ML), Light Gray, Clayey         2CCR       7-8.5       238.7       Ash, Light Gray         2CCR       9.5-11       107.7       Coal/Ash, Black         2CCR       12-13.5       86.4       Coal, Black over Silt (ML), Light Gray, Clayey         2CCR       14.5-16       54.5       Coal, Black, Clayey, With Organics         2CCR       17-18.5       86.8       Coal, Black	2U	19.5-21	53.1								Coal, Dark Gray
2U       24.5-26       27.4       Fat Clay (CH), Yellow Brown mottled Light Gray         2CCR       2-3.5       58.6       Lean Clay (CL), Light Gray mottled Yellow Brown/Brown, Silty, Trace Coal         2CCR       4.5-6       23.5       Coal, Black over Silt (ML), Light Gray, Clayey         2CCR       7-8.5       238.7       Ash, Light Gray         2CCR       9.5-11       107.7       Coal/Ash, Black         2CCR       12-13.5       86.4       Coal, Black over Silt (ML), Light Gray, Clayey         2CCR       14.5-16       54.5       Coal, Black, Clayey, With Organics         2CCR       17-18.5       86.8       Coal, Black	2U	22-23.5	31.7								Poorly Graded Sand (SP), Dark Gray, Fine to Coarse
2CCR	2U	24.5-26	27.4								
2CCR											
2CCR	2CCR	2-3.5	58.6								Lean Clay (CL), Light Gray mottled Yellow Brown/Brown, Silty, Trace Coal
2CCR         7-8.5         238.7         Ash, Light Gray           2CCR         9.5-11         107.7         Coal/Ash, Black           2CCR         12-13.5         86.4         Coal, Black over Silt (ML), Light Gray, Clayey           2CCR         14.5-16         54.5         Coal, Black, Clayey, With Organics           2CCR         17-18.5         86.8         Coal, Black    Coal, Black  Coal, Black  GEOTECHNICS			23.5								, , , ,
2CCR         9.5-11         107.7         Coal/Ash, Black           2CCR         12-13.5         86.4         Coal, Black over Silt (ML), Light Gray, Clayey           2CCR         14.5-16         54.5         Coal, Black, Clayey, With Organics           2CCR         17-18.5         86.8         Coal, Black     Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Bl											
2CCR         12-13.5         86.4         Coal, Black over Silt (ML), Light Gray, Clayey           2CCR         14.5-16         54.5         Coal, Black, Clayey, With Organics           2CCR         17-18.5         86.8         Coal, Black    Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black											Ţ,
2CCR         14.5-16         54.5         Coal, Black, Clayey, With Organics           2CCR         17-18.5         86.8         Coal, Black    Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Black  Coal, Bla											
2CCR 17-18.5 86.8 Coal, Black  GEOTECHNICS											
GEOTECHNICS CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONT											···
											GEOTECHNICS
Soil & Material Testing											
											Soil & Material Testing

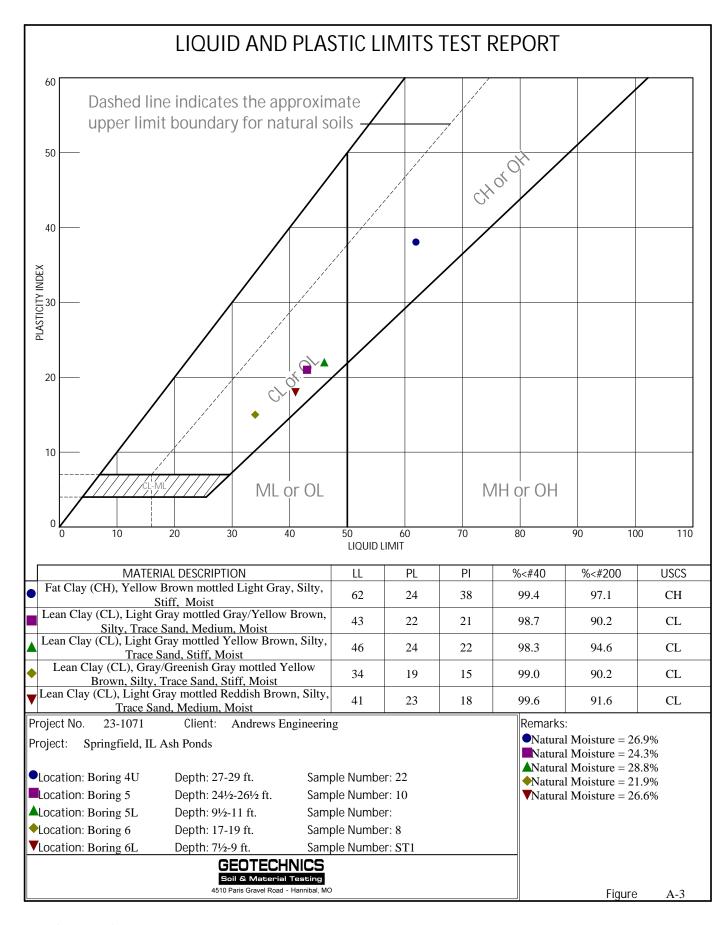
			Wet Density	Dry Density	Torvane	Grad200		Atterberg %		
Sample No.	Depth (ft.)	Nat. Moist. (%)	(PCF)	(PCF)	(TSF)	(%)	Silt/Clay (%)	(LL/PL)	Hydraulic Cond. (cm/sec)	USCS Visual Description
3	2-3.5	25.9								Fat Clay (CH), Brown mottled reddish Brown
3	4.5-6	20.6								Poorly Graded Sand (SP), Brown, Fine to Medium
3	7-8.5	22.2								Lean Clay (CL), Light Brown mottled Brown
3 ST 8	9.5-11.5	25.8	122.9	97.7	0.67	98.10	67.6/30.5	60/24	8.50x10 ⁻⁹	Fat Clay (CH), Light Gray mottled Yellow Brown, Black Oxidation, Silty, Stiff, Moist
3	12-13.5	26.6								Fat Clay (CH), Brown mottled Light Gray/Reddish Brown
3	14.5-16	24.8								Fat Clay (CH), Brown, Reddish Oxidation
3	17-18.5	27.1								Fat Clay (CH), Light Gray mottled Yellow Brown/Brown
3 ST16	19.5-21.5	25.8	121.6	96.7	0.62	95.00	65.7/29.3	43/20	4.27x10 ⁻⁷	Lean Clay (CL), Gray mottled Yellow Brown, Silty, Stiff, Moist
3	22-23.5	29.0								Fat Clay (CH), Light Gray mottled Yellow Brown, Silty
3	24.5-26	25.8								Lean Clay (CL), Light Brown mottled Yellow Brown, Black Oxidation, Silty
3	27-28.5	28.9								Fat Clay (CH), Light Brown mottled Light Gray
3U	2-3.5	16.0								Lean Clay (CL), Brown mottled Yellow Brown/Light Brown, Silty, Trace Sand
3U	4.5-6	27.7								Ash, Yellow Brown
3U	7-8.5	20.7								Lean Clay (CL), Brown mottled Light gray, With Coal
3U ST 8	9.5-11.5	21.3	122.6	101.0	0.55	81.10	65.5/15.6	38/22	1.52x10 ⁻⁸	Lean Clay with Sand (CL), Yellow Brown mottled Light Gray/Gray, Silty, Stiff, Moist
3U	12-13.5	37.2								Coal, Black
3U	14.5-16	32.0								Silt (ML), Brown, Clayey
3U	17-18.5	62.6								Silt (ML), Brown, Clayey
3CCR	2-3.5	22.7								Lean Clay (CL), Brown, Silty, Trace Coal
3CCR	4.5-6	91.2								Ash, Light Gray, With Clay Seams
3CCR	7-8.5	51.6								Ash, Light Gray, With Clay Seams
3CCR	9.5-11	113.5								Coal, Black
3CCR	12-13.5	86.9								Coal, Black, With Organics/Clay Seams
3CCR	14.5-16	61.1								Coal, Black, With Clay Seams
3CCR	17-18.5	65.8								Coal, Black, With Clay Seams
4	3-3.5	16.5								Lean Clay (CL), Light Gray mottled Yellow Brown
4	5.5-6	18.2								Lean Clay (CL), Yellow Brown mottled Brown
4	7.5-8	23.6								Fat Clay (CH), Yellow Brown mottled Light Gray, Black Oxidation
4	10.5-11	26.9								Fat Clay (CH), Yellow Brown mottled Light Gray, Black Oxidation
4	12.5-13	26.6								Fat Clay (CH), Yellow Brown mottled Light Gray, Black Oxidation
4	14.5-16	26.1								Fat Clay (CH), Yellow Brown mottled Light Gray, Black Oxidation, Trace Sand
4	17.5-18	27.4								Fat Clay (CH), Yellow Brown mottled Light Gray, Black Oxidation
4 ST	19.5-21.5	28.3	124.0	96.7	0.95	97.20	64.8/32.4	49/22	6.53x10 ⁻⁸	Lean Clay (CL/CH), Yellow Brown mottled Light Gray, Silty, Stiff, Moist
4	22-22.5	30.1								Fat Clay (CH), Yellow Brown/Light Brown mottled Brown, Silty
4	25-25.5	33.4								Fat Clay (CH), Yellow Brown mottled Light Gray, Silty
4	27-27.5	22.7								Sandy Lean Clay (CL), Light Gray mottled Yellow Brown, Silty
4	30-30.5	23.5								Sandy Lean Clay (CL), Yellow Brown mottled Light Gray, Silty
										GEOTECHNICS
										Soil & Material Testing

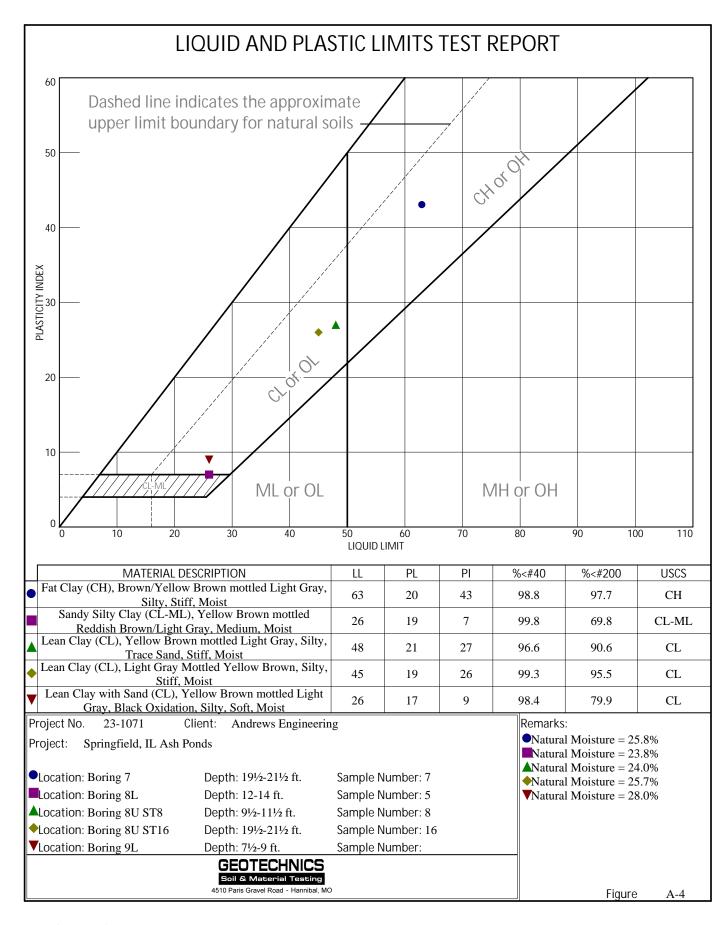
Sample No.	Depth (ft.)	Nat. Moist. (%)	Wet Density (PCF)	Dry Density (PCF)	Torvane (TSF)	<u>Grad200</u> (%)	Silt/Clay (%)	Atterberg % (LL/PL)	Hydraulic Cond. (cm/sec)	USCS Visual Description
4L	2-3.5	31.7								Lean Clay (CL), Dark Brown, Silty over Fat Clay (CH), Yellow Brown mottled Light Gray, Trace Gravel
4L	4.5-6	27.7								Fat Clay (CH), Yellow Brown mottled Light Gray, Black Oxidation
4L	7-8.5	27.3								Lean Clay (CL), Yellow Brown mottled Light Gray, Black Oxidation
4L	9.5-11	29.8								Fat Clay (CH), Yellow Brown mottled Light Gray, Trace Sand
4L ST10	12-14'	27.4	124.2	97.5	0.42	87.90	71.7/16.2	32/20	9.53x10 ⁻⁷	Lean Clay (CL), Brown mottled Yellow Brown/Light Gray, Silty, Trace Sand, Medium, Moist
4L	14.5-16	25.7								Lean Clay with Sand (CL), Yellow Brown mottled Light gray
4L	17-18.5	27.4						31/23		Lean Clay (CL/ML), Light Gray, Silty
4U	2-3.5	6.5								Cinders, Black
4U	4.5-6	30.8								Fat Clay (CH), Yellow Brown mottled Gray, Silty
4U	7-8.5	23.0								Fat Clay (CH), Yellow Brown mottled Gray, Silty, With Cinders
4U	9.5-11	36.4								Silt (ML), Black, With Cinders
4U	12-13.5	24.5								Cinders, Black
4U	14.5-16	38.0								Cinders, Black, Silty
4U	17-18.5	24.8								Cinders, Black
4U	19.5-21	18.0								Coal, Black
4U	22-23.5	59.2								Ash, Light Gray
4U	24.5-26	28.0								Fat Clay (CH), Yellow Brown mottled Light Gray
4U ST22	27-29	26.9	125.3	98.7	0.53	97.10	69.6/27.5	62/24	9.17x10 ⁻⁹	Fat Clay (CH), Yellow Brown mottled Light Gray, Silty, Stiff, Moist
4CCR	2-3.5	21.0								Lean Clay (CL), Yellow Brown, With Brick
4CCR	4.5-6	23.0								Silt (ML), Brown, Clayey, With Clay Seams
4CCR	7-8.5	56.0								Ash, Light Gray
4CCR	9.5-11	91.3								Cinder/Ash, Black
4CCR	12-13.5	83.6								Cinder/Ash, Black
4CCR	14.5-16	59.3								Cinders/Silt, Black
4CCR	17-18.5	33.0								Cinders, Black
4CCR	19.5-21	59.5								Ash/Cinders, Black
5	2-3.5	14.8								Fat Clay (CH), Yellow Brown mottled Brown, Trace Coal
5	4.5-6	16.7								Fat Clay (CH), Yellow Brown mottled Brown, Trace Coal
5	7-8.5	13.6								Lean Clay with Sand (CL), Yellow Brown mottled Light Gray,
5	9.5-11	22.1								Fat Clay (CH), Yellow Brown mottled Light Gray, Silty
5	12-13.5	21.0								Fat Clay (CH), Yellow Brown mottled Light Gray
5	14.5-16	22.8								Fat Clay (CH), Brown mottled Yellow Brown
5	17-18.5	21.2								Lean Clay (CL), Brown mottled Light Brown
5	19.5-21	21.8								Fat Clay (CH), Brown, Silty
5	22-23.5	19.4								Sandy Lean Clay (CL), Light Gray mottled Gray/Yellow Brown
5 ST	24.5-26.5	24.3	124.0	99.8	0.25	90.20	67.3/22.9	43/22	2.67x10 ⁻⁷	Lean Clay (CL), Light Gray mottled Gray/Yellow Brown, Silty, Trace Sand, Medium, Moist
5	27-28.5	25.6								Lean Clay (CL), Yellow Brown mottled Light Gray
5	29.5-31	24.5								Lean Clay (CL), Yellow Brown mottled Light Gray, Silty
5	32-33.5	24.7								Lean Clay (CL), Yellow Brown mottled Light Gray, Silty
5	34.5-36	24.6								Lean Clay (CL), Yellow Brown mottled Light Gray, Silty  GEOTECHNICS
5	37-38.5	23.6				İ				ISandy Lean Clay (CL), Gray, Silty
						İ				Soil & Material Testing

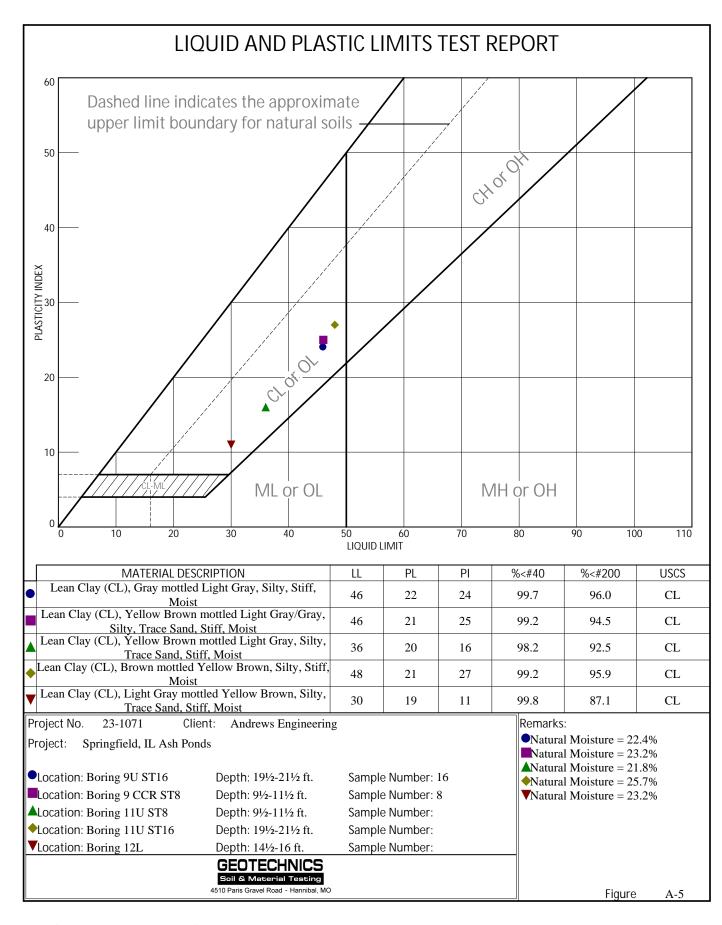
Sample No.	Depth (ft.)	Nat. Moist. (%)	Wet Density (PCF)	Dry Density (PCF)	Torvane (TSF)	Grad200 (%)	Silt/Clay (%)	Atterberg % (LL/PL)	Hydraulic Cond. (cm/sec)	USCS Visual Description
5L	3-3.5	18.9								Fat Clay (CH), Brown mottled Light Brown
5L	5-6'	23.1								Fat Clay (CH), Brown mottled Yellow Brown
5L	8-8.5	22.5								Fat Clay (CH), Brown mottled Light Gray
5L ST	9.5-11	28.8	119.9	93.1	0.51	94.60	73.2/21.4	46/24	5.18x10 ⁻⁷	Lean Clay (CL), Light Gray mottled Yellow Brown, Silty, Trace Sand, Stiff, Moist
5L	13-13.5	30.1								Fat Clay (CH), Brown mottled Light Gray, Silty
5L	15.5-16	30.9								Fat Clay (CH), Brown mottled Light Gray, Silty
5L	17-17.5	28.3						39/22		Lean Clay (CL), Light Gray mottled Yellow Brown, Silty
5CCR	3-3.5	24.6								Silt with Sand (ML), Light Gray
5CCR	5.5-6	24.2								Sandy Lean Clay (CL), Gray, Silty
5CCR	7-7.5	27.8								Sandy Silt (ML), Gray
5CCR	9.5-10	13.5								Silty Sand (SM), Dark Brown, Trace Gravel
5CCR	15-15.5	9.8								Coal, Black
5CCR	17.5-18	13.9								Coal, Black
6	0-2	7.3								Clayey Sand with Gravel (SC), Brown
6	2-4'	21.3								Lean Clay (CL), Brown mottled Light Brown, Trace Sand, Fat Seams
6	5-7.5	24.0								Lean Clay (CL), Brown mottled Gray, Trace Sand, Fat Seams
6	7.5-9	20.5								Lean Clay (CL), Gray mottled Light Brown, Trace Sand/Coal
6	10-11.5	20.5								Fat Clay (CH/CL), Light Gray mottled Gray/Light Brown,
6	12.5-14	20.9								Lean Clay (CL), Brown, Silty
6	15-16.5	19.9								Lean Clay (CL), Light Gray mottled Light Brown, Silty
6 ST	17-19	21.9	128.6	105.5	0.95	90.20	61.9/28.3	34/19	4.25x10 ⁻⁸	Lean Clay (CL), Gray/Greenish Gray mottled Yellow Brown, Silty, Trace Sand, Stiff, Moist
6	19-21	n/a							0,,,,	Lean Clay (CL), Brown, Silty, With Organics
6	21-23	22.0								Lean Clay (CL), Brown/Gray, Silty
6	23-25	20.6								Lean Clay with Sand (CL), Gray mottled Brown, With Coal
6	25-27	31.3								Lean Clay (CL), Gray, Silty
6	27-29	27.1								Sandy Silt (ML), Gray, Clayey
6	29-31	29.9								Silt (ML), Gray, Clayey
6	31-33	n/a								
6	33-35	28.2								Lean Clay (CL), Gray mottled Yellow Brown, Silty
6	35-37	27.1								Lean Clay (CL), Brown mottled Light Brown, Trace Sand, Fat Seams
6	37-39	21.0								Sandy Silt (ML), Light Gray mottled Yellow Brown, Clayey
_		-								
6L	2.5-4	17.8								Lean Clay (CL), Brown mottled Yellow Brown, Silty
6L	5-6.5	21.5								Lean Clay (CL), Brown mottled Reddish Brown, Silty
6L ST1	7.5-9	26.6	121.9	96.3	0.44	91.60	74.1/17.5	41/23	5.47x10 ⁻⁷	Lean Clay (CL), Light Gray mottled Reddish Brown, Silty, Trace Sand, Medium, Moist
6L	10-11.5	27.5								Lean Clay with Sand (CL), Brown, Silty
6L	12.5-14	23.5								Silty Clayey Sand (SC-SM), Light Gray mottled Yellow Brown
6L	15-16.5	24.9								Clayey Sand (SC), Yellow Brown mottled Light Gray
6L	17.5-19	35.9						31/19		Lean Clay (CL), Gray, Trace Organics
6L	20-21.5	21.1								Silty Clayey Sand (SC-SM) Gray
6L	22.5-24	24.0								Silty Clayey Sand (SC-SM), Light Gray mottled Light Brown  GEOTECHNICS
<u> </u>		25								
						1				Soil & Material Testing
	1			1		I.	<u> </u>	l .	I	

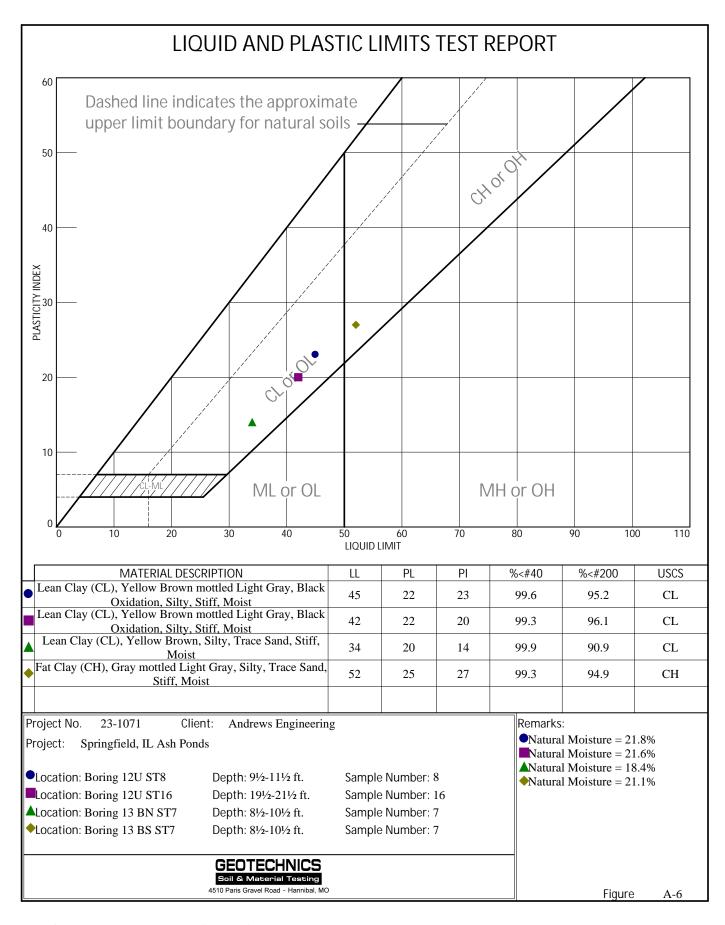

Sample No.	Donth (ft.)	Not Moist (9/)	Wet Density	Dry Density	Torvane	Grad200	Silt/Clay (9/)	Atterberg %	Hydraulia Cand (am/saa)	USCS Visual Description
Sample No.	Depth (ft.)	Nat. Moist. (%)	(PCF)	(PCF)	(TSF)	<u>(%)</u>	Silt/Clay (%)	(LL/PL)	Hydraulic Cond. (cm/sec)	OSCS Visual Description
6CCR	2-3.5	15.5								Ash/Cinders, Black, Clayey
6CCR	4.5-6	13.3								Ash/Cinders/Coal, Black, Clayey
6CCR	7-8.5	29.4								Ash, Gray
6CCR	9.5-11	39.1								Silt (ML), Brown mottled Light Gray
6CCR	12-13.5	44.4								Silt (ML), Light gray
6CCR	14.5-16	51.6								Silt (ML), Light Gray mottled Brown
6CCR	17-18.5	87.7								Silt (ML), Dark Brown mottled Light Brown
6CCR	19.5-21	106.5								Silt (ML), Dark Brown
6CCR	22-23.5	97.4								Silt (ML), Dark Brown mottled Brown
7	2.5-3	15.1								Sandy Lean Clay (CL), Yellow Brown mottled Light Gray
7	4.5-5	21.8								Lean Clay (CL), Light Brown/Brown mottled Yellow Brown, With Fat Clay Seams
7	7.5-8	21.1								Fat Clay (CH), Light Brown mottled Light Gray, Silty, With Lean Clay Seams
7	10-10.5	21.3								Lean Clay (CL), Light Brown mottled Brown/Light Gray, Silty
7	12-12.5	24.7								Lean Clay (CL), Brown mottled Light Brown, Silty
7	15-15.5	21.1								Lean Clay (CL), Brown mottled Yellow Brown/Light Gray, With Organics
7	17.5-18	19.5								Sandy Lean Clay (CL), Brown mottled Light Gray
7 ST	19.5-21.5	25.8	120.2	95.5	0.55	97.70	62.2/35.5	63/20	1.71x10 ⁻⁸	Fat Clay (CH), Brown/ Yellow Brown mottled Light Gray, Silty, Stiff, Moist
7	23-23.5	24.4								Fat Clay (CH), Yellow Brown mottled Light Gray, Black Oxidation
7	25-25.5	26.1								Fat Clay (CH/CL), Light Gray mottled Yellow Brown
7	27.5-28	28.6								Silty Clayey Sand (SC-SM), Brown mottled Yellow Brown
7	30-30.5	30.7			1					Sandy Silt (ML), Light Brown, With Fat Clay Seams
7	32.5-33	38.1								Fat Clay (CH), Light Gray, With Silty Sand Seams
7	35-36.5	32.4								Silt (ML), Gray, Clayey
7	37-37.5	39.2								Silt (ML), Brown, Clayey
					1					
7CCR	2-3.5	26.5								Silt (ML), Brown, Clayey
7CCR	4.5-6	46.8								Silt (ML), Brown, Clayey, With Cinders
7CCR	7-8.5	54.9								Silt (ML), Brown, Clayey
7CCR	9.5-11	55.5								Sandy Silt (ML), Light Gray
7CCR	12-13.5	42.7								Silt (ML), Light Gray
7CCR	14.5-16	49.5								Silt (ML), Light Gray mottled Dark Brown
7CCR	17-18.5	45.8								Silty Sand (SM), Light Gray
7L	2-3.5	16.8								Fat Clay (CH), Yellow Brown mottled Light Gray
7L	4.5-6	14.6					1			Fat Clay (CH), Light Gray mottled Brown over Sandy Lean Clay (CL), Yellow Brown mottled Light Brown
7L	7-8.5	24.1			<u> </u>					Sandy Lean Clay (CL), Yellow Brown mottled Brown over Poorly Graded Sand (SP), Yellow Brown, Fine, Silty
7L	9.5-11	27.3					1			Fat Clay (CH), Light Brown mottled Brown, Silty, Trace Sand
7L	12-13.5	37.7								Silt (ML), Brown
7L	15-16.5	29.2						33/25		Silt (ML), Brown, Trace Sand
7L	17-18.5	26.0								Fat Clay (CH/CL), Brown, Silty, Trace Sand
· · <u>-</u>	1010	_5.0								
							<u> </u>			GEOTECHNICS
							<del> </del>			Box and an artist of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon
							<del> </del>			Soil & Material Testing
		I	l			L	1	l	I.	1

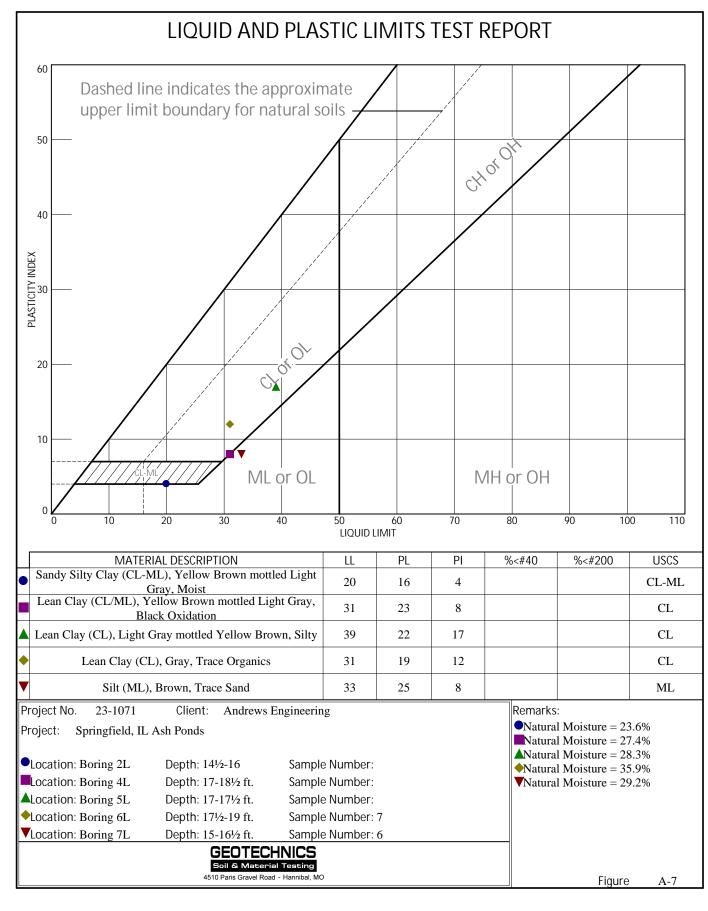

			Wet Density	Dry Donoity	Tomana	Cred 200	1		J	
Sample No.	Depth (ft.)	Nat. Moist. (%)	(PCF)	Dry Density (PCF)	Torvane (TSF)	<u>Grad200</u> (%)	Silt/Clay (%)	Atterberg % (LL/PL)	Hydraulic Cond. (cm/sec)	USCS Visual Description
8L	3-3.5	15.5								Fat Clay (CH), Yellow Brown mottled Light Brown
8L	5.5-6	14.1								Lean Clay (CL), Yellow Brown mottled Brown
8L	7.5-8	27.2								Lean Clay (CL), Yellow Brown mottled Light Brown/Light Gray, Silty
8L	10.5-11	27.8								Lean Clay (CL), Yellow Brown mottled Light Brown/Light Gray, Silty
8L ST5	12-14'	23.8	126.4	102.1	0.33	69.80	56.6/13.2	26/19	3.41x10 ⁻⁶	Sandy Silty Clay (CL-ML), Yellow Brown mottled Reddish Brown/Light Gray, Medium, Moist
8L	15.5-16	29.8								Sandy Lean Clay (CL), Light Gray, Silty
8L	17.5-18	33.5								Sandy Lean Clay (CL), Light Gray, Silty, With Organics
8L	20.5-21	32.3						39/26		Silt (ML), Gray, With Lean Clay (CL) Seams
8L	22.5-23	26.7						31/21		Lean Clay (CL), Gray, Silty
8U	2-3.5	24.8								Lean Clay (CL), Brown mottled Yellow Brown, Silty
8U	4.5-6	22.4								Lean Clay (CL), Brown mottled Yellow Brown, Silty
8U	7-8.5	23.8								Lean Clay (CL), Brown mottled Yellow Brown/Light Gray, Silty
8U ST8	9.5-11.5	24.0	125.7	101.4	0.55	90.60	68.1/22.5	48/21	2.25x10 ⁻⁸	Lean Clay (CL), Yellow Brown mottled Light Gray, Silty, Trace Sand, Stiff, Moist
8U	12-13.5	22.5								Fat Clay (CH), Light Gray mottled Yellow Brown
8U	14.5-16	23.9								Lean Clay (CL), Brown mottled Yellow Brown/Light Gray
8U	17-18.5	21.9								Lean Clay (CL), Brown mottled Yellow Brown Light Gray, Silty
8U ST16	19.5-21.5	25.7	127.1	101.1	0.80	95.50	79.7/15.8	45/19	9.40x10 ⁻⁹	Lean Clay (CL), Light Gray mottled Yellow Brown, Silty, Stiff, Moist
8U	22-23.5	27.8								Lean Clay (CL), Brown, Silty
8U	24.5-26	31.0								Lean Clay (CL), Brown mottled Reddish Brown, Silty
8U	27-28.5	31.7								Lean Clay (CL), Brown mottled Reddish Brown, Silty
8U	29.5-31	29.5								Lean Clay (CL), Brown mottled Reddish Brown, Silty
8U	32-33.5	29.5								Lean Clay (CL), Brown mottled Reddish Brown, Silty
9L	2-2.5	23.6								Sandy Lean Clay (CL), Light Brown mottled Light Gray
9L	4.5-5	24.6								Lean Clay with Sand (CL), Light Brown mottled Light Gray/Yellow Brown, Silty
9L ST	7-9'	28.0	126.5	98.8	0.15	79.90	65.0/14.9	26/17	2.55x10 ⁻⁶	Lean Clay with Sand (CL), Yellow Brown mottled Light Gray, Black Oxidation, Silty, Soft, Moist
9L	10.5-11	55.9								Silty Clayey Sand (SC-SM), Gray, With Organics
9L	13-13.5	27.2								Sandy Silt (ML), Gray, Clayey
9L	15.5-16	28.1						33/22		Lean Clay (CL), Gray, Silty
9L	18-18.5	28.6						46/21		Lean Clay (CL), Gray, Silty
										GEOTECHNICS
										Soil & Material Testing
_										


Sample No.	Depth (ft.)	Nat. Moist. (%)	Wet Density (PCF)	Dry Density (PCF)	Torvane (TSF)	<u>Grad200</u> (%)	Silt/Clay (%)	Atterberg % (LL/PL)	Hydraulic Cond. (cm/sec)	USCS Visual Description
9U	2-3.5	19.8								Fat Clay (CH), Yellow Brown mottled Light Gray/Brown
9U	4.5-5	20.3								Fat Clay (CH), Brown mottled Light GrayYellow Brown
9U	7-8.5	19.9								Fat Clay (CH), Yellow Brown mottled Light Gray/Gray
9U	9.5-11	n/a								
9U	12-13.5	25.5								Fat Clay (CH), Yellow Brown mottled Light Gray/Gray
9U	14.5-16	22.2								Fat Clay (CH), Gray mottled Yellow Brown
9U	17-18.5	23.6								Lean Clay with Sand (CL), Brown mottled Light Brown/Light Gray
9U ST 16	19.5-21.5	22.4	125.2	102.3	0.95	96.00	78.6/17.4	46/22	2.63x10 ⁻⁸	Lean Clay (CL), Gray mottled Light Gray, Silty, Stiff, Moist
9U	22-23.5	21.3								Lean Clay (CL), Brown mottled Light Gray/Yellow Brown
9U	24.5-26	25.2								Fat Clay (CH), Gray mottled Yellow Brown, Trace Coal
9U	26-28	23.3								Fat Clay (CH), Yellow Brown mottled Light Brown/Light Gray
9U	28-30	28.7								Fat Clay (CH), Yellow Brown mottled Light Gray
9U	30-32	29.4								Fat Clay (CH), Yellow Brown mottled Light Gray/Gray
9U	32-34	29.5								Fat Clay (CH/CL), Gray mottled Light Gray, Silty
9U	34-36	29.7								Sandy Lean Clay (CL), Gray mottled Yellow Brown, Silty
9U	36-38	29.5								Sandy Lean Clay (CL), Gray mottled Light Gray
9U	38-40	24.6								Sandy Lean Clay (CL), Gray mottled Yellow Brown, Silty
9CCR	2-3.5	15.0								Sandy Lean Clay (CL), Gray mottled Light Brown
9CCR	4.5-5	42.3								Silt (ML), Gray mottled Light Gray
9CCR	7-8.5	64.2								Silt (ML), Gray mottled Light Gray
9CCR ST8	9.5-11.5	23.2	126.9	103.0	0.72	94.50	66.6/27.9	46/21	9.55x10 ⁻⁹	Lean Clay (CL), Yellow Brown mottled Light Gray/Gray, Silty, Trace Sand, Stiff, Moist
9CCR	12-13.5	46.9								Silt (ML), Gray mottled Light Gray
9CCR	14.5-16	41.4								Silt (ML), Gray mottled Light Gray
9CCR	17-18.5	41.0								Silt (ML), Gray mottled Light Gray
10CCR	2-3.5	25.9								Ash/Cinders, Gray
10CCR	4.5-5	13.8								Ash/Cinders, Gray
10CCR	7-8.5	28.7								Ash, Brown/Light Gray
10CCR	9.5-11	38.2								Ash, Brown/Light Gray
10CCR	12-13.5	58.1								Ash, Brown/Light Brown
10CCR	14.5-16	27.2								Ash/Cinders, Dark Gray mottled Light Brown
10CCR	17-18.5	52.9								Ash, Brown/Gray
10CCR	19.5-21	59.5								Ash/Cinders, Gray mottled Brown
10CCR	22-23.5	58.0								Ash/Cinders, Gray mottled Brown
										GEOTECHNICS
										Soil & Material Testing

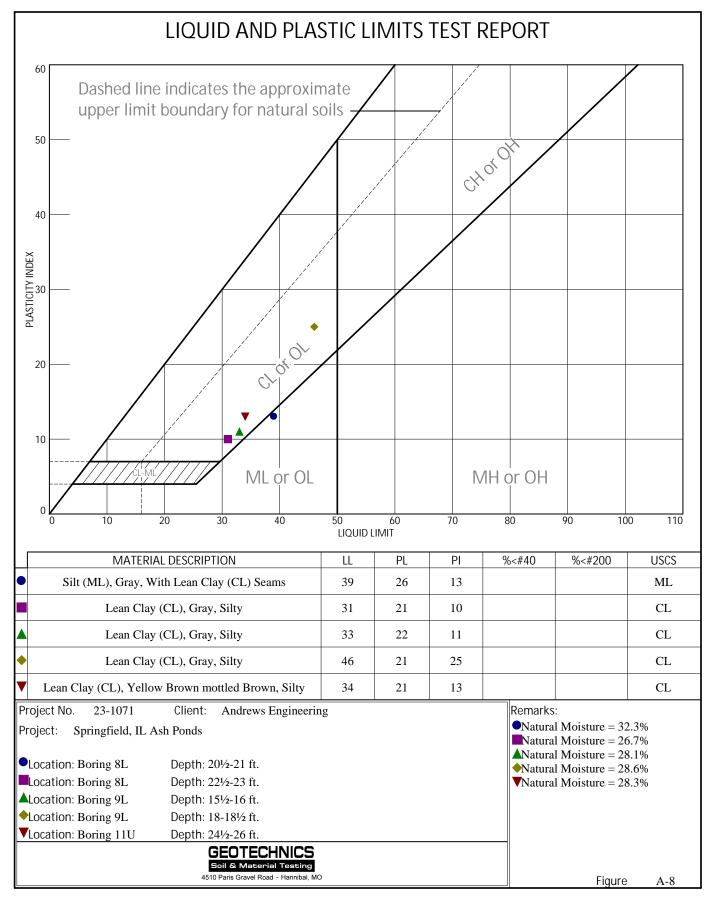

			W . D	D. D	Γ	0 1 000		_	J	T
Sample No.	Depth (ft.)	Nat. Moist. (%)	Wet Density (PCF)	Dry Density (PCF)	Torvane (TSF)	<u>Grad200</u> <u>(%)</u>	Silt/Clay (%)	Atterberg % (LL/PL)	Hydraulic Cond. (cm/sec)	USCS Visual Description
11U	2-3.5	18.0								Sandy Lean Clay (CL), Dark Brown
11U	4.5-5	20.4								Lean Clay with Sand (CL), Yellow Brown mottled Brown
11U	7-8.5	23.5								Fat Clay (CH), Light Gray mottled Yellow Brown, Trace Sand
11U ST8	9.5-11.5	21.8	129.9	106.7	0.80	92.50	52.4/40.1	36/20	1.38x10 ⁻⁸	Lean Clay (CL), Yellow Brown mottled Light Gray, Silty, Trace Sand, Stiff, Moist
11U	12-13.5	23.2								Fat Clay (CH), Yellow Brown mottled Light Gray/Gray, Trace Sand
11U	14.5-16	20.7								Lean Clay (CL), Brown mottled Yellow Brown
11U	17-18.5	28.6								Lean Clay (CL), Brown mottled Light Brown
11U ST16	19.5-21.5	25.7	123.1	97.9	0.50	95.90	66.8/29.1	48/21	3.04x10 ⁻⁷	Lean Clay (CL), Brown mottled Yellow Brown, Silty, Stiff, Moist
11U	22-23.5	25.8								Fat Clay (CH), Yellow Brown mottled Brown
11U	24.5-26	28.3						34/21		Lean Clay (CL), Yellow Brown mottled Brown, Silty
11U	27-28.5	25.9								Lean Clay (CL), Yellow Brown mottled Light Gray, Black Oxidation, Silty
12L	3.5-4	14.5								Fat Clay (CH), Brown mottled Light Brown
12L	5.5-6	17.4								Fat Clay (CH), Brown mottled Light Brown/Yellow Brown
12L	8.5-9	23.2								Fat Clay (CH/CL), Yellow Brown mottled Light Gray
12L	11.5-12	24.5								Fat Clay (CH), Brown mottled Light Gray/Yellow Brown
12L	14-14.5	24.5								Lean Clay (CL), Light Gray mottled Yellow Brown/Gray
12L ST	14.5-16	23.2	127.7	103.6	0.55	87.10	71.6/15.5	30/19	9.69x10 ⁻⁷	Lean Clay (CL), Light Gray mottled Yellow Brown, Silty, Trace Sand, Stiff, Moist
12L	19-19.5	22.9			0.00	31113	1 110/ 1010	00/10	0.00X10	Lean Clay (CL), Light Gray mottled Yellow Brown
12L	20-20.5	10.0								Sandy Lean Clay (CL), Light Gray mottled Yellow Brown
12L	23-23.5	13.0								Lean Clay (CL), Light Gray mottled Yellow Brown, Silty
	20 20.0	10.0								zean etay (ez/), zigin etay memea renen zienni, etty
12U	2-3.5	19.0								Lean Clay (CL), Brown, Silty
12U	4.5-5	17.1								Lean Clay (CL), Brown mottled Light Brown/Reddish Brown, Black Oxidation, Silty
12U	7-8.5	20.0								Lean Clay (CL), Light Brown mottled Yellow Brown, Silty
12U ST8	9.5-11.5	21.8	129.5	106.2	0.75	95.20	69.6/25.6	45/22	3.13x10 ⁻⁹	Lean Clay (CL), Yellow Brown mottled Light Gray, Black Oxidation, Silty, Stiff, Moist
12U	12-13.5	17.3	120.0	100.2	0.70	00.20	00.0/20.0	10/22	3.13.10	Lean Clay (CL), Brown mottled Yellow Brown/Light Gray, Silty
12U	14.5-16	15.2								Lean Clay (CL), Brown, With Lime Fines, Trace Gravel
12U	17-18.5	18.9								Lean Clay (CL), Brown, With Ash/Coal
12U ST16	19.5-21.5	21.6	123.3	101.4	0.95	96.10	73.0/23.1	42/22	1.03x10 ⁻⁸	Lean Clay (CL), Yellow Brown mottled Light Gray, Black Oxidation, Silty, Stiff, Moist
12U	22-23.5	25.6	120.0	101.1	0.00	00.10	70.0/20.1	12/22	1.03810	Lean Clay (CL), Brown mottled Reddish Brown, Silty
12U	24.5-26	25.8								Lean Clay (CL), Light Brown mottled Yellow Brown, Reddish Oxidation, Silty
12U	27-28.5	25.2								Lean Clay (CL), Light Gray mottled Yellow Brown/Light Brown, Reddish Oxidation, Silty
120	27 20.0	20.2								Ecan day (CE), Eight dray motiled reliew Brown, Eight Brown, Reddien Chidation, Only
13L	2-3.5	15.9								Lean Clay (CL), Brown
13L	4.5-5	17.4								Lean Clay (CL), Brown
13L	7-8.5	19.3								Lean Clay (CL), Brown mottled Yellow Brown
13L	9.5-11	19.6				1				Lean Clay (CL), Brown mottled Yellow Brown, Silty
13L	12-13.5	23.5								Lean Clay (CL), Brown mottled Reddish Brown
13L	14.5-16	27.4								Fat Clay (CH), Light Gray mottled Yellow Brown/Brown, Black Oxidation
100	1-7.0 10	21.7								Tax Stay (Str), Light Stry motified Tollow Brown, Black Oxidation
										GEOTECHNICS
		+								Box and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state
		<del>                                     </del>								Soil & Material Testing
		<del>                                     </del>				1				
		1				ı				


			104		Γ_			_	J	
Sample No.	Depth (ft.)	Nat. Moist. (%)	Wet Density (PCF)	Dry Density (PCF)	Torvane (TSF)	<u>Grad200</u> (%)	Silt/Clay (%)	Atterberg % (LL/PL)	Hydraulic Cond. (cm/sec)	USCS Visual Description
13BN	2-3.5	18.6								Lean Clay (CL), Light Brown mottled Reddish Brown/Light Gray, Silty
13BN	4.5-5	21.1								Lean Clay (CL), Light Brown mottled Reddish Brown
13BN	7-8.5	15.5								Lean Clay (CL), Light Brown mottled Reddish Brown, Silty
13BN ST7	8.5-10.5	18.4	132.2	111.6	0.95	90.90	74.9/16.0	34/20	8.84x10 ⁻⁹	Lean Clay (CL), Yellow Brown, Silty, Trace Sand, Stiff, Moist
13BS	2-3.5	16.0								Lean Clay (CL), Brown mottled Reddish Brown, Silty
13BS	4.5-5	15.5								Lean Clay (CL), Brown mottled Reddish Brown, Silty
13BS	7-8.5	19.1								Lean Clay (CL), Brown mottled Light Brown/Light Gray
13BS ST7	8.5-10.5	21.1	127.5	105.3	0.95	94.90	78.6/16.3	52/25	2.32x10 ⁻⁸	Fat Clay (CH), Gray mottled Light Gray, Silty, Trace Sand, Stiff, Moist
13LF	2-3.5	12.4								Lean Clay (CL), Brown mottled Yellow Brown, Silty
13LF	4.5-5	22.3								Lean Clay (CL), Light Brown mottled Yellow Brown/Light Gray, With Fat Seams
13LF	7-8.5	21.0								Lean Clay (CL), Light Brown mottled Yellow Brown/Light Gray, With Fat Seams, Over Light Gray Ash
13LF	9.5-11	21.4								Ash, Light Gray
13LF	12-13.5	21.1								Ash, Light Gray
13LF	14.5-16	19.1								Ash, Light Gray
13LF	17-18.5	20.9								Lean Clay (CL), Light Brown mottled Reddish Brown/Light Gray, Over Light Gray Ash
13LF	19.5-21	21.6								Ash, Yellow Brown mottled Light Gray
13LF	22-23.5	24.8								Ash, Yellow Brown
13LF	24.5-26	28.3								Ash, Yellow Brown
										GEOTECHNICS
										Soil & Material Testing
		•								

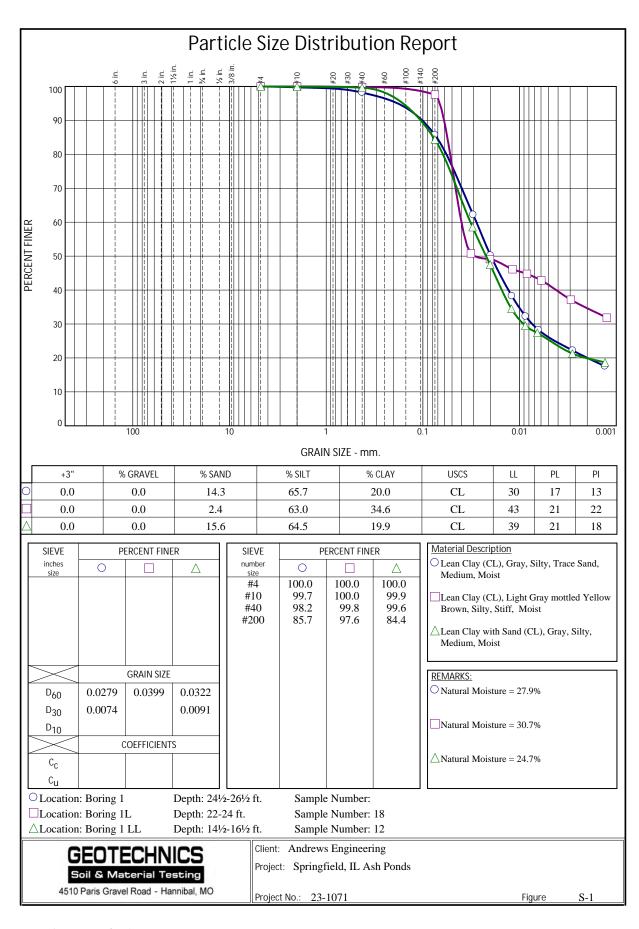


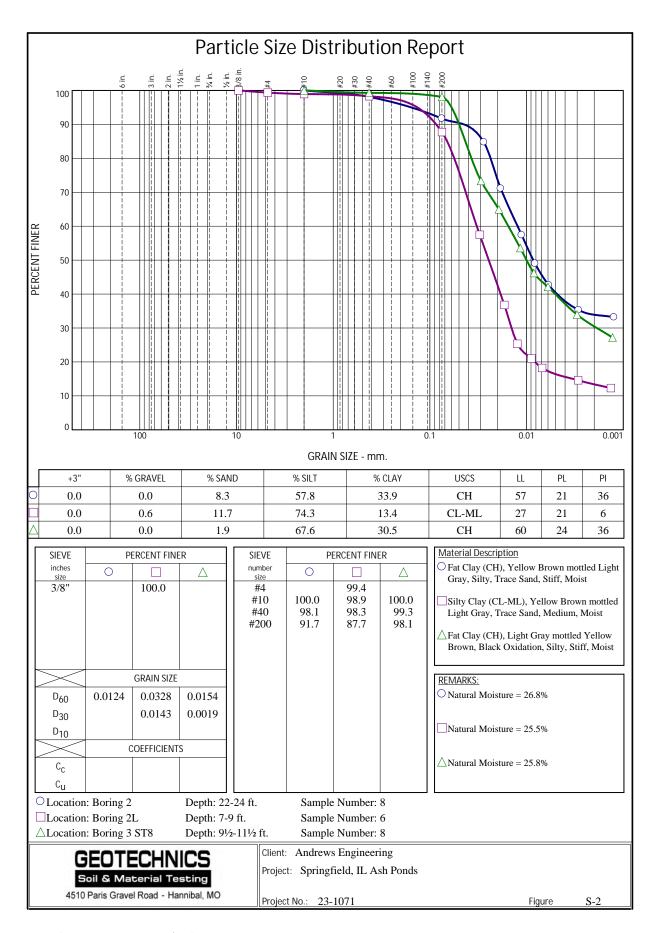



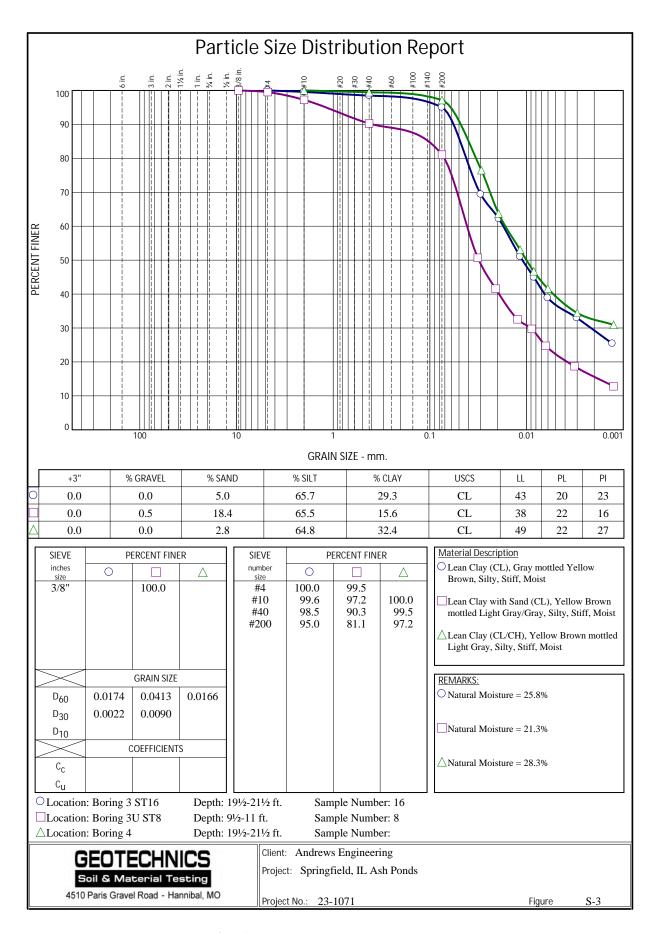


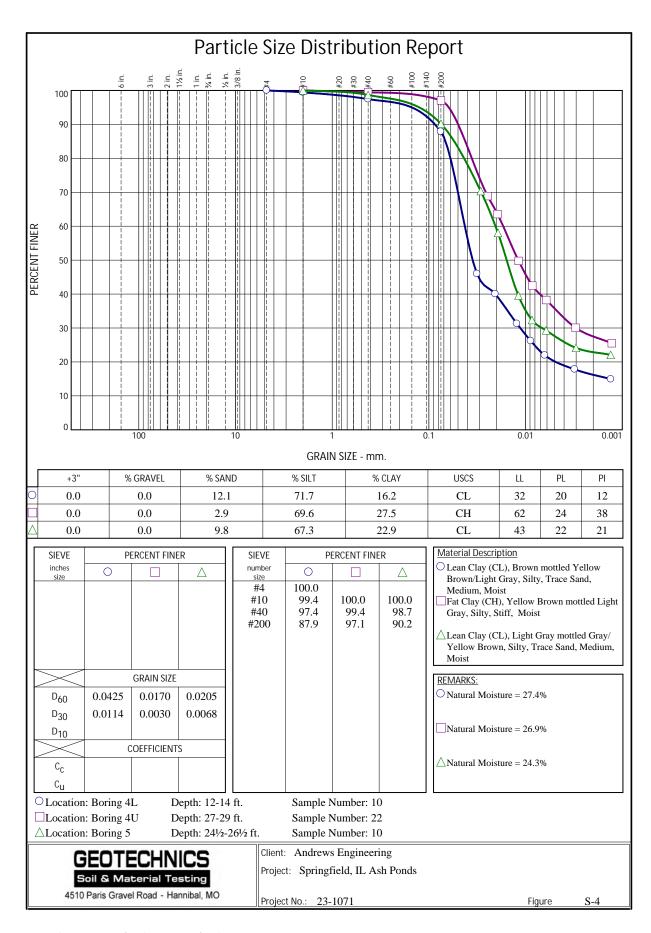



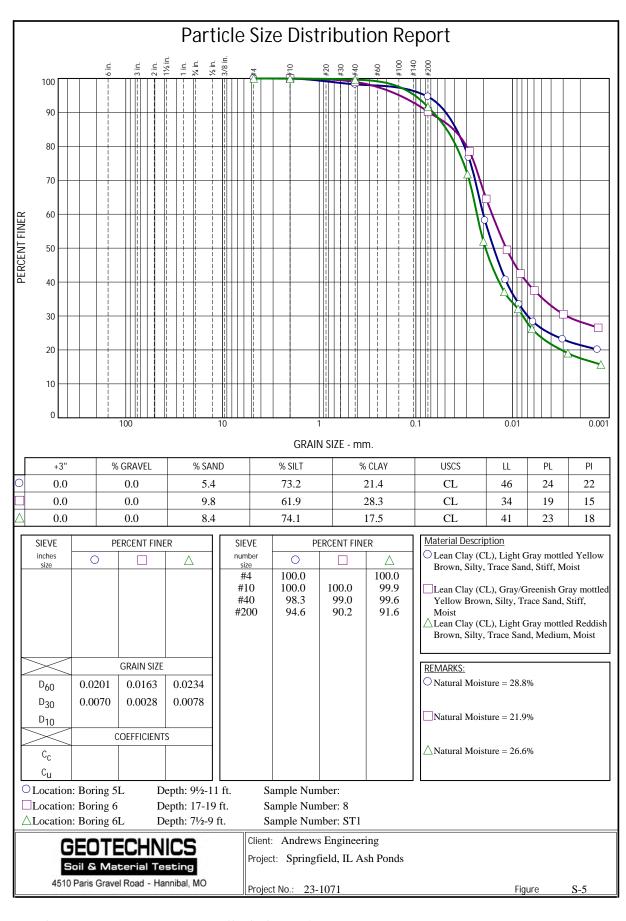


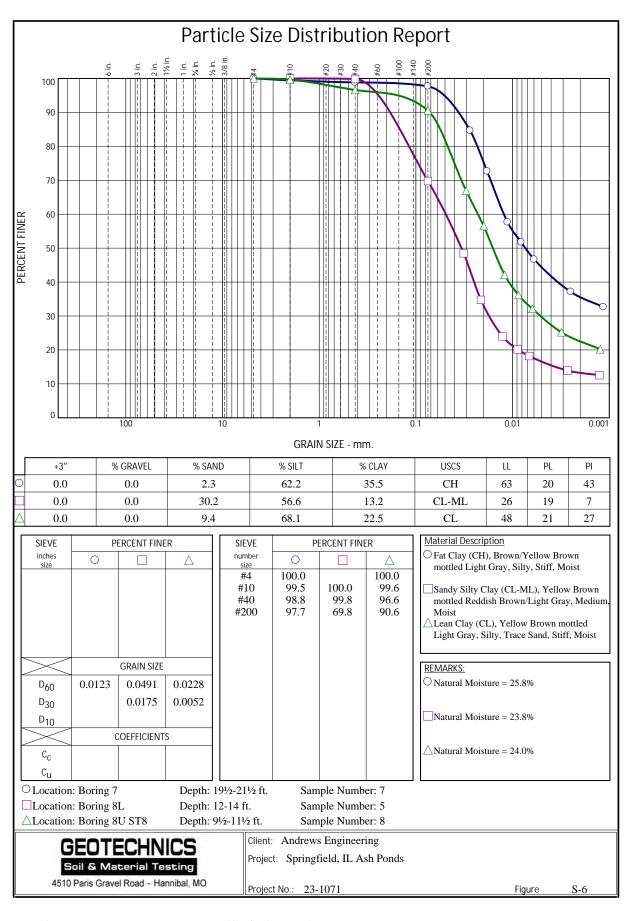



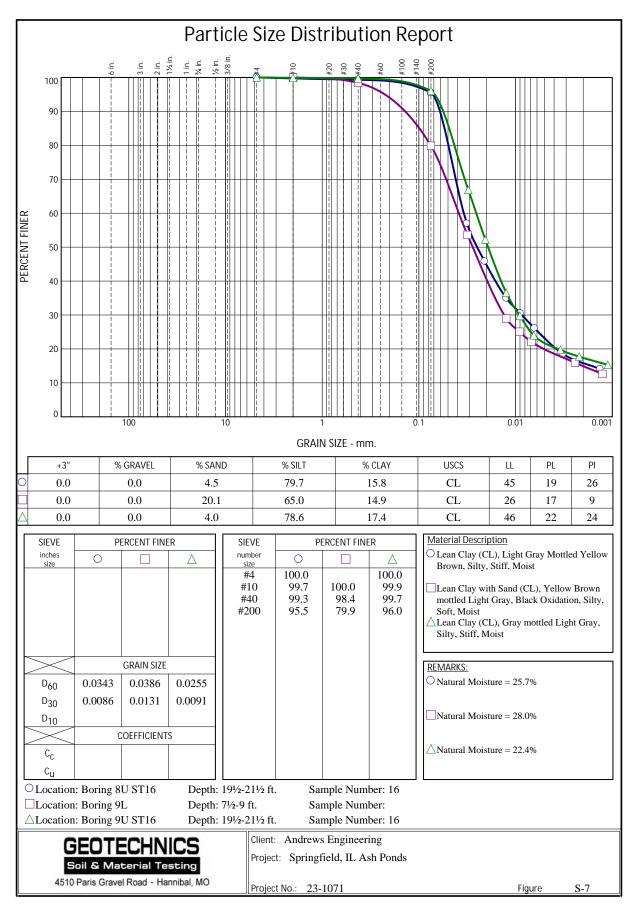


Tested By: DAW Checked By: NAS

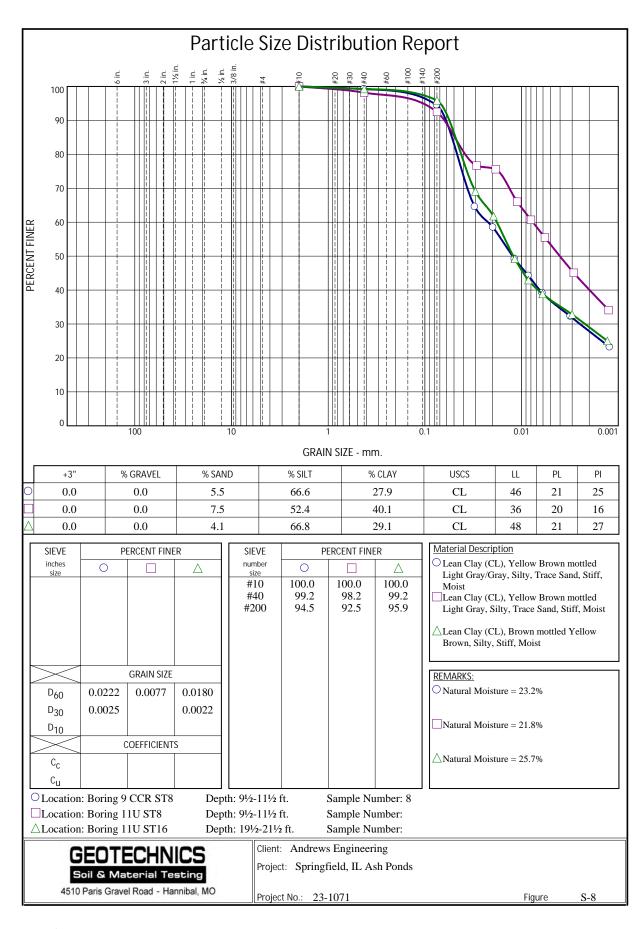


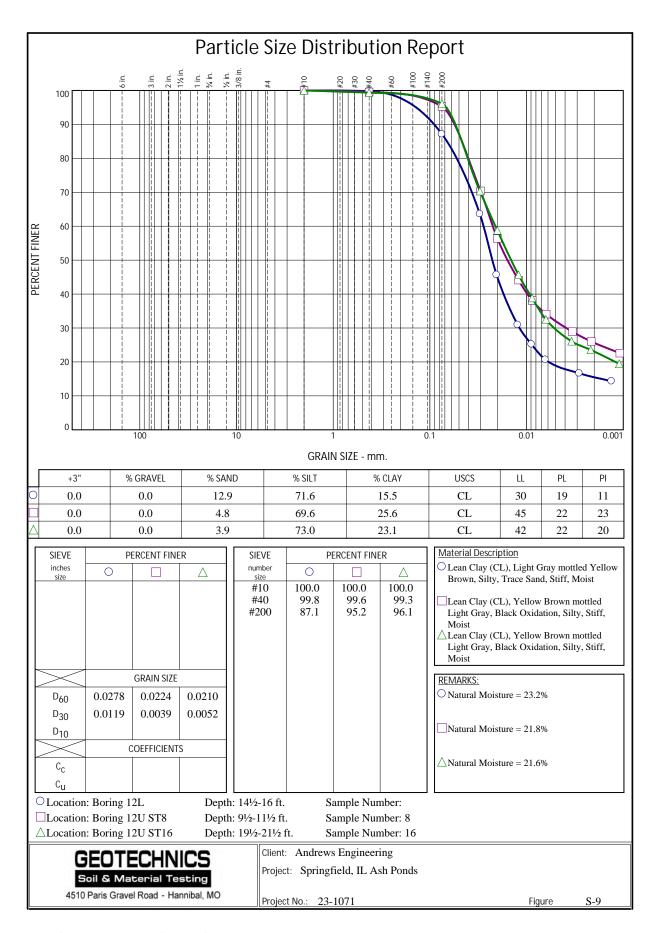


Tested By: DAW Checked By: NAS

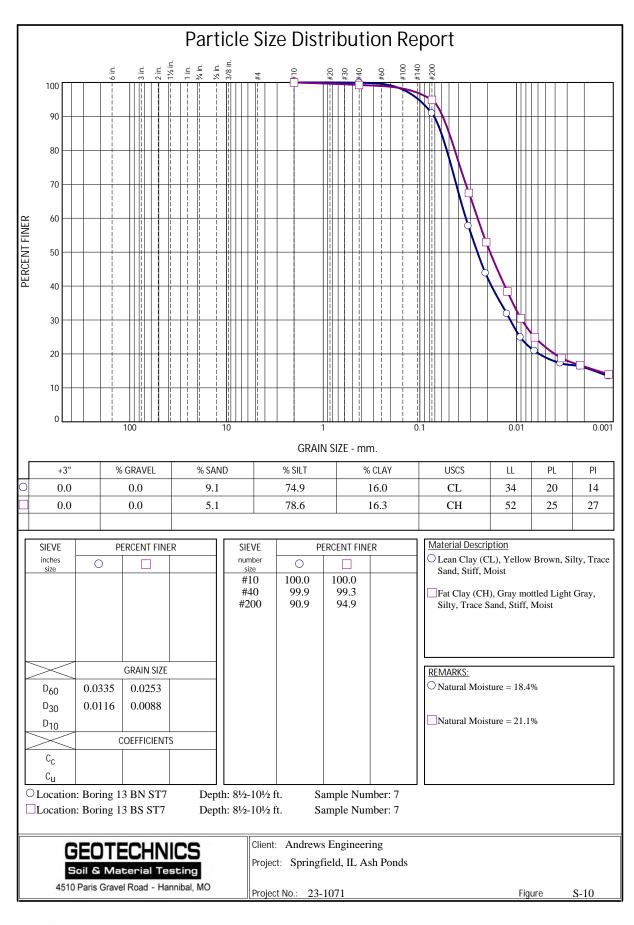






Tested By: DAW Checked By: NAS











### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

LOCATION **Springfield, IL** SAMPLING DATE

CLIENT Andrews Engineering

SAMPLE Lean Clay (CL), Gray, Silty, Trace Sand, Medium, Moist

DESCRIPTION

**LIQUID LIMIT 30** PLASTIC LIMIT 17 P.I. 13

SAMPLE NO. BORING NO. Boring 1

SAMPLE TYPE **ST** DEPTH **24**½**-26**½ **ft**.

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT **26.2%** INITIAL DRY DENSITY 100.8 P.C.F.

FINAL WATER CONTENT 23.1% FINAL DRY DENSITY 102.6 P.C.F.

<b>t</b> ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
3:12:00 PM		0.200	7.214	40.438		2.89	7.04	20.750	210.9		231.650		
3:12:00 PM	3:33:00 PM	0.200	7.214	40.438	1260	5.00	4.94	-0.300	210.9	1.00	210.600	1.35E-06	1.27E-06
3:33:00 PM	3:53:00 PM	0.200	7.214	40.438	1200	6.77	3.17	-18.000	210.9	1.00	192.900	1.31E-06	1.23E-06
3:53:00 PM	4:34:00 PM	0.200	7.214	40.438	2460	9.89	0.04	-49.250	210.9	1.00	161.650	1.28E-06	1.21E-06
													1.23E-06

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 1.23 E-06 CM/SEC$

REMARKS: Testing Completed 11/2/2023

**TESTED** 

BY: **BJS/NAS** 

COMPUTED BY: NAS



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

LOCATION **Springfield, IL** SAMPLING DATE

CLIENT Andrews Engineering

Lean Clay (CL), Light Gray mottled Yellow Brown, Silty, Stiff, Moist SAMPLE

DESCRIPTION

**LIQUID LIMIT 43** PLASTIC LIMIT 21 P.I. 22

SAMPLE NO. ST 18 BORING NO. Boring 1L

SAMPLE TYPE **ST** DEPTH **22-24 ft.** 

TEST METHOD **ASTM D 5084-10** SPECIFIC GRAVITY, Gs

INITIAL WATER CONTENT **20.4%** INITIAL DRY DENSITY 114.0 P.C.F.

FINAL WATER CONTENT 16.1% FINAL DRY DENSITY 117.4 P.C.F.

t ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
12:42:00 PM		0.200	7.330	41.980		4.60	5.36	3.800	70.3		74.100		
12:42:00 PM	12:50:00 PM	0.200	7.330	41.980	480	5.82	4.15	-8.350	70.3	0.99	61.950	6.51E-06	6.14E-06
12:50:00 PM	1:32:00 PM	0.200	7.330	41.980	2520	9.50	0.50	-45.000	70.3	0.99	25.300	6.21E-06	5.85E-06
1:32:00 PM	1:42:30 PM	0.200	7.330	41.980	630	9.99	0.01	-49.900	70.3	1.00	20.400	5.97E-06	5.62E-06
													5.84E-06

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 5.84 E-06 CM/SEC$

REMARKS: Testing Completed 11/10/2023

**TESTED** 

BY: **BJS/NAS** 

COMPUTED BY: NAS



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

## PERMEABILITY TEST REPORT ASTM D 5084-10

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

LOCATION **Springfield, IL** SAMPLING DATE

CLIENT Andrews Engineering

SAMPLE <u>Lean Clay with Sand (CL), Gray, Silty, Medium, Moist</u>

**DESCRIPTION** 

LIQUID LIMIT 39 PLASTIC LIMIT 21 P.I. 18

BORING NO. Boring 1LL SAMPLE NO. ST 12

SAMPLE TYPE **ST** DEPTH **14**½**-16**½ **ft**.

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT 23.8% INITIAL DRY DENSITY 102.1 P.C.F.

FINAL WATER CONTENT <u>22.8%</u> FINAL DRY DENSITY <u>103.9 P.C.F.</u>

t ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
2:32:00 PM		0.200	7.391	41.543		0.14	10.00	49.300	70.3		119.600		
2:32:00 PM	2:46:00 PM	0.200	7.391	41.543	840	3.35	6.78	17.150	70.3	1.00	87.450	6.63E-06	6.25E-06
2:46:00 PM	2:54:00 PM	0.200	7.391	41.543	480	4.75	5.38	3.150	70.3	1.00	73.450	6.47E-06	6.09E-06
2:54:00 PM	3:10:00 PM	0.200	7.391	41.543	960	6.82	3.31	-17.550	70.3	1.00	52.750	6.14E-06	5.78E-06
													6.02E-06

# COEFFICIENT OF VERTICAL PERMEABILITY K₂₀ = 6.02 E-06 CM/SEC

REMARKS: Testing Completed 11/3/2023

**TESTED** 

BY: BJS/NAS

COMPUTED BY: **NAS** 



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

Quincy, IL • Galesburg, IL • Burlington, IA • Pella, IA • Columbia, MO • Hannibal, MO

## PERMEABILITY TEST REPORT ASTM D 5084-10

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds
CLIENT Andrews Engineering

LOCATION **Springfield, IL** SAMPLING DATE

SAMPLE Fat Clay (CH), Yellow Brown mottled Light Gray, Silty, Trace Sand, Stiff, Moist DESCRIPTION

LIQUID LIMIT 57 PLASTIC LIMIT 21 P.I. 36

BORING NO. Boring 2 SAMPLE NO. 8

SAMPLE TYPE **ST** DEPTH **22-24 ft**.

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT <u>21.5%</u> INITIAL DRY DENSITY <u>101.8 P.C.F.</u>

FINAL WATER CONTENT 23.0% FINAL DRY DENSITY 102.1 P.C.F.

t	t ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
6:39:0	00 AM		0.200	6.980	41.931		4.53	4.63	0.500	210.9		211.400		
6:39:0	00 AM	6:52:00 AM	0.200	6.980	41.931	780	4.60	4.56	-0.200	210.9	1.00	210.700	7.08E-08	6.67E-08
6:52:0	00 AM	7:30:00 AM	0.200	6.980	41.931	2280	4.81	4.34	-2.350	210.9	1.05	208.550	7.49E-08	7.05E-08
7:30:0	00 AM	7:48:00 AM	0.200	6.980	41.931	1080	4.90	4.24	-3.300	210.9	1.11	207.600	7.04E-08	6.63E-08
														6.87E-08

# COEFFICIENT OF VERTICAL PERMEABILITY K₂₀ = 6.87 E-08 CM/SEC

REMARKS: Testing Completed 10/14/2023

**TESTED** 

BY: **BJS/NAS** 

COMPUTED BY: **NAS** 



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

Quincy, IL • Galesburg, IL • Burlington, IA • Pella, IA • Columbia, MO • Hannibal, MO

### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

LOCATION Springfield, IL SAMPLING DATE

CLIENT Andrews Engineering

Silty Clay (CL-ML), Yellow Brown mottled Light Gray, Trace Sand, Medium, Moist SAMPLE DESCRIPTION

**LIQUID LIMIT 27** PLASTIC LIMIT 21 P.I. 6

SAMPLE NO. 6 BORING NO. Boring 2L

SAMPLE TYPE **ST** DEPTH **7.0-9.0 ft.** 

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT **24.7%** INITIAL DRY DENSITY 101.9 P.C.F.

FINAL WATER CONTENT 23.5% FINAL DRY DENSITY 103.2 P.C.F.

t ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
3:28:00 PM		0.200	7.005	41.254		3.97	6.85	14.400	70.3		84.700		
3:28:00 PM	3:40:00 PM	0.200	7.005	41.254	720	6.71	4.10	-13.050	70.3	1.00	57.250	9.24E-06	8.70E-06
3:40:00 PM	3:50:00 PM	0.200	7.005	41.254	600	8.30	2.50	-29.000	70.3	1.01	41.300	9.24E-06	8.71E-06
3:50:00 PM	4:02:00 PM	0.200	7.005	41.254	720	9.47	1.33	-40.700	70.3	1.00	29.600	7.86E-06	7.40E-06
													8.24E-06

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 8.24 E-06 CM/SEC$

REMARKS: Testing Completed 11/5/2023

**TESTED** 

BY: **BJS/NAS** 

COMPUTED BY: NAS



### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

CLIENT Andrews Engineering

LOCATION **Springfield**, **IL** 

SAMPLING DATE

SAMPLE Fat Clay (CH), Light Gray mottled Yellow Brown, Black Oxidation, Silty, Stiff,

Moist

**DESCRIPTION** 

**LIQUID LIMIT 60** 

PLASTIC LIMIT 24

P.I. 36

BORING NO. Boring 3

SAMPLE NO. ST 8

SAMPLE TYPE **ST** DEPTH **9**½**-11**½ **ft**.

SPECIFIC GRAVITY, Gs

TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT **24.7%** 

INITIAL DRY DENSITY 100.2 P.C.F.

FINAL WATER CONTENT **26.1%** 

FINAL DRY DENSITY 99.0 P.C.F.

t ₁	$t_2$	а	L	Α	t	head	tail	$h_{\rm w}$	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
5:53:00 AM		0.200	7.163	42.028		1.50	7.88	31.900	210.9		242.800		
5:53:00 AM	7:13:00 AM	0.200	7.163	42.028	4800	1.56	7.82	31.300	210.9	1.00	242.200	8.79E-09	8.28E-09
7:13:00 AM	7:38:00 AM	0.200	7.163	42.028	1500	1.58	7.80	31.100	210.9	1.00	242.000	9.39E-09	8.84E-09
7:38:00 AM	8:29:00 AM	0.200	7.163	42.028	3060	1.62	7.76	30.700	210.9	1.00	241.600	9.21E-09	8.68E-09
													8.50E-09

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 8.50 E-09 CM/SEC$

REMARKS: Testing Completed 11/15/2023

**TESTED** 

BY: **BJS/NAS** 

COMPUTED BY: NAS



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

## PERMEABILITY TEST REPORT ASTM D 5084-10

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

LOCATION **Springfield, IL** SAMPLING DATE

CLIENT Andrews Engineering

SAMPLE Lean Clay (CL), Gray mottled Yellow Brown, Silty, Stiff, Moist

**DESCRIPTION** 

LIQUID LIMIT 43 PLASTIC LIMIT 20 P.I. 23

BORING NO. Boring 3 SAMPLE NO. ST 16

SAMPLE TYPE **ST** DEPTH 19½-21½ ft.

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT <u>25.8%</u> INITIAL DRY DENSITY <u>95.1 P.C.F.</u>

FINAL WATER CONTENT 29.5% FINAL DRY DENSITY 93.0 P.C.F.

t ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
12:10:00 PM		0.200	7.432	42.077		5.34	4.67	-3.350	210.9		207.550		
12:10:00 PM	12:30:00 PM	0.200	7.432	42.077	1200	6.00	4.01	-9.950	210.9	1.00	200.950	4.76E-07	4.48E-07
12:30:00 PM	12:54:00 PM	0.200	7.432	42.077	1440	6.72	3.29	-17.150	210.9	1.00	193.750	4.48E-07	4.22E-07
12:54:00 PM	1:25:00 PM	0.200	7.432	42.077	1860	7.60	2.40	-26.000	210.9	1.01	184.900	4.44E-07	4.18E-07
													4.27E-07

# COEFFICIENT OF VERTICAL PERMEABILITY K₂₀ = 4.27 E-07 CM/SEC

REMARKS: Testing Completed 11/15/2023

**TESTED** 

BY: **BJS/NAS** 

COMPUTED BY: **NAS** 



### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

CLIENT Andrews Engineering

LOCATION **Springfield**, **IL** 

SAMPLING DATE

SAMPLE Lean Clay with Sand (CL), Yellow Brown mottled Light Gray/Gray, Silty, Stiff,

**DESCRIPTION** 

**LIQUID LIMIT 38** 

PLASTIC LIMIT 22

P.I. 16

BORING NO. Boring 3U

SAMPLE NO. ST 8

SAMPLE TYPE **ST** DEPTH **9**½**-11 ft**.

SPECIFIC GRAVITY, Gs

TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT **21.4%** 

INITIAL DRY DENSITY 101.2 P.C.F.

FINAL WATER CONTENT 21.4%

FINAL DRY DENSITY 102.2 P.C.F.

t ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
8:55:00 PM		0.200	7.483	41.834		2.21	6.92	23.550	351.5		375.050		
8:55:00 PM	7:04:00 AM	0.200	7.483	41.834	42180	3.58	5.53	9.750	351.5	1.01	361.250	1.59E-08	1.50E-08
7:04:00 AM	8:38:00 AM	0.200	7.483	41.834	5640	3.78	5.33	7.750	351.5	1.00	359.250	1.76E-08	1.66E-08
8:38:00 AM	12:03:00 PM	0.200	7.483	41.834	12300	4.18	4.92	3.700	351.5	1.03	355.200	1.65E-08	1.55E-08
													1.52E-08

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 1.52 E-08 CM/SEC$

REMARKS: Testing Completed 11/21/2023

**TESTED** 

BY: **BJS/NAS** 

COMPUTED BY: NAS



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

## PERMEABILITY TEST REPORT ASTM D 5084-10

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

CLIENT Andrews Engineering

LOCATION **Springfield, IL** SAMPLING DATE

SAMPLE Lean Clay (CL/CH), Yellow Brown mottled Light Gray, Silty, Stiff, Moist

**DESCRIPTION** 

LIQUID LIMIT 49 PLASTIC LIMIT 22 P.I. 27

BORING NO. **Boring 4** SAMPLE NO.

SAMPLE TYPE **ST** DEPTH **19**½**-21**½ **ft**.

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT <u>25.5%</u> INITIAL DRY DENSITY <u>96.4 P.C.F.</u>

FINAL WATER CONTENT 23.8% FINAL DRY DENSITY 100.0 P.C.F.

<b>t</b> ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
7:09:00 PM		0.200	7.437	41.205		3.74	5.94	11.000	210.9		221.900		
7:09:00 PM	8:29:00 PM	0.200	7.437	41.205	4800	4.13	5.51	6.900	210.9	1.10	217.800	7.01E-08	6.61E-08
8:29:00 PM	9:00:00 PM	0.200	7.437	41.205	1860	4.30	5.34	5.200	210.9	1.00	216.100	7.60E-08	7.16E-08
9:00:00 PM	9:28:00 PM	0.200	7.437	41.205	1680	4.42	5.22	4.000	210.9	1.00	214.900	5.98E-08	5.64E-08
													6.53E-08

# COEFFICIENT OF VERTICAL PERMEABILITY $K_{20} = 6.53 E-08 CM/SEC$

REMARKS: Testing Completed 11/5/2023

**TESTED** 

BY: **BJS/NAS** 

COMPUTED BY: **NAS** 



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

Quincy, IL • Galesburg, IL • Burlington, IA • Pella, IA • Columbia, MO • Hannibal, MO

### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

CLIENT Andrews Engineering

LOCATION **Springfield, IL** 

SAMPLING DATE

Lean Clay (CL), Brown mottled Yellow Brown/Light Gray, Silty, Trace Sand, SAMPLE

Medium, Moist

**DESCRIPTION** 

**LIQUID LIMIT 32** 

PLASTIC LIMIT 20

P.I. **12** 

BORING NO. Boring 4L

SAMPLE NO. ST 10

SAMPLE TYPE **ST** DEPTH **12-14 ft**.

SPECIFIC GRAVITY, Gs

TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT **25.7%** 

INITIAL DRY DENSITY 100.7 P.C.F.

FINAL WATER CONTENT 24.6%

FINAL DRY DENSITY 101.8 P.C.F.

t ₁	$t_2$	а	L	Α	t	head	tail	h _w	ha	dt/dh	$h_a + h_w$	k	<b>k</b> ₂₀
12:16:00 PM		0.200	7.397	41.013		1.20	8.82	38.100	140.6		178.700		
12:16:00 PM	1:03:00 PM	0.200	7.397	41.013	2820	3.75	6.23	12.400	140.6	1.02	153.000	9.93E-07	9.35E-07
1:03:00 PM	2:23:00 PM	0.200	7.397	41.013	4800	7.39	2.55	-24.200	140.6	1.01	116.400	1.03E-06	9.68E-07
2:23:00 PM	3:26:00 PM	0.200	7.397	41.013	3780	9.59	0.32	-46.350	140.6	1.01	94.250	1.01E-06	9.49E-07
													9.53E-07

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 9.53 E-07 CM/SEC$

REMARKS: Testing Completed 11/7/2023

**TESTED** BY: **BJS** 

COMPUTED BY: BJS



## PERMEABILITY TEST REPORT ASTM D 5084-10

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds
CLIENT Andrews Engineering

LOCATION **Springfield, IL** SAMPLING DATE

SAMPLE Fat Clay (CH), Yellow Brown mottled Light Gray, Silty, Stiff, Moist DESCRIPTION

LIQUID LIMIT 62 PLASTIC LIMIT 24 P.I. 38

BORING NO. Boring 4U SAMPLE NO. ST 22

SAMPLE TYPE **ST** DEPTH **27-29 ft**.

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT <u>28.8%</u> INITIAL DRY DENSITY <u>94.6 P.C.F.</u>

FINAL WATER CONTENT 28.1% FINAL DRY DENSITY 95.5 P.C.F.

t ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
12:47:00 PM		0.200	7.706	42.077		2.33	6.84	22.550	210.9		233.450		
12:47:00 PM	1:08:00 PM	0.200	7.706	42.077	1260	2.35	6.82	22.350	210.9	1.00	233.250	1.25E-08	1.17E-08
1:08:00 PM	2:20:00 PM	0.200	7.706	42.077	4320	2.42	6.74	21.600	210.9	1.14	232.500	1.37E-08	1.29E-08
2:20:00 PM	4:43:00 PM	0.200	7.706	42.077	8580	2.50	6.66	20.800	210.9	1.00	231.700	7.36E-09	6.93E-09
													9.17E-09

# COEFFICIENT OF VERTICAL PERMEABILITY K₂₀ = 9.17 E-09 CM/SEC

REMARKS: Testing Completed 11/10/2023

**TESTED** 

BY: BJS/NAS

COMPUTED BY: **NAS** 



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

Quincy, IL • Galesburg, IL • Burlington, IA • Pella, IA • Columbia, MO • Hannibal, MO

### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

**CLIENT** Andrews Engineering

LOCATION **Springfield**, **IL** 

SAMPLING DATE

Lean Clay (CL), Light Gray mottled Gray/Yellow Brown, Silty, Trace Sand, SAMPLE

Medium, Moist

DESCRIPTION

**LIQUID LIMIT 43** PLASTIC LIMIT 22 P.I. 21

SAMPLE NO. 10 BORING NO. Boring 5

SAMPLE TYPE **ST** DEPTH 241/2-261/2 ft.

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT **24.5%** INITIAL DRY DENSITY 99.8 P.C.F.

FINAL WATER CONTENT 23.7% FINAL DRY DENSITY 100.3 P.C.F.

t ₁	$t_2$	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	k ₂₀
1:59:00 PM		0.200	6.904	41.883		2.62	6.29	18.350	210.9		229.250		
1:59:00 PM	2:35:00 PM	0.200	6.904	41.883	2160	3.48	5.40	9.600	210.9	1.03	220.500	2.97E-07	2.80E-07
2:35:00 PM	3:06:00 PM	0.200	6.904	41.883	1860	4.16	4.69	2.650	210.9	1.04	213.550	2.84E-07	2.67E-07
3:06:00 PM	3:47:00 PM	0.200	6.904	41.883	2460	5.00	3.84	-5.800	210.9	1.01	205.100	2.71E-07	2.55E-07
													2.67E-07

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 2.67 E-07 CM/SEC$

REMARKS: Testing Completed 10/17/2023

**TESTED** BY: NAS

COMPUTED BY: NAS



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

**CLIENT** Andrews Engineering

LOCATION Springfield, IL

SAMPLING DATE

Lean Clay (CL), Light Gray mottled Yellow Brown, Silty, Trace Sand, Stiff, Moist SAMPLE DESCRIPTION

**LIQUID LIMIT 46** 

PLASTIC LIMIT 24

P.I. 22

BORING NO. Boring 5L

SAMPLE NO.

SAMPLE TYPE **ST** DEPTH **9**½**-11 ft**.

SPECIFIC GRAVITY, Gs

TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT **29.0%** 

INITIAL DRY DENSITY 94.4 P.C.F.

FINAL WATER CONTENT 28.4%

FINAL DRY DENSITY 94.3 P.C.F.

t ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
12:33:00 PM		0.200	7.696	40.869		0.08	9.97	49.450	210.9		260.350		
12:33:00 PM	2:12:00 PM	0.200	7.696	40.869	5940	4.13	5.77	8.200	210.9	1.04	219.100	5.47E-07	5.15E-07
2:12:00 PM	2:38:00 PM	0.200	7.696	40.869	1560	5.12	4.77	-1.750	210.9	1.01	209.150	5.61E-07	5.28E-07
2:38:00 PM	3:21:00 PM	0.200	7.696	40.869	2580	6.62	3.24	-16.900	210.9	1.02	194.000	5.49E-07	5.17E-07
													5.18E-07

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 5.18 E-07 CM/SEC$

REMARKS: Testing Completed 10/16/2023

**TESTED** BY: NAS

COMPUTED BY: NAS



#### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

CLIENT **Andrews Engineering**  LOCATION **Springfield, IL** 

SAMPLING DATE

Lean Clay (CL), Gray/Greenish Gray mottled Yellow Brown, Silty, Trace Sand, SAMPLE

Stiff, Moist

**DESCRIPTION** 

**LIQUID LIMIT 34** 

PLASTIC LIMIT 19 P.I. 15

BORING NO. Boring 6

SAMPLE NO. 8

SAMPLE TYPE **ST** DEPTH **17-19 ft**.

SPECIFIC GRAVITY, Gs

TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT 19.5%

INITIAL DRY DENSITY 106.8 P.C.F.

FINAL WATER CONTENT **20.7%** 

FINAL DRY DENSITY 106.4 P.C.F.

t ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
7:10:00 AM		0.200	8.199	42.418		3.33	6.20	14.350	210.9		225.250		
7:10:00 AM	8:01:00 AM	0.200	8.199	42.418	3060	3.49	6.04	12.750	210.9	1.00	223.650	4.50E-08	4.24E-08
8:01:00 AM	9:31:00 AM	0.200	8.199	42.418	5400	3.76	5.76	10.000	210.9	1.04	220.900	4.43E-08	4.17E-08
9:31:00 AM	10:31:00 AM	0.200	8.199	42.418	3600	3.95	5.57	8.100	210.9	1.00	219.000	4.64E-08	4.37E-08
													4.25E-08

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 4.25 E-08 CM/SEC$

REMARKS: Testing Completed 10/23/2023

**TESTED** BY: NAS

COMPUTED BY: NAS



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

**CLIENT** Andrews Engineering

LOCATION **Springfield, IL** 

SAMPLING DATE

Lean Clay (CL), Light Gray mottled Reddish Brown, Silty, Trace Sand, Medium, SAMPLE

Moist

**DESCRIPTION** 

LIQUID LIMIT 41

PLASTIC LIMIT 23 P.I. 18

BORING NO. Boring 6L-ST1

SAMPLE NO. ST1

SAMPLE TYPE **ST** DEPTH **7**½-**9**ft.

SPECIFIC GRAVITY, Gs

TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT **27.5%** 

INITIAL DRY DENSITY 95.2 P.C.F.

FINAL WATER CONTENT **26.0%** 

FINAL DRY DENSITY 96.2 P.C.F.

<b>t</b> ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
10:42:00 AM		0.200	7.625	39.301		1.80	7.77	29.850	210.9		240.750		
10:42:00 AM	11:10:00 AM	0.200	7.625	39.301	1680	2.98	6.56	17.900	210.9	1.03	228.800	5.88E-07	5.54E-07
11:10:00 AM	11:59:00 AM	0.200	7.625	39.301	2940	4.88	4.61	-1.350	210.9	1.03	209.550	5.80E-07	5.46E-07
11:59:00 AM	12:16:00 PM	0.200	7.625	39.301	1020	5.49	3.98	-7.550	210.9	1.03	203.350	5.71E-07	5.38E-07
													5.47E-07

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 5.47 E-07 CM/SEC$

REMARKS: Testing Completed 10/20/2023

**TESTED** 

BY: **BJS/NAS** 

COMPUTED BY: NAS



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

## PERMEABILITY TEST REPORT ASTM D 5084-10

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

CLIENT **Andrews Engineering** 

LOCATION **Springfield, IL** SAMPLING DATE

SAMPLE Fat Clay (CH), Brown/Yellow Brown mottled Light Gray, Silty, Stiff, Moist

**DESCRIPTION** 

LIQUID LIMIT 63 PLASTIC LIMIT 20 P.I. 43

BORING NO. Boring 7 SAMPLE NO. 7

SAMPLE TYPE ST DEPTH 19½-21½ ft.

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT 28.4% INITIAL DRY DENSITY 95.5 P.C.F.

FINAL WATER CONTENT <u>27.4%</u> FINAL DRY DENSITY <u>94.6 P.C.F.</u>

t	1	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
1:32:0	M9 00		0.200	7.478	40.869		0.20	9.40	46.000	210.9		256.900		
1:32:0	M9 00	3:08:00 PM	0.200	7.478	40.869	5760	0.35	9.25	44.500	210.9	1.00	255.400	1.86E-08	1.75E-08
3:08:0	M9 00	3:45:00 PM	0.200	7.478	40.869	2220	0.40	9.20	44.000	210.9	1.00	254.900	1.62E-08	1.52E-08
3:45:0	00 PM	4:16:00 PM	0.200	7.478	40.869	1860	0.45	9.15	43.500	210.9	1.00	254.400	1.93E-08	1.82E-08
														1.71E-08

## COEFFICIENT OF VERTICAL PERMEABILITY K₂₀ = 1.71 E-08 CM/SEC

REMARKS: Testing Completed 10/26/2023

TESTED BY: **NAS** 

COMPUTED BY: **NAS** 



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

Quincy, IL • Galesburg, IL • Burlington, IA • Pella, IA • Columbia, MO • Hannibal, MO

guincy, it • Galesburg, it • Burlington, iA • Pella, iA • Columbia, MO • Hariribal, MO

#### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

CLIENT Andrews Engineering

LOCATION **Springfield**, **IL** 

SAMPLING DATE

SAMPLE Sandy Silty Clay (CL-ML), Yellow Brown mottled Reddish Brown/Light Gray,

Medium, Moist

DESCRIPTION

**LIQUID LIMIT 26** 

PLASTIC LIMIT 19 P.I. 7

BORING NO. Boring 8L

SAMPLE NO. 5

SAMPLE TYPE **ST** DEPTH **12-14 ft**.

SPECIFIC GRAVITY, Gs

TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT **24.0%** 

INITIAL DRY DENSITY 101.1 P.C.F.

FINAL WATER CONTENT **24.7%** 

FINAL DRY DENSITY 101.0 P.C.F.

t ₁	$\mathbf{t_2}$	а	L	Α	t	head	tail	h _w	ha	dt/dh	$h_a + h_w$	k	<b>k</b> ₂₀
2:24:00 PM		0.200	7.620	41.302		4.90	5.01	0.550	70.3		70.850		
2:24:00 PM	3:27:00 PM	0.200	7.620	41.302	3780	8.66	1.24	-37.100	70.3	1.00	33.200	3.70E-06	3.49E-06
3:27:00 PM	3:48:00 PM	0.200	7.620	41.302	1260	9.36	0.54	-44.100	70.3	1.00	26.200	3.47E-06	3.27E-06
3:48:00 PM	4:08:00 PM	0.200	7.620	41.302	1200	9.90	0.00	-49.500	70.3	1.00	20.800	3.55E-06	3.34E-06
													3.41E-06

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 3.41 E-06 CM/SEC$

REMARKS: Testing Completed 11/7/2023

**TESTED** BY: **BJS/NAS** 

COMPUTED BY: NAS



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

## PERMEABILITY TEST REPORT ASTM D 5084-10

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

LOCATION **Springfield, IL** SAMPLING DATE

CLIENT Andrews Engineering

SAMPLE Lean Clay (CL), Yelllow Brown mottled Light Gray, Silty, Trace Sand, Stiff, Moist

**DESCRIPTION** 

LIQUID LIMIT 48 PLASTIC LIMIT 21 P.I. 27

BORING NO. Boring 8U SAMPLE NO. ST 8

SAMPLE TYPE **ST** DEPTH **9**½**-11**½ **ft**.

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT 23.0% INITIAL DRY DENSITY 102.4 P.C.F.

FINAL WATER CONTENT 23.3% FINAL DRY DENSITY 102.9 P.C.F.

t ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
10:58:00 AM		0.200	7.280	41.398		5.13	4.40	-3.650	210.9		207.250		
10:58:00 AM	12:10:00 PM	0.200	7.280	41.398	4320	5.25	4.27	-4.900	210.9	1.08	206.000	2.46E-08	2.32E-08
12:10:00 PM	3:07:00 PM	0.200	7.280	41.398	10620	5.54	3.96	-7.900	210.9	1.07	203.000	2.43E-08	2.29E-08
3:07:00 PM	3:54:00 PM	0.200	7.280	41.398	2820	5.61	3.89	-8.600	210.9	1.00	202.300	2.15E-08	2.03E-08
													2.25E-08

# COEFFICIENT OF VERTICAL PERMEABILITY K₂₀ = 2.25 E-08 CM/SEC

REMARKS: Testing Completed 11/17/2023

TESTED BY: **NAS** 

COMPUTED BY: **NAS** 



## PERMEABILITY TEST REPORT ASTM D 5084-10

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds
CLIENT Andrews Engineering

LOCATION **Springfield, IL** SAMPLING DATE

SAMPLE Lean Clay (CL), Light Gray mottled Yellow Brown, Silty, Stiff, Moist

**DESCRIPTION** 

LIQUID LIMIT 45 PLASTIC LIMIT 19 P.I. 26

BORING NO. Boring 8U SAMPLE NO. ST16

SAMPLE TYPE **ST** DEPTH **19**½**-21**½ **ft**.

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT <u>23.4%</u> INITIAL DRY DENSITY <u>100.9 P.C.F.</u>

FINAL WATER CONTENT <u>25.4%</u> FINAL DRY DENSITY <u>100.2 P.C.F.</u>

<b>t</b> ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
8:39:00 AM		0.200	7.732	41.398		1.13	7.78	33.250	210.9		244.150		
8:39:00 AM	9:05:00 AM	0.200	7.732	41.398	1560	1.15	7.76	33.050	210.9	1.00	243.950	9.81E-09	9.24E-09
9:05:00 AM	10:02:00 AM	0.200	7.732	41.398	3420	1.19	7.72	32.650	210.9	1.00	243.550	8.96E-09	8.44E-09
10:02:00 AM	12:04:00 PM	0.200	7.732	41.398	7320	1.29	7.62	31.650	210.9	1.00	242.550	1.05E-08	9.89E-09
													9.40E-09

# COEFFICIENT OF VERTICAL PERMEABILITY K₂₀ = 9.40 E-09 CM/SEC

REMARKS: Testing Completed 11/21/2023

TESTED BY: **NAS** 

COMPUTED BY: **NAS** 



### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

CLIENT Andrews Engineering

LOCATION **Springfield, IL** 

SAMPLING DATE

Lean Clay (CL), Yellow Brown mottled Light Gray/Gray, Silty, Trace Sand, Stiff, SAMPLE

Moist

**DESCRIPTION** 

**LIQUID LIMIT 46** 

PLASTIC LIMIT 21 P.I. 25

BORING NO. Boring 9CCR

SAMPLE NO. ST 8

SAMPLE TYPE **ST** 

DEPTH 9½-11½ ft.

SPECIFIC GRAVITY, Gs

TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT **22.9%** 

INITIAL DRY DENSITY 102.9 P.C.F.

FINAL WATER CONTENT 23.2%

FINAL DRY DENSITY 103.4 P.C.F.

	<b>t</b> ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
	9:05:00 AM		0.200	7.336	41.350		2.15	7.14	24.950	210.9		235.850		
	9:05:00 AM	10:59:00 AM	0.200	7.336	41.350	6840	2.24	7.05	24.050	210.9	1.00	234.950	9.92E-09	9.34E-09
1	10:59:00 AM	12:10:00 PM	0.200	7.336	41.350	4260	2.30	6.99	23.450	210.9	1.00	234.350	1.06E-08	1.00E-08
·	12:10:00 PM	3:06:00 PM	0.200	7.336	41.350	10560	2.44	6.85	22.050	210.9	1.00	232.950	1.01E-08	9.48E-09
														9.55E-09

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 9.55 E-09 CM/SEC$

REMARKS: Testing Completed 11/17/2023

**TESTED** BY: NAS

COMPUTED BY: NAS



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

#### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

CLIENT Andrews Engineering

LOCATION **Springfield**, **IL** 

SAMPLING DATE

SAMPLE Lean Clay with Sand (CL), Yellow Brown mottled Light Gray, Black Oxidation,

Silty, Soft, Moist

DESCRIPTION

**LIQUID LIMIT 26** 

PLASTIC LIMIT 17 P.I. 9

BORING NO. Boring 9L

SAMPLE NO.

SAMPLE TYPE **ST** DEPTH **7**½**-9** ft.

SPECIFIC GRAVITY, Gs

TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT **24.3%** 

INITIAL DRY DENSITY 101.3 P.C.F.

FINAL WATER CONTENT **20.1%** 

FINAL DRY DENSITY 106.5 P.C.F.

t ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	$h_a + h_w$	k	<b>k</b> ₂₀
5:24:00 PM		0.200	7.112	40.391		4.13	5.83	8.500	70.3		78.800		
5:24:00 PM	6:08:00 PM	0.200	7.112	40.391	2640	6.89	3.06	-19.150	70.3	1.00	51.150	2.88E-06	2.72E-06
6:08:00 PM	6:26:00 PM	0.200	7.112	40.391	1080	7.63	2.30	-26.650	70.3	1.03	43.650	2.59E-06	2.44E-06
6:26:00 PM	6:40:00 PM	0.200	7.112	40.391	840	8.09	1.85	-31.200	70.3	0.98	39.100	2.31E-06	2.17E-06
													2.55E-06

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 2.55 E-06 CM/SEC$

REMARKS: Testing Completed 11/9/2023

**TESTED** 

BY: **BJS/NAS** 

COMPUTED BY: NAS



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

## PERMEABILITY TEST REPORT ASTM D 5084-10

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

LOCATION **Springfield, IL** SAMPLING DATE

CLIENT Andrews Engineering

SAMPLE Lean Clay (CL), Gray mottled Light Gray, Silty, Stiff, Moist

**DESCRIPTION** 

LIQUID LIMIT 46 PLASTIC LIMIT 22 P.I. 24

BORING NO. Boring 9U SAMPLE NO. ST 16

SAMPLE TYPE **ST** DEPTH **19**½**-21**½ **ft**.

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT 23.4% INITIAL DRY DENSITY 102.5 P.C.F.

FINAL WATER CONTENT 23.1% FINAL DRY DENSITY 102.7 P.C.F.

<b>t</b> ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
3:13:00 PM		0.200	7.681	42.077		0.88	8.68	39.000	210.9		249.900		
3:13:00 PM	3:58:00 PM	0.200	7.681	42.077	2700	0.99	8.57	37.900	210.9	1.00	248.800	2.98E-08	2.81E-08
3:58:00 PM	4:25:00 PM	0.200	7.681	42.077	1620	1.06	8.50	37.200	210.9	1.00	248.100	3.17E-08	2.99E-08
4:25:00 PM	4:58:00 PM	0.200	7.681	42.077	1980	1.12	8.44	36.600	210.9	1.00	247.500	2.23E-08	2.10E-08
													2.63E-08

# COEFFICIENT OF VERTICAL PERMEABILITY K₂₀ = 2.63 E-08 CM/SEC

REMARKS: Testing Completed 11/22/2023

TESTED BY: **NAS** 

COMPUTED BY: **NAS** 



### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

LOCATION Springfield, IL SAMPLING DATE

CLIENT Andrews Engineering

Lean Clay (CL), Yellow Brown mottled Light Gray, Silty, Trace Sand, Stiff, Moist

DESCRIPTION

SAMPLE

**LIQUID LIMIT 36** PLASTIC LIMIT **20** 

P.I. 16

BORING NO. Boring 11U

SAMPLE NO. ST 8

SAMPLE TYPE **ST** DEPTH **9**½**-11**½ **ft**.

SPECIFIC GRAVITY, Gs

TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT 23.1%

INITIAL DRY DENSITY 104.4 P.C.F.

FINAL WATER CONTENT 22.3%

FINAL DRY DENSITY 105.9 P.C.F.

t ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
7:46:00 AM		0.200	7.244	41.834		2.04	7.38	26.700	210.9		237.600		
7:46:00 AM	8:57:00 AM	0.200	7.244	41.834	4260	2.12	7.30	25.900	210.9	1.00	236.800	1.37E-08	1.29E-08
8:57:00 AM	9:30:00 AM	0.200	7.244	41.834	1980	2.16	7.26	25.500	210.9	1.00	236.400	1.48E-08	1.39E-08
9:30:00 AM	10:41:00 AM	0.200	7.244	41.834	4260	2.25	7.17	24.600	210.9	1.00	235.500	1.55E-08	1.46E-08
													1.38E-08

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 1.38 E-08 CM/SEC$

REMARKS: Testing Completed 11/13/2023

**TESTED** BY: NAS

COMPUTED BY: NAS



## PERMEABILITY TEST REPORT ASTM D 5084-10

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds
CLIENT Andrews Engineering

LOCATION **Springfield, IL** SAMPLING DATE

SAMPLE <u>Lean Clay (CL), Brown mottled Yellow Brown, Silty, Stiff, Moist</u>

**DESCRIPTION** 

LIQUID LIMIT 48 PLASTIC LIMIT 21 P.I. 27

BORING NO. Boring 11U SAMPLE NO. ST 16

SAMPLE TYPE **ST** DEPTH **19**½**-21**½ **ft**.

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT <u>25.2%</u> INITIAL DRY DENSITY <u>97.4 P.C.F.</u>

FINAL WATER CONTENT <u>26.8%</u> FINAL DRY DENSITY <u>97.3 P.C.F.</u>

t ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
12:17:00 PM		0.200	7.498	42.028		0.50	9.38	44.400	210.9		255.300		
12:17:00 PM	12:30:00 PM	0.200	7.498	42.028	780	0.84	9.02	40.900	210.9	1.06	251.800	3.16E-07	2.97E-07
12:30:00 PM	12:40:00 PM	0.200	7.498	42.028	600	1.10	8.77	38.350	210.9	0.96	249.250	3.03E-07	2.85E-07
12:40:00 PM	1:03:00 PM	0.200	7.498	42.028	1380	1.73	8.12	31.950	210.9	1.03	242.850	3.36E-07	3.17E-07
													3.04E-07

# COEFFICIENT OF VERTICAL PERMEABILITY $\underline{K_{20} = 3.04 \text{ E-07 CM/SEC}}$

REMARKS: Testing Completed 11/13/2023

TESTED BY: **NAS** 

COMPUTED BY: **NAS** 



#### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds CLIENT Andrews Engineering

LOCATION Springfield, IL SAMPLING DATE

Lean Clay (CL), Light Gray mottled Yelllow Brown, Silty, Trace Sand, Stiff, Moist SAMPLE DESCRIPTION

**LIQUID LIMIT 30** PLASTIC LIMIT 19 P.I. 11

SAMPLE NO. BORING NO. Boring 12L

SAMPLE TYPE **ST** DEPTH **14**½**-16** ft.

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT 22.2% INITIAL DRY DENSITY 104.3 P.C.F.

FINAL WATER CONTENT 22.0% FINAL DRY DENSITY 105.1 P.C.F.

	t ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
5:	25:00 PM		0.200	7.203	41.447		5.54	3.60	-9.700	70.3		60.600		
5:	25:00 PM	5:40:00 PM	0.200	7.203	41.447	900	5.83	3.30	-12.650	70.3	1.03	57.650	9.64E-07	9.08E-07
5:	40:00 PM	5:52:00 PM	0.200	7.203	41.447	720	6.09	3.02	-15.350	70.3	1.08	54.950	1.16E-06	1.09E-06
5:	52:00 PM	5:58:00 PM	0.200	7.203	41.447	360	6.20	2.92	-16.400	70.3	0.91	53.900	9.31E-07	8.77E-07
														9.69E-07

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 9.69 E-07 CM/SEC$

REMARKS: Testing Completed 11/3/2023

**TESTED** 

BY: **BJS/NAS** 

COMPUTED BY: NAS



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

CLIENT Andrews Engineering

LOCATION **Springfield**, **IL** 

SAMPLING DATE

Lean Clay (CL), Yellow Brown mottled Light Gray, Black Oxidation, Silty, Stiff, SAMPLE

Moist

**DESCRIPTION** 

**LIQUID LIMIT 45** 

PLASTIC LIMIT 22

P.I. **23** 

BORING NO. Boring 12U

SAMPLE NO. ST 8

SAMPLE TYPE **ST** DEPTH **9**½**-11**½ **ft**.

SPECIFIC GRAVITY, Gs

TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT **20.7%** 

INITIAL DRY DENSITY 107.5 P.C.F.

FINAL WATER CONTENT 21.6%

FINAL DRY DENSITY 106.3 P.C.F.

<b>t</b> ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	k ₂₀
8:14:00 AM		0.200	7.457	41.785		1.48	7.91	32.150	210.9		243.050		
8:14:00 AM	9:34:00 AM	0.200	7.457	41.785	4800	1.50	7.89	31.950	210.9	1.00	242.850	3.06E-09	2.88E-09
9:34:00 AM	11:39:00 AM	0.200	7.457	41.785	7500	1.54	7.85	31.550	210.9	1.00	242.450	3.92E-09	3.70E-09
11:39:00 AM	1:09:00 PM	0.200	7.457	41.785	5400	1.56	7.83	31.350	210.9	1.00	242.250	2.73E-09	2.57E-09
													3.13E-09

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 3.13 E-09 CM/SEC$

REMARKS: Testing Completed 11/24/2023

**TESTED** 

BY: **BJS/NAS** 

COMPUTED BY: NAS



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

CLIENT Andrews Engineering

LOCATION **Springfield, IL** 

SAMPLING DATE

SAMPLE Lean Clay (CL), Yellow Brown mottled Light Gray, Silty, Black Oxidation, Silty,

Stiff, Moist

**DESCRIPTION** 

**LIQUID LIMIT 42** 

PLASTIC LIMIT 22

P.I. **20** 

BORING NO. Boring 12U

SAMPLE NO. ST 16

SAMPLE TYPE **ST** DEPTH **19**½**-21**½ **ft**.

SPECIFIC GRAVITY, Gs

TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT **22.2%** 

INITIAL DRY DENSITY 100.1 P.C.F.

FINAL WATER CONTENT 26.8%

FINAL DRY DENSITY 97.3 P.C.F.

	t ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
6	31:00 AM		0.200	7.366	42.126		1.62	8.07	32.250	210.9		243.150		
(	6:31:00 AM	8:42:00 AM	0.200	7.366	42.126	7860	1.74	7.96	31.100	210.9	0.92	242.000	1.05E-08	9.93E-09
8	3:42:00 AM	10:53:00 AM	0.200	7.366	42.126	7860	1.86	7.84	29.900	210.9	1.00	240.800	1.11E-08	1.04E-08
1	0:53:00 AM	4:03:00 PM	0.200	7.366	42.126	18600	2.13	7.55	27.100	210.9	1.07	238.000	1.10E-08	1.04E-08
														1.03E-08

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 1.03 E-08 CM/SEC$

REMARKS: Testing Completed 11/25/2023

**TESTED** 

BY: **BJS/NAS** 

COMPUTED BY: NAS



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

### PERMEABILITY TEST REPORT **ASTM D 5084-10**

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

LOCATION **Springfield, IL** SAMPLING DATE

CLIENT Andrews Engineering

Lean Clay (CL), Yellow Brown, Silty, Trace Sand, Stiff, Moist SAMPLE

DESCRIPTION

**LIQUID LIMIT 34** PLASTIC LIMIT **20** P.I. **14** 

SAMPLE NO. ST 7 BORING NO. **Boring 13BN** 

SAMPLE TYPE **ST** DEPTH **8**½-**9**½ **ft**.

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT 19.0% INITIAL DRY DENSITY 109.7 P.C.F.

FINAL WATER CONTENT 18.8% FINAL DRY DENSITY 110.9 P.C.F.

<b>t</b> ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
9:06:00 AM		0.200	7.219	41.785		5.27	4.64	-3.150	210.9		207.750		
9:06:00 AM	10:18:00 AM	0.200	7.219	41.785	4320	5.32	4.59	-3.650	210.9	1.00	207.250	9.64E-09	9.08E-09
10:18:00 AM	12:22:00 PM	0.200	7.219	41.785	7440	5.40	4.51	-4.450	210.9	1.00	206.450	8.98E-09	8.46E-09
12:22:00 PM	1:18:00 PM	0.200	7.219	41.785	3360	5.44	4.47	-4.850	210.9	1.00	206.050	9.97E-09	9.39E-09
													8.84E-09

### **COEFFICIENT OF VERTICAL PERMEABILITY** $K_{20} = 8.84 E-09 CM/SEC$

REMARKS: Testing Completed 11/27/2023

**TESTED** 

BY: **BJS/NAS** 

COMPUTED BY: NAS



4510 Paris Gravel Road • Hannibal, MO 63401 573.221.7714 • 573.221.7762 (Fax) • www.klingner.com

## PERMEABILITY TEST REPORT ASTM D 5084-10

PROJECT No. **23-1071** 

PROJECT Andrews - Springfield, IL Ash Ponds

LOCATION **Springfield, IL** SAMPLING DATE

CLIENT Andrews Engineering

SAMPLE Fat Clay (CH), Gray mottled Light Gray, Silty, Trace Sand, Stiff, Moist

DESCRIPTION

LIQUID LIMIT 52 P.I. 27

BORING NO. Boring 13BS SAMPLE NO. ST 7

SAMPLE TYPE **ST** DEPTH **8**½-**9**½ **ft**.

SPECIFIC GRAVITY, Gs TEST METHOD **ASTM D 5084-10** 

INITIAL WATER CONTENT 19.1% INITIAL DRY DENSITY 109.6 P.C.F.

FINAL WATER CONTENT 18.2% FINAL DRY DENSITY 110.6 P.C.F.

<b>t</b> ₁	t ₂	а	L	Α	t	head	tail	h _w	ha	dt/dh	h _a +h _w	k	<b>k</b> ₂₀
12:54:00 PM		0.200	5.476	41.013		1.24	8.79	37.750	210.9		248.650		
12:54:00 PM	2:26:00 PM	0.200	5.476	41.013	5520	1.51	8.52	35.050	210.9	1.00	245.950	2.64E-08	2.49E-08
2:26:00 PM	4:58:00 PM	0.200	5.476	41.013	9120	1.90	8.12	31.100	210.9	1.03	242.000	2.37E-08	2.23E-08
4:58:00 PM	6:40:00 PM	0.200	5.476	41.013	6120	2.18	7.86	28.400	210.9	0.93	239.300	2.45E-08	2.31E-08
													2.32E-08

# COEFFICIENT OF VERTICAL PERMEABILITY K₂₀ = 2.32 E-08 CM/SEC


REMARKS: Testing Completed 11/27/2023

**TESTED** 

BY: **BJS/NAS** 

COMPUTED BY: **NAS** 







CONSULTING ENGINEERS

2900 N. MARTIN LUTHER KING JR. DRIVE • DECATUR, ILLINOIS 62526

217-877-2100 • FAX 217-877-4816 www.sksengineers.com

**PROJECT:** 

**CWLP** 

**PROJECT NO:** 

418834

DATE OF TEST

June 03, 2024

**CLIENT:** 

Andrews Engineering

**REPORT NUMBER:** 

418834-01

ATTN:

Mr. Brad Hunsberger

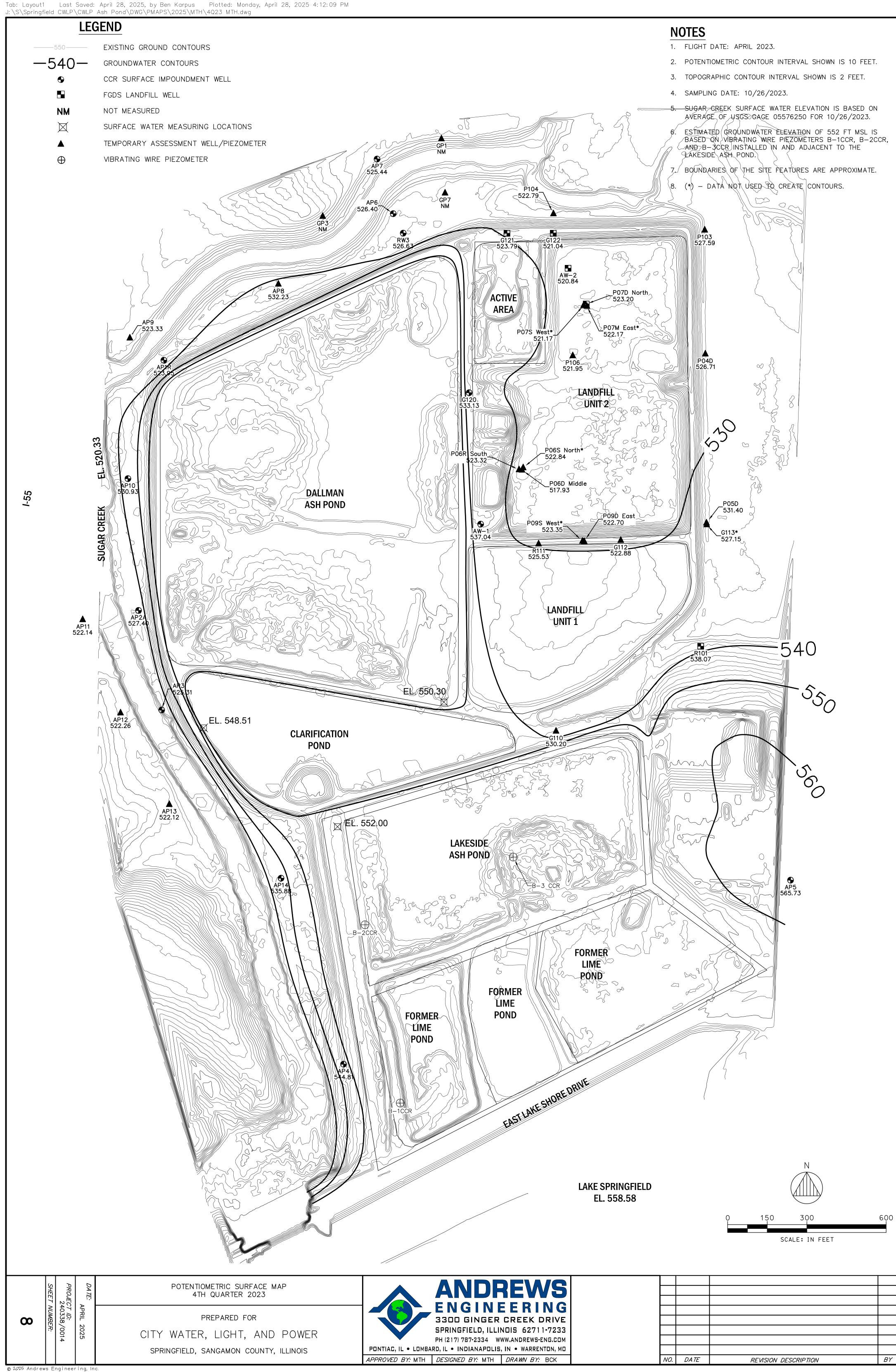
PAGE NO.

1/1

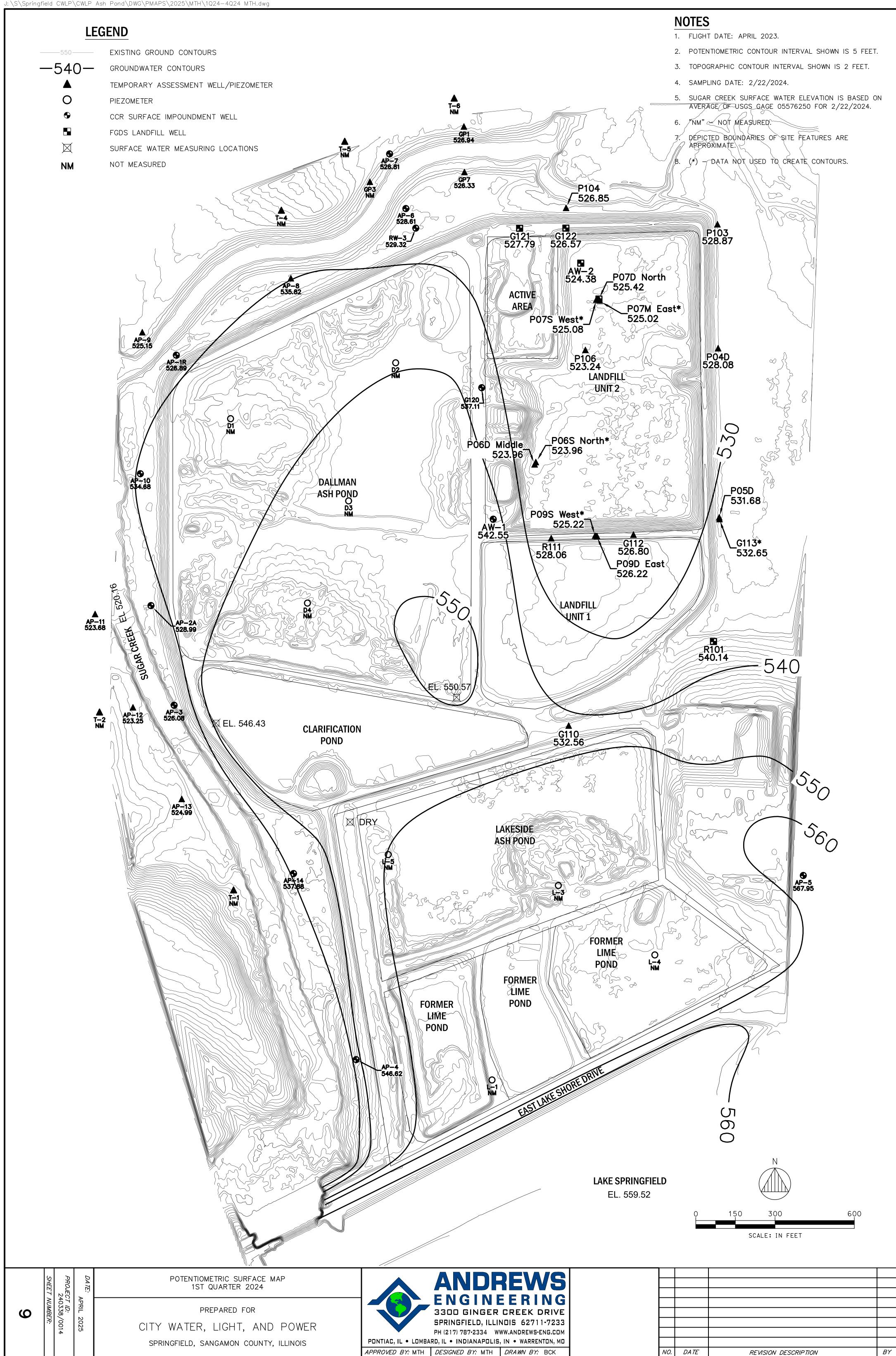
ITEM:

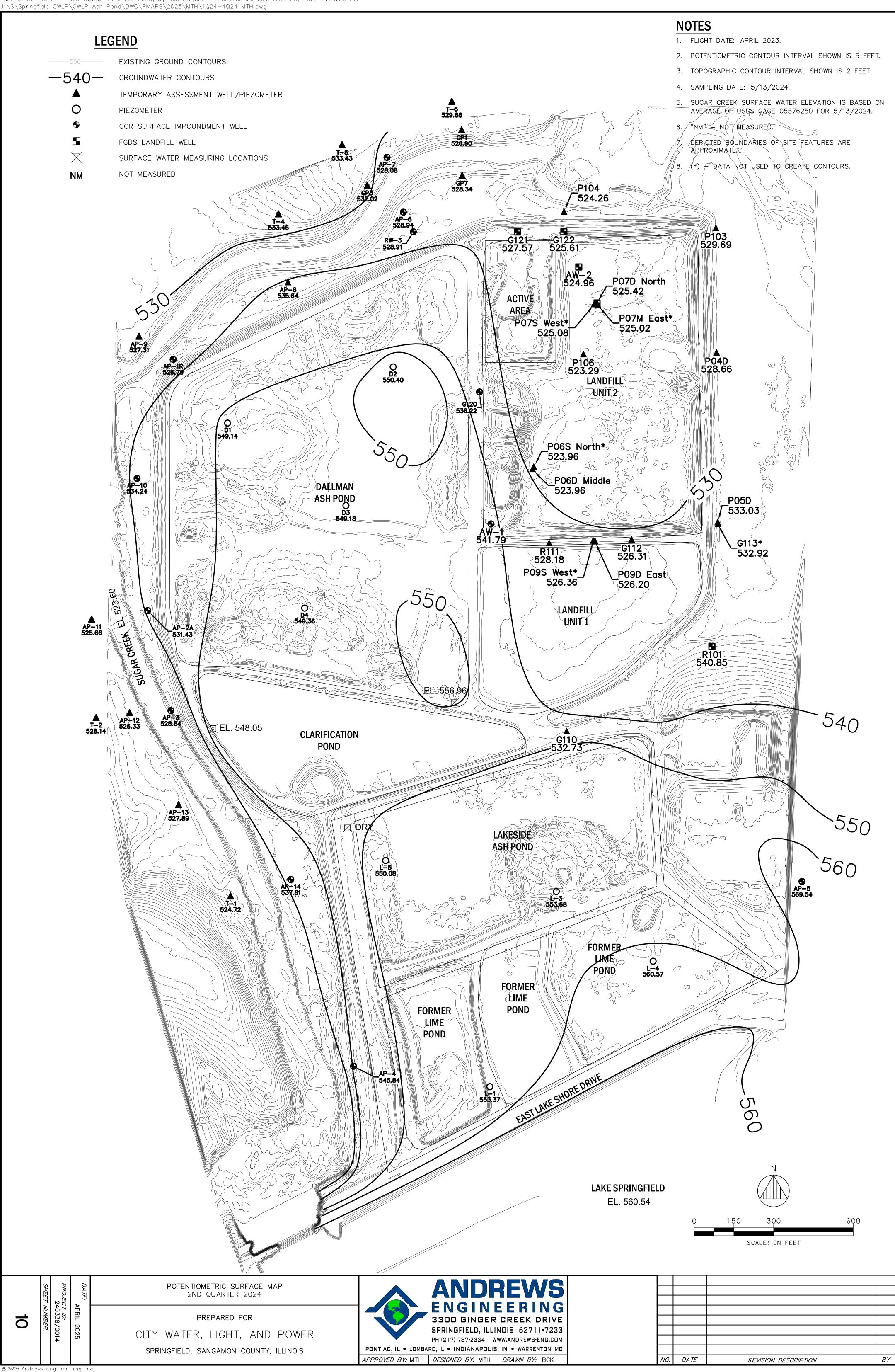
#### PERMEABILITY TEST RESULTS

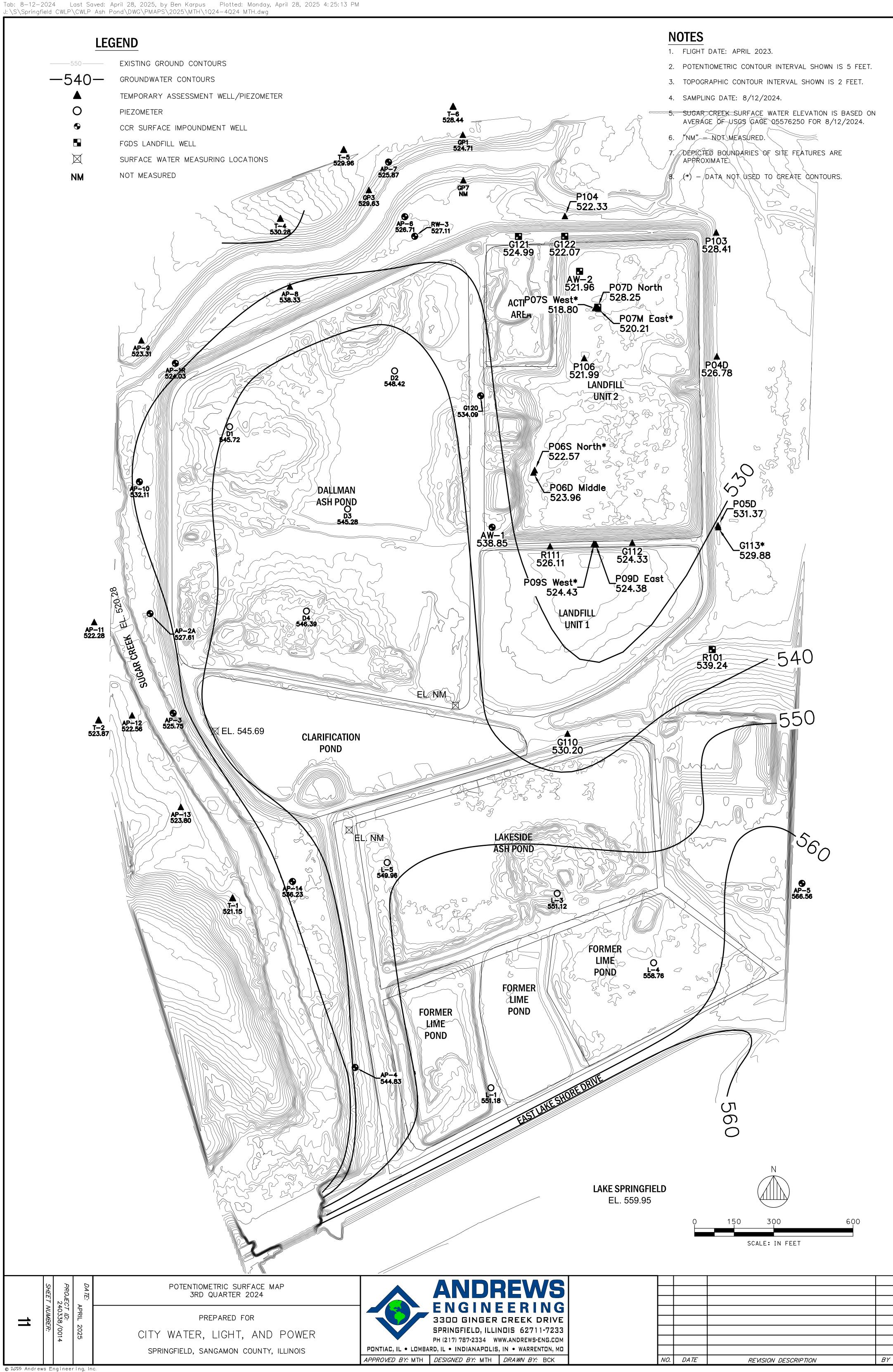
Sample	Moisture C	ontent (%)	Dry Unit Weight	Permeability
	Before Test	After Test	(PCF)	(Cm./Sec.)
L4 (17'-19')	37.6	31.5	89.2	1.7 x 10-8
D3 (29.5'-31.5')	27.0	26.6	98.4	2.1 x 10-6
D1 (38.5'-40.5')	23.1	22.9	105.6	5.1 x 10-8
L5 (37.5'-39.5')	23.2	22.4	103.6	6.8 x 10-6
D2 (35.5'-37.5')	25.2	25.0	98.8	2.8 x 10-7
L3 (34.5'-36.5')	24.3	30.4	94.1	8.5 x 10-8
L1 (36'-38')	26.5	25.9	98.2	4.5 x 10-7
D4 (34.5'-36.5')	27.8	23.0	99.4	1.4 x 10-6


NOTES: Test ran according to ASTM D-5084

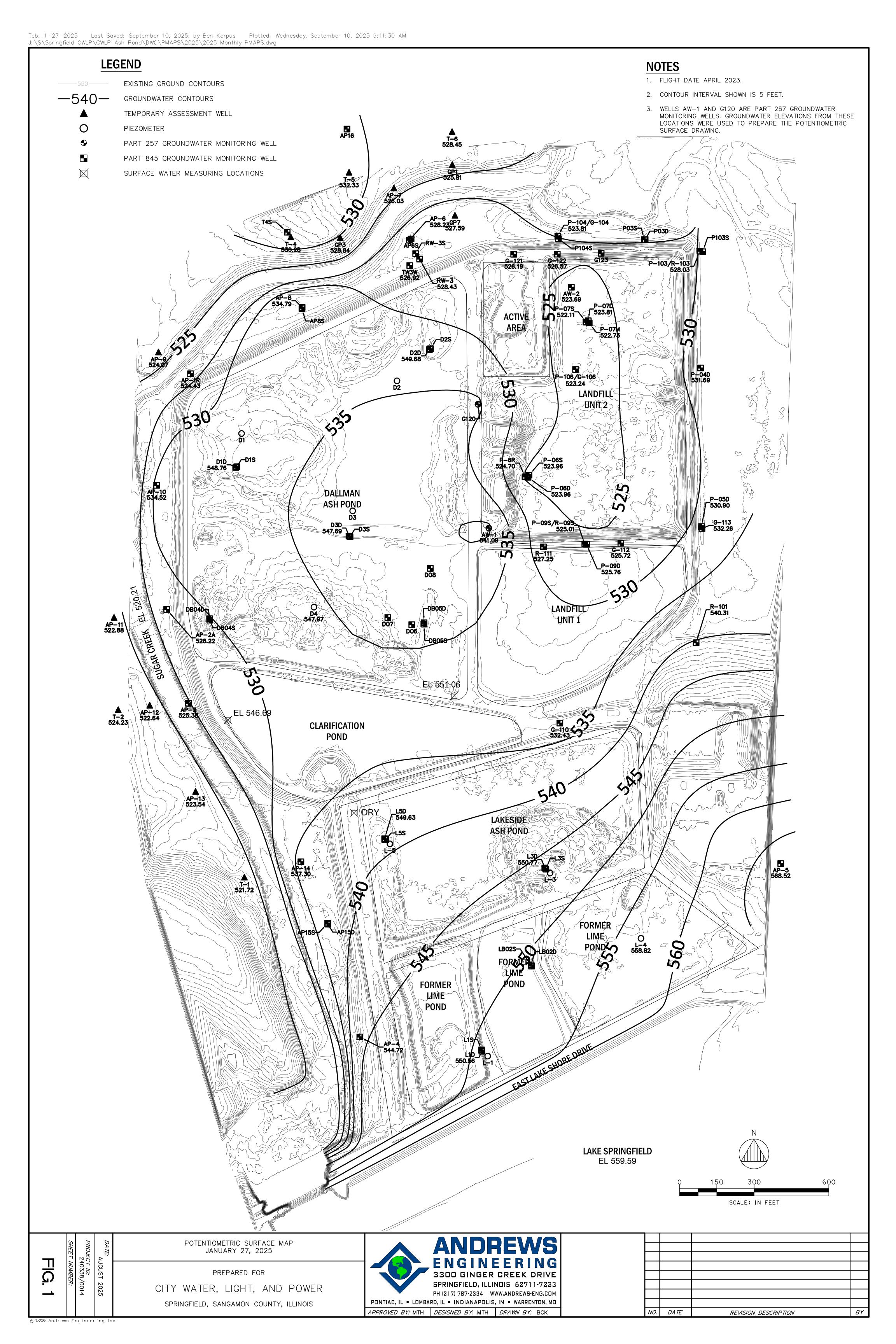
BY:

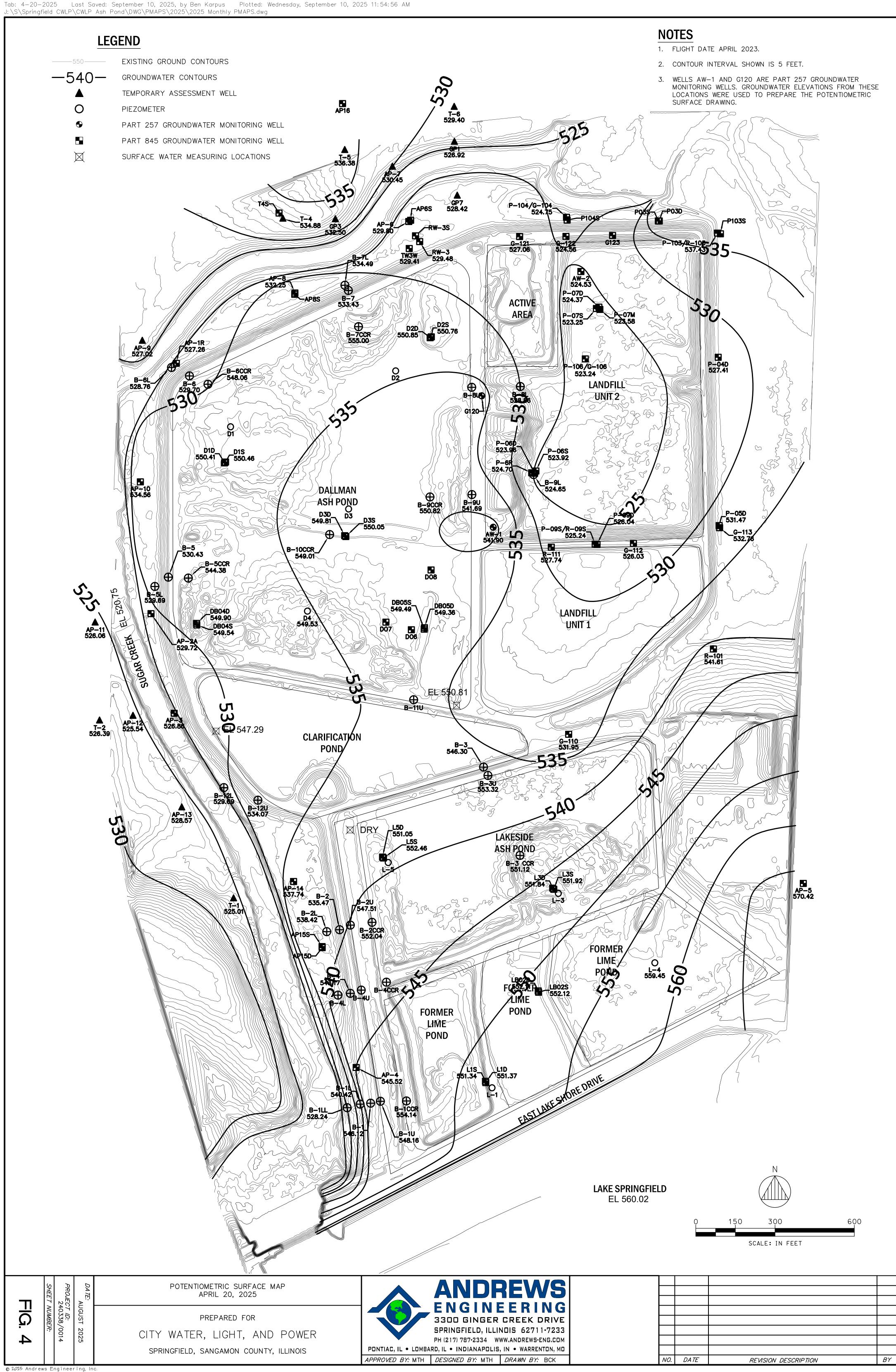

teatien Jacobs

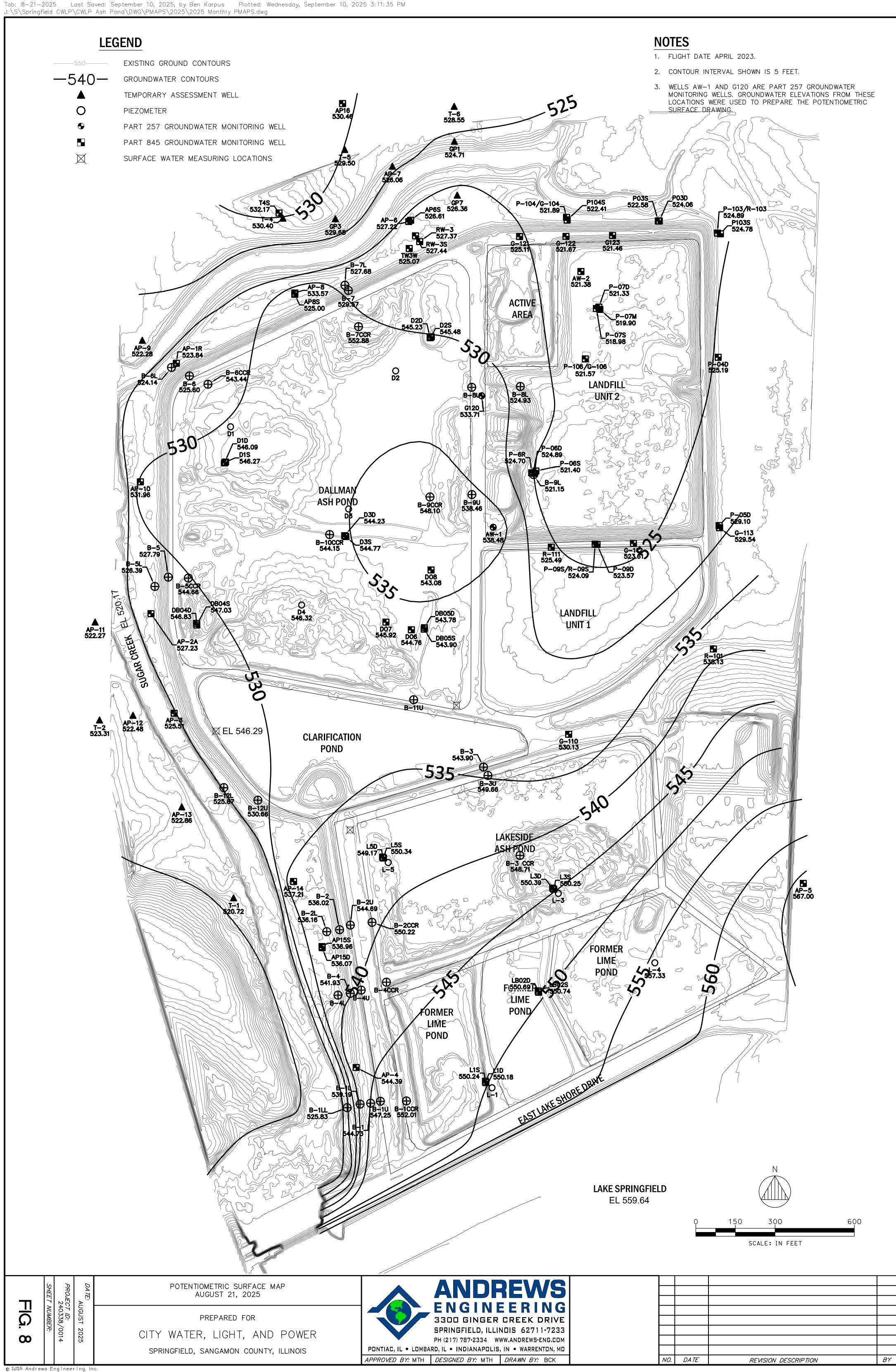

### **APPENDIX F:** POTENTIOMETRIC SURFACE MAPS







© 2015 Andrews Engineering, Inc.
















#### CORPORATE HEADQUARTERS

#### SPRINGFIELD OFFICE

3300 Ginger Creek Drive, Springfield, IL 62711 217.787.2334

#### CHICAGO AREA OFFICE

630.953.3332

#### ST. LOUIS OFFICE

101 East Walton, Suite 201, Warrenton, MO 63382 215 West Washington Street, Pontiac, IL 61764 636.456.6387

#### **INDIANAPOLIS OFFICE**

420 Eisenhower Lane North, Lombard, IL 60143 1811 Executive Drive, Suite J, Indianapolis, IN 46241 317.595.6492

#### **PONTIAC OFFICE**

815.842.2042